NATIONAL UNIVERSITY OF SINGAPORE

PC4274 MATHEMATICAL METHODS IN PHYSICS III
(Semester II: AY 2017-18)

Time Allowed: 2 Hours

INSTRUCTIONS TO STUDENTS

1. Write your matriculation number only. Do not write your name.
2. This examination paper contains FOUR questions and comprises FOUR printed pages.
3. Answer ALL questions.
4. Please start each question on a new page.
5. This is a CLOSED BOOK examination.
6. The total mark for this examination paper is 100 .
7. Consider the following vector field \bar{V} and one-form field $\tilde{\omega}$:

$$
\bar{V}=t \frac{\partial}{\partial t}+x \frac{\partial}{\partial x}, \quad \tilde{\omega}=-t \tilde{\mathrm{~d}} t+x \tilde{\mathrm{~d}} x
$$

in Minkowski space with coordinates (t, x, y, z). The metric tensor for this space is given by

$$
\boldsymbol{g}=-\tilde{\mathrm{d}} t \otimes \tilde{\mathrm{~d}} t+\tilde{\mathrm{d}} x \otimes \tilde{\mathrm{~d}} x+\tilde{\mathrm{d}} y \otimes \tilde{\mathrm{~d}} y+\tilde{\mathrm{d}} z \otimes \tilde{\mathrm{~d}} z
$$

(a) Calculate the following quantities:
(i) $\tilde{\omega}(\bar{V})$;
(ii) $\boldsymbol{g}(\bar{V}, \cdot)$;
(iii) $\boldsymbol{g}(\bar{V}, \bar{V})$.
(b) Find a function $f=f(t, x)$ such that $\tilde{\omega}=\tilde{\mathrm{d}} f$. Hence, or otherwise, sketch the one-form field $\tilde{\omega}$ at the following eight points in the (t, x)-plane: $(\pm 1,0)$, $(0, \pm 1),(\pm 1, \pm 1)$ and $(\pm 1, \mp 1)$.
2. Let $B_{i j}$ be components of an antisymmetric $\binom{0}{2}$ tensor in coordinates $\left\{x^{i}\right\}$. Suppose we perform a general coordinate transformation of the form $y^{i^{\prime}}=$ $y^{i^{\prime}}\left(x^{i}\right)$, and let $B_{i^{\prime} j^{\prime}}$ be components of this tensor in the new coordinates.
(a) Write down an expression for $B_{i^{\prime} j^{\prime}}$ in terms of $B_{i j}$. Hence show that $B_{i^{\prime} j^{\prime}}$ is also antisymmetric.
(b) Show that under this coordinate transformation, $\partial_{i} B_{j k} \equiv \frac{\partial B_{j k}}{\partial x^{2}}$ transforms as follows:

$$
\frac{\partial B_{j^{\prime} k^{\prime}}}{\partial y^{i^{\prime}}}=\frac{\partial x^{i}}{\partial y^{i^{\prime}}} \frac{\partial x^{j}}{\partial y^{j^{\prime}}} \frac{\partial x^{k}}{\partial y^{k^{\prime}}} \frac{\partial B_{j k}}{\partial x^{i}}+\frac{\partial^{2} x^{j}}{\partial y^{i^{\prime}} \partial y^{j^{\prime}}} \frac{\partial x^{k}}{\partial y^{k^{\prime}}} B_{j k}+\frac{\partial x^{j}}{\partial y^{j^{\prime}}} \frac{\partial^{2} x^{k}}{\partial y^{i^{\prime}} \partial y^{k^{\prime}}} B_{j k} .
$$

Hence explain why $\partial_{i} B_{j k}$ are not components of a $\binom{0}{3}$ tensor.
(c) Now define $H_{i j k} \equiv \partial_{i} B_{j k}+\partial_{j} B_{k i}+\partial_{k} B_{i j}$. Show that $H_{i j k}$ transform as components of a $\binom{0}{3}$ tensor.
3. Consider the following one-form field:

$$
\tilde{\alpha}=P(x, y, z) \tilde{\mathrm{d}} x+Q(x, y, z) \tilde{\mathrm{d}} y+R(x, y, z) \tilde{\mathrm{d}} z
$$

in Euclidean space \mathbb{R}^{3} with standard Cartesian coordinates (x, y, z).
(a) Show that

$$
\begin{equation*}
\tilde{\mathrm{d}} \tilde{\alpha}=\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \tilde{\mathrm{d}} y \wedge \tilde{\mathrm{~d}} z+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \tilde{\mathrm{d}} z \wedge \tilde{\mathrm{~d}} x+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \tilde{\mathrm{d}} x \wedge \tilde{\mathrm{~d}} y . \tag{1}
\end{equation*}
$$

Further show that $\tilde{\mathrm{d}}^{2} \tilde{\alpha}=0$.
(b) By using Stokes' theorem and Eq. (1), write down an expression for the (closed) line integral $\int_{C} P \tilde{\mathrm{~d}} x+Q \tilde{\mathrm{~d}} y+R \tilde{\mathrm{~d}} z$ in terms of a surface integral. Hence calculate the line integral

$$
\int_{C} z\left(x^{2}-1\right) \tilde{\mathrm{d}} x+y(x+1) \tilde{\mathrm{d}} z
$$

where C is the unit circle $x^{2}+y^{2}=1$ in the $z=0$ plane.

> [20 marks]
4. Let M be an n-dimensional manifold with coordinates $\left\{x^{i}\right\}$.
(a) If $\tilde{\omega}$ is a one-form field on M, show that its Lie derivative along a vector field \bar{V} has components

$$
\left(£_{\bar{V}} \tilde{\omega}\right)_{i}=V^{j} \partial_{j} \omega_{i}+\omega_{j} \partial_{i} V^{j},
$$

in a coordinate basis. (Recall that the Lie derivative of a scalar field and vector field are $£_{\bar{V}} f=\bar{V} f$ and $\left(£_{\bar{V}} \bar{W}\right)^{i}=[\bar{V}, \bar{W}]^{i}=V^{j} \partial_{j} W^{i}-W^{j} \partial_{j} V^{i}$, respectively.)
(Question continued on next page)
(b) If $\tilde{\omega}$ and $\tilde{\sigma}$ are both one-form fields on M, show that

$$
£_{\bar{V}}(\tilde{\omega} \wedge \tilde{\sigma})=\left(£_{\bar{V}} \tilde{\omega}\right) \wedge \tilde{\sigma}+\tilde{\omega} \wedge\left(£_{\bar{V}} \tilde{\sigma}\right) .
$$

[Hint: Express the wedge product in terms of the tensor product and then show that $\left.£_{\bar{V}}(\tilde{\omega} \otimes \tilde{\sigma})=\left(£_{\bar{V}} \tilde{\omega}\right) \otimes \tilde{\sigma}+\tilde{\omega} \otimes\left(£_{\bar{V}} \tilde{\sigma}\right).\right]$
(c) Using the results of parts (a) and (b), evaluate $£_{\bar{V}}\left(\tilde{\mathrm{~d}} x^{i} \wedge \tilde{\mathrm{~d}} x^{j}\right)$.

