PC4274 (AY2013/2014 sem 2)

Suggested solutions

Question 1

la. Since X and Y are vector fields, they can be expressed as X = X 9— and Y = Yl 8

]

coordinate basis. Since [X , Y] XY — Y X, we evaluate XY first:

_ 0 0
= J i
XY (X axﬂ) (Y 8xi)

0 N\ 0 o 0
v i AV
=X (8xjy> Ozt + XY (8xj 895")

Similarly, we obtain

YX =Y/ (ix> 9 +YIX! ( 0

oxl ox’ OxJ Ox?
9 .\ 0O 0 0
=Y | —X* Jyt s
Y (8ij > B +Y'X ( 5 8xﬂ> assuming partial derivatives commute

9 .\ 0O g 0
_ vi ; i . D
Y (_8ij ) o7 + XY ( 57 8x’) , relabelling summmation indices

Taking the difference, the latter terms in the two expressions cancel, giving us

(X.7] = XV - VX = X7 (iyi) O _yi (ixz’) 0

oxJ ozt oxJ or’
0 .. 0 0
J 1 J 7
(X OxJ owt Y Ox X) Ox?

hence it is a vector field, with components

o o ., ;0
[X,Y}:X%Y YIS X

1b. Since & is a 1-form, its exterior derivative is a 2-form, with components

(da)y; = (1+ )0y,

9 (% (Da; — ajai))

. 80éj 8041'

N 893'2 a[lfj

na



1c. Using the result from part (b),
da (X,Y) = (da); X'y/
_ <8C¥j B 80&1) XZYJ

Or; Oz,
= xi Py ys 0%y
oz; Oz,

We note that 5~ 9 (a;Y7) = 80‘] Y7 + o; 22 by product rule, and so 3! 9o yi — 83:1 (;Y7) — %’;:.
Similarly, we have aal X t = 6 - (; XP) — al a . Substituting into the above gives

Bz
~ = - aa 8041
da (X, Y) 8xz YI —Yd (9ij
(0 . oY (0 , 0X'
= X' — YY) —ai— | Y | — (,X") — oy
(0331 <a] ) Y azv, ) (81'] (CV ) “ @x]>
-0 . o, oY ox’
=X Y)Y — (X)) — X° Yo
(9@- (OéJ ) a T (Oé ) Oéj a + & axj
_ . _ . QY - 0X
=X (oijj) -Y (aiX’) X' ajaa ozjaa—, relabelling indices on last term
Z;

8% &r,
aY)-Ya(X)—a; [X, Y]j , by the result of part (a)
V) - ¥a(X) - ([X.7])

_ Xa(Y) - Va(X) - (xz o7 yzaX]>

If & is exact, then by definition & = df for some scalar field f (since & is a 1-form). We hence
have a = df = %dxi in a coordinate basis, and the right-hand side of the above equation then
becomes

of o5

Xa(V) ~ Va(X) ~a ([X.¥]) = X2 (7) ¥ axiaxi X) - e ([x,7))
O i o0 O
Xou¥ ~ Vo' = g [XTT

(<) (- gax])(s;z )

of y
= o (X (%JY Y ) by the result of part (a)

/515% ; 8XZ

895] ﬁxl xt QI 81‘3 &rl

W X
ol 831:Z

Xi_—< i
8:6] 8:1:1 (%cﬂ 6?:1:Z
P i i O
0xI 0zt 0xt0xI

= 0, assuming partial derivatives commute

= X/ X7, relabelling summation indices




Question 2
2a. One explicit coordinate basis would be {&t A ax, dt A ay, dt Adz, dz A ay, dz A az, ay A az}

The vector space has dimension *Cy = 6.

Since the manifold is 4-dimensional, 2-forms map to 2-forms (4 — 2 = 2). Hence the vector space
of 2-forms maps to itself under the dual map. To verify that the mapping is surjective (a.k.a.
onto), we shall show that the above set of six basis 2-forms maps bijectively to itself (up to sign
differences) under the dual map. As given in the hint, the dual mapping applied to 2-forms gives

s 5 s . 1 5 .
#(dz® A dab) = ( e dat A da? = ée“bcd dz® A da?

1
1-2)!

To figure out the value of €, we note that (assuming Minkowski space in standard coordinates
with the — + 4+ sign convention, g" = n**) we have €®_; = n°n*’c,p.4. Since n°® = 0 unless
a = «, all the terms in the summation over «, 5 on the RHS are zero except for the term with
a = a, f =b (which may also be zero, if a = b). We can hence write

€y =n""1"€wea  (n0 sum over a, b)

Therefore, €, and €qpeq differ only by a sign, given by n®n®

733 = +1, we see that e“bcd = €4peq if neither of a, b is 0, and e“bcd = —€gupeq if either of a, b is

any of a, b, ¢, d are equal to each other, the expression evaluates to zero.)

. Since n° = —1 and !t = 9* =
0. (If

It is convenient to now list the sign of €44 and thus e“bcd for some permutations we will use:
€123 = +1 €213 = —1 €321 = —1 €1203 = +1 €1320 = +1 €2310 = —1

01 _ 02 __ 03 __ 12 _ 13 _ 23 _

Using these values, we can hence write
<. - - 1 - -
#(dt Adx) = #(da® Adat) = 5601@[ dz A dz?

1 - ~ ~ -
= 5(—dx2 Ada® + da® A dz?)
= —dz? Ad2®  since do® A da? = —dz? A da® by antisymmetry
= —ay Adz

and similarly we compute

« (dt Ady) =dzAdz
¥ (dt Adz) = —dz Ady

Hence, the mapping of the vector space of 2-forms to itself under the dual map is surjective.



2bi. Since F is a 2-form, *F is also a 2-form, as described in part (a). It is easier to work with
the F*¥ form instead of the F),, form given:

FHy — g,u)\gVaF)\U — guAF/\JgUV

-1 0 0 0 0 —-E' —-E* —F3 -1 0 0 0
10 100 E' 0 B —-B? 0 100
10 010 E* —-B3 0 B! 0 010

0 001 E3 B* —-B' 0 0 001

0 E''  E* E3
—-E' 0 B —B?
-E* -B* 0 B!
-E* B* —-B' 0

With these components, we can write F' as a sum of coordinate basis elements, then as a sum of
2-form basis elements:

F= F. dzt @ da”
= B'dt ® do + E*dt ® dy 4+ E3dt @ dz — E'dz ® dt + Bdz @ dy — B%dz ® dz + (etc.)
= EYdt ® dz — dz ® dt) + E*(dt ® dy — dt @ dy) + (etc.)
= E'dt Adx + E%dt A ay + E3dt A dz + B3dx A ay — B%dx Adz + Blay Adz

Using the results of part (a), we can then find *F:
«F = «(E'dt Adx + E*dt A dy + E3dt A dz + B3da A dy — B%da A dz + Bldy A dz)
= —E'dy Adz 4+ E*dz Adz — E3dae A dy + B3dt Adz + B*dt A dy + B'dt A dx
= B'dt Adz + B*dt Ady + B3dt Adz — E*dz Ady + E*dz Adz — E'dy Adz
It can hence be seen that the effect of the dual map on the electric and magnetic fields is that the

resulting electric field takes the value of the original magnetic field, and the resulting magnetic
field takes the value of the negative of the original electric field (E; = B;, By = —E;).

2bii. By using the above expressions for F' and *F, we can compute ' A *F by expanding the
wedge product:

FAxF = (E'dt Adx + E2dt Ady 4+ E3dt Adz + B3dz A dy — B2da Adz + Bldy A dz)

A (BYdt A dz + Bdt A dy + B3dt Adz — E3da A dy + E?*da Adz — Eldy A dz)

= —(EY2dt Adz Ady Adz + (E)?2dE Ady Ade Adz — (E3)2dt Adz Adz Ady
+ (B*?dz Ady Adt Adz — (BY)?dz Adz Adt Ady + (BY)2dy Adz Adt A de,
noting that all terms of the form dt A dz A dt A ay and so on are zero

= —(EMY! At Adz Ady Adz — (E?)?dt Ada Ady Adz — (E*)?dt Ada Ady Adz
+ (33)2& Adz Ady Adz + (BQ)Qat Adz Ady Adz+ (BY2dt Ade Ady Adz,
using the even/oddness of the permutations computed in part (a)

= (|BJ? - |E\2)c~1t Adz Ady Adz



Therefore, /F/\ «F = /(|B|2 — |E)dt Adz Ady Adz = /(|B|2 — |E*) dtdr dydz.

Similarly for F' A F,

FAF = (E'dt Adz+ E2dt Ady + E*dt A dz + B*da A dy — B2da A dz + Bldy A dz)
A (E'dt Adx + E2dt A dy + E3dt A dz + B3da A dy — B2z A dz + Bdy A dz)
= E'B'dt Adz Ady Adz — E*B2dt Ady Adz Adz + E®B3dt Adz Ada Ady
+ B*Fde Ady Adt Adz — B2E*dez Adz Adt Ady + B'E'dy Adz Adt A de
= (E'B'+ E*B> + B°B® + B'E' + B’E? + B?°E®)dt Adz Ady A dz
= (2B-E)dt Adz Ady Adz

Therefore, /F/\F:/(2B-E)atAaanyAaz:/(2B-E)dtdxdydz.



Question 3

3a. We recall that for a scalar field f, £f = V f, and for a vector field W, £W = [V, W} By

: o1 i 0 T i 9 1/i
the result of question 1(a), we have [V, W} =VIggWh — WiV

(L) W) + U(£5W),

Consider an arbitrary vector field W. By product rule, £y <U (W ))
and therefore

0 0 -0 . 0
=V U WU | U (VIi=W =W V!
1) oxJ 7 OxJ
;. -
=VW'—U, + UW —V"
Oxl Oxl
= (Vj %Ui +U jg\/j ) W', relabelling summation indices on second term
T Tt

Since the LHS of the expression can also be written as (£50)(W) = (£30);W* and W was

arbitrary, we hence conclude that (£40); = V7 2=U; + U2 V.

(Alternative solution) We can directly use a basis vector ¢; instead of W, obtaining

(£70); = (£v0)(@) = £v (0(@)) - U(£72)

7
= Vj%UZ —U; (vk%(sg — 55%1/1)
= V"%Ul U; [0— aiw)

= Vj%Ui - Ujaiivj



As for w),;» similarly by product rule we have £y (@W,X)) = (£y0)W,X)+0(£yW, X))+

(£v
(W, £y X) for arbitrary vector fields W, X. Therefore,

d L
_vka k( wiW'X7) — wy; [V, ] X —w; W[V, X

. auh] i Y j /Z M ’ kavz
=V <8kaX + w; X7+ wij mk -Ww 9k X

onoxi_Lovi

Ow; ; oV’ oV
k> ) k iykZ"
k k

ow; OV 0V
k J ) 7
=V 83:’3 Wi X7 + wi; W* e X7+ wy Wi X7 90
0

0 0
- (Vka & Wij +wk]8 V* +Wzka_vk) Wix/

, relabelling summation indices

Since the LHS of the expression can also be written as (£y@)(W, X') (fvfb) WiX7 and W, X

were arbitrary, we hence conclude that (£yw),; = Vk%ww + wij 2 VE + w2 £ Vk

ox 7

(As with the first part, an alternative solution is also possible by using (£y0)i; = (£y@)(€;, €;)
directly instead of W, X.)

3bi. Note that since we are working in Euclidean space, the time ¢ is a parameter rather than a
coordinate in this context. The Euclidean metric in standard coordinates is g;; = 0;;.

The given expression for the Euler equation is in the form of vector components, while the desired
result is a 1-form equation. We hence begin by lowering the free index i:

o’ N ;ov’ i Op
ik, kU= = —Yi
Gik ot gik O gik v
8 i Ui 8 i UZ 8 . . . i
M + 0/ (gixv") = P since g;; = 0;; is a constant w.r.t. ¢ and the coordinates z’

ot oxi  Ozk’
vy, 8vk dp

o T o

(Some care needs to be taken with the step gzké” g = because the Kronecker delta §%

a k7
with two upper indices is not tensorial. However, viewing —d0% 22
th

j as giving the components of a

vector whose " component is — g - in standard coordinates, it can be seen that the corresponding

one-form under the Euclidean metric in standard coordinates (which is simply the identity matrix)

has i*" component — gfi as well.)




Taking a 1-form coordinate basis {&*} and summing over the components in the above equation,
we have

Ovy, SO\ p dp
(W“’%)‘" —< Dt
v - oF + ( v + vj%> oF =7 81)] 0 — @(Dk, adding v’/ gv to both sides

ot O Oxk oz T Bk ok
%wk + (£g0) 0" = vI = 0, —J.u% — dp, using the result in part (a) and noting d _ o wk
8(1)5: ) + £30 = 3 ( g;}i + v 2%) dp, since the basis 1-forms & are independent of ¢
v .1 0 ]3(gijv) -k 7
at+£””_2( ook TV g ) T
U 1 . . . ‘ -
@ + L0 = = Uj% + v’ g5 v &k — dp, since gij = 0;; is constant w.r.t. the coordinates
ot 2 xk oxk
ov 1/ .0v ov ~
— £17~ — _ J_~7J 2 ~k d
ot Tt T <” ozt T axk> © A
% + £50 = 5 (a(gxz )) &* — dp, by product rule
ov .1~ ~
5 + L0 = Ed (v'v;) —dp

VRS
Pl
+
e
SN——
N
Il

/1 - .
d <§ o] - p) , since |7]* = g;;u07 = v/v; by definition

(Practically speaking, it may be easier to begin from the desired expression, writing ¥ as vz@",
then working backwards to the given expression.)

3bii. We first note that similarly to the previous part, we can use the fact that the Euclidean
metric g;; = d;; is independent of the coordinates to write
Ovy, OV _ Ou A(g" ) _ O0vp g Ou d(g*vy,) Ovy B ovt Ou,

Ori Oxd  Ox' Oxd &%”'g oxJ Oxt  Ori  Oxi O’

L.e. we can “swap” the raised and lowered indices in the two terms. With this, we now show that

(f;,(&f))) = vki(aﬁ)ij + (dD); 0 pF 4 (&6)lkivk, using the result of part (a)

i oxk oxt oxJ
8 81}’“ ov*

avj_avi N %_%% 8vk+ 1 oy Ou (9_1)’“
895’“ oxrt  Oxd oxk ' ozt 2! i Oxk oxJ

ZZ]: gzﬂ (2)1;1 gvk equality derived above)

ok 0 <(9Uj 8vz> (%j 8Uk 61}1 82)

- ozk \ ozi  Ozi + Oxk Ozt Ok Ozd

(the cancellation makes use of the

8



(a (£@@))ij = (14 1)au(£:0),

)

0 i OUj x O .
= o (v 9k +v ) ( -+ Z) , using the result of part (a)
B Wv% o e O 81}] N 6vk_ n i(‘?v B ovk O, o L 0 0v;
= ovor T aror T prow T aron  \ow ok T 9 0k
N vy, L 0 ok Ovy, OV (%k vy, ; Lt
o T 57 B , again using — O Bl — Ot g7 tO cancel terms

p 0 vy 0 Oy N ot vy 0k O +%?Z§i’(_%;9[§f
3%’“ ox' 8xk Oxi ~ Ox' dxk  OxI Oxk b 02t O b 07i Ox'’
assuming partial derivatives commute
B vki ((%j B 81}1) o Ov; B vk O,
oxk \ Oxt  OxI oxt Oxk QI Oxk

= (f;,(&ﬁ)) ~, as shown above

)

Therefore, £5(d0) = d (£50). Also, we note that 2 and d should commute (i.e i(af;) =d (29))
because t is independent of the coordinates Whlle the exterior derivative d only takes derivatives
with respect to the coordinates. Hence, we can conclude that

0 ~ 0 ~_ W ~{0._ . ) ~ ., 0
(a + £U) do = E(dv) + £5(do) =d (av + £vv> since d commutes with 5 and Ly

~(~ (1
=d (d (5 |5)* — p)) by the Euler equation

—0 since d®2 =0

Solutions provided by: Ernest Tan



