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1. Consider the following vector field V̄ and one-form field ω̃:

V̄ = t
∂

∂t
+ x

∂

∂x
, ω̃ = −t d̃t+ x d̃x ,

in Minkowski space with coordinates (t, x, y, z). The metric tensor for this

space is given by

g = − d̃t⊗ d̃t+ d̃x⊗ d̃x+ d̃y ⊗ d̃y + d̃z ⊗ d̃z .

(a) Calculate the following quantities:

(i) ω̃(V̄ ); (ii) g(V̄ , · ); (iii) g(V̄ , V̄ ).

(b) Find a function f = f(t, x) such that ω̃ = d̃f . Hence, or otherwise, sketch

the one-form field ω̃ at the following eight points in the (t, x)-plane: (±1, 0),

(0,±1), (±1,±1) and (±1,∓1).
[20 marks]

2. Let Bij be components of an antisymmetric
(

0

2

)

tensor in coordinates {xi}.

Suppose we perform a general coordinate transformation of the form yi
′

=

yi
′

(xi), and let Bi′j′ be components of this tensor in the new coordinates.

(a) Write down an expression for Bi′j′ in terms of Bij . Hence show that Bi′j′ is

also antisymmetric.

(b) Show that under this coordinate transformation, ∂iBjk ≡
∂Bjk

∂xi transforms as

follows:

∂Bj′k′

∂yi
′

=
∂xi

∂yi
′

∂xj

∂yj
′

∂xk

∂yk
′

∂Bjk

∂xi
+

∂2xj

∂yi
′

∂yj
′

∂xk

∂yk
′
Bjk +

∂xj

∂yj
′

∂2xk

∂yi
′

∂yk
′
Bjk .

Hence explain why ∂iBjk are not components of a
(

0

3

)

tensor.

(c) Now define Hijk ≡ ∂iBjk + ∂jBki + ∂kBij . Show that Hijk transform as

components of a
(

0

3

)

tensor.
[30 marks]
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3. Consider the following one-form field:

α̃ = P (x, y, z) d̃x+Q(x, y, z) d̃y +R(x, y, z) d̃z ,

in Euclidean space IR3 with standard Cartesian coordinates (x, y, z).

(a) Show that

d̃α̃ =

(

∂R

∂y
−

∂Q

∂z

)

d̃y ∧ d̃z +

(

∂P

∂z
−

∂R

∂x

)

d̃z ∧ d̃x+

(

∂Q

∂x
−

∂P

∂y

)

d̃x ∧ d̃y .

(1)

Further show that d̃2α̃ = 0.

(b) By using Stokes’ theorem and Eq. (1), write down an expression for the (closed)

line integral
∫

C
P d̃x+Q d̃y+R d̃z in terms of a surface integral. Hence calculate

the line integral
∫

C

z(x2 − 1) d̃x+ y(x+ 1) d̃z ,

where C is the unit circle x2 + y2 = 1 in the z = 0 plane.
[20 marks]

4. Let M be an n-dimensional manifold with coordinates {xi}.

(a) If ω̃ is a one-form field on M , show that its Lie derivative along a vector field

V̄ has components

(£V̄ ω̃)i = V j∂jωi + ωj∂iV
j ,

in a coordinate basis. (Recall that the Lie derivative of a scalar field and

vector field are £V̄ f = V̄ f and (£V̄ W̄ )i = [V̄ , W̄ ]i = V j∂jW
i − W j∂jV

i,

respectively.)

(Question continued on next page)
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(b) If ω̃ and σ̃ are both one-form fields on M , show that

£V̄ (ω̃ ∧ σ̃) = (£V̄ ω̃) ∧ σ̃ + ω̃ ∧ (£V̄ σ̃) .

[Hint: Express the wedge product in terms of the tensor product and then show

that £V̄ (ω̃ ⊗ σ̃) = (£V̄ ω̃)⊗ σ̃ + ω̃ ⊗ (£V̄ σ̃).]

(c) Using the results of parts (a) and (b), evaluate £V̄ (d̃x
i ∧ d̃xj).

[30 marks]

(ET)

– END OF PAPER –
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