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A combinatorial optimization algorithm, called the genetic annealing algorithm, is pro-
posed, which incorporates the principles of simulated annealing into the genetic algorithm,
for the estimation of the parameters for double frequency modulation (DFM) synthesis, which
is a tedious process by the usual trial-and-error method. It is also shown that the algorithm
is more effective than the genetic algorithm in estimating the DFM parameters for all the
authors' samples.

0 INTRODUCTION The DFM synthesis equation is

The frequency modulation (FM) technique [1] made x(t) = A(t) sin[Il(t) sin tolt + 12(t) sin (o2t ] (2)
the generation of a wide range of musical sounds by
real-time digital computation possible. The basic FM where A(t) is the time-varying amplitude and Il(t) and
operator uses a sine wave (the modulator) to frequency 12(t) are the time-varying modulation indices of the two

modulator frequencies to_ and to2, respectively.modulate another sine wave (the carrier), producing a
complex wave whose spectrum depends on the frequen- Careful expansion [4] of Eq. (2) yields the following
cies of the two sine waves and the degree of modulation, spectral equation:

as given by the equation x(t) = A(t) _ Ji(ll(t))Jk(12(t)) sin(itolt + kto2t)
i k

x(t) = A(t) sin[(oct + l(t) sin tomt] (1) (3)

where A(t) is the time-varying amplitude, tocand tomare where the amplitudes of the various harmonics are each
the carrier and modulator frequencies, respectively, and determined by the product of two Bessel functions of
l(t) is the time-varying modulation index. More complex the first kind. The indices in Eq. (3) run from 1 to + oo.
spectra can be generated by cascading or combining The frequency bandwidth and the complexity of the
more than one operator. DFM harmonic spectra are dependent on the ratio of the

A variant of the FM technique is asymmetrical FM two modulator frequencies and the value of the modulation
(AFM) [2], which adds an additional parameter to the indices. As the indices increase, the amplitudes of the
FM equation. This results in spectra that are asymmetri- various harmonics vary in a nonlinear fashion, resulting
cai about the carrier frequency, thus enabling a wider in very complex spectra when the values of the indices
range of musical spectra to be synthesized. However, are high. Hence, as in FM and AFM, various interesting
AFM makes much greater computational demands than sounds can be obtained from the DFM equation by varying
FM. Another variant of FM that has been proposed, the DFM parameters, namely, the two frequencies tot and
double frequency modulation (DFM) [3], also allows °)2 and the two indices I l and 12in Eq. (2).
more complex spectral envelopes than FM to be gener- DFM synthesis is able to generate more complex har-
ated, hut without the computational load of AFM. monic envelopes than simple FM while avoiding the

computational load of AFM synthesis. Due to its com-
* Manuscript received 1995 June 6; revised December 5. plexity, estimation of the parameters for DFM synthesis
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by trial and error is tedious. To speed up the process, mization problem, each bit string has to represent the

we have used computer optimization techniques which set of Parameters that represent a solution to the prob-
search for the most suitable parameters for a given spec- lem. The goodness of each solution has to be defined

tral envelope. Specifically, we propose an algorithm that by assigning a fitness function, determined by the nature
incorporates simulated annealing [5] into a genetic algo- of each problem, whose value is computed from the
rithm [6], [7]. It has been shown [8] that FM parameter set of parameters..In the case of synthesis parameter

optimization using a genetic algorithm is much faster optimization, the fitness is determined by the similarity
than the standard trial-and-error approach. We call this of the harmonics generated by the synthesis to those of
combination of simulated annealing and the genetic al- the waveform that is to be synthesized. The pseudo code
gorithm a genetic annealing algorithm. We have applied of the genetic algorithm is as follows:
our genetic annealing algorithm to obtain an optimized
set of parameters for DFM synthesis of a given musical Begin

spectrum. The results were compared with those ob- RECRUITMENT
tained using a genetic algorithm. The combination of Repeat
these two techniques gives a more optimized set of DFM SELECTION
pararfieters than if a genetic algorithm alone is used. CROSSOVER PROCESS

MUTATION

I THE GENETIC ALGORITHM UntilGOOD_RESULTS
End

The genetic algorithm is a search algorithm that was

developed using the natural genetic processes by which 2 THE SIMULATED ANNEALING ALGORITHM
organisms in nature evolve. The algorithm starts off with
a random population of individuals whose characteristics The simulated annealing algorithm is a probabilistic
are determined by a bit string, which has a function optimization algorithm which is based on the theory of
analogous to the chromosomes or genes in a biological annealing in condensed matter physics. Annealing is a
individual. The "fitness" or "goodness" of each individ- thermal process that enables a solid to progress to a
ual is defined in relation to a defined function--in nature highly ordered crystalline form, which is its lowest en-

this would be in terms of survival within a given environ- ergy state. In this process, the temperature of the solid
ment, but for a particular optimization problem this is increased to its melting point in a heat bath, thus
would be determined by the nature of the desired solu- increasing the randomness of its atoms. The solid is
tion. The bit strings are then evaluated one by one, and then cooled very slowly to enable its atoms to reorder
each is assigned a fitness or goodness value. The next themselves so that it can reach a state of high order, that
generation of bit strings is then produced by a crossover is, a low energy state with low internal strain. If the solid
process analogous to the natural combination of DNA is not cooled sufficiently slowly, a strained amorphous
from parents in reproduction. By this proces s , the fitter structure may result. To prevent this, in the process of
bit strings will be given a higher chance of being repro- cooling the solid must be allo(ved to reach its thermal
duced in the next generation. In this way, the average equilibrium at each temperature before any further cool-
fitness of the next generation will improve, thus giving ing. Thermal equilibrium is characterized by a probabil-
rise to better chromosomes. In addition, a mutation pro- ity distribution of states with energy E given by the
cess may also occur, which can change bits in bit strings Boltzmann distribution,
randomly, analogous to random mutation in nature.

The genetic algorithm thu§-ConsiSts of four steps: P{E} = Z-_ exp (4)1)Recruitment
, 2) Selection

3) Crossover where T is the temperature of the solid, kB is the Boltz-
4) Mutation. mann constant, and Z(T) is the partition function, de-fined as
The recruitment process uses a random-number gener-

ator to generate sets of random parameters which will Ej
be encoded into individual bit strings to form a starting Z(T) = _ exp (5)

· kBT
population. The fitness values of each individual are also

J

evaluated. The selection process ensures that the fitter which is the normalization factor in Eq. (4).
individuals are more likely to be selected than the less To model the physical annealing process using com-
fit ones for the crossover process into the next genera- puter simulation, an analogy between the physical sys-
tion. The crossover process mates the individuals in the tern and the optimization problem must be set up. The
current generation, using the weighting given by the states of the physical system are analogous to the set of
selection process, to generate offspring for the next gen- the independent variables or parameters of the system
eration. The mutation process alters individual bits in represented by the combinatorial optimization problem.
the offspring randomly to simulate mutation of sites in The energy value of the physical system in a particular
a chromosome, ordering of its atoms is analogous to the value of the

To apply the genetic algorithm to a combinatorial opti- goodness or fitness function of the system. Lowering
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the energy value is analogous to obtaining a better value tion is performed to produce the next generation of solu-
for the fitness function and hence getting a better solu- tions, often resulting in only small energy changes after
tion. The aim is to get the best possible solution within perturbation. Hence, while simulated annealing has a
the solution space of the problem, just as physical an- greater tendency to converge to an optimum solution
nealing puts the physical system in the lowest possible once nearby solutions have been reached, the conver-
and most ordered energy state, gence may take a longer time.

Thus the simulated annealing process based on physi- We therefore propose a new optimization algorithm,
cai annealing, as applied to combinatorial optimization, which we call the genetic annealing algorithm, which
can be divided into the following steps: incorporates simulated annealing into the crossover pro-

1) Choose a sequence (Tk, tk), a value of K, and an cess of the genetic algorithm and combines the advan-
initial state, tages of both algorithms. In the genetic algorithm, the

2) Perturb the initial state to a random neighboring crossover function selects two individuals at random
state, from the population to mate to produce offspring. In our

3) Perform a fitness test on the new state, genetic annealing algorithm, the crossover function is
4) Repeat steps 2 and 3 tk times, replaced by a new function, called the Anneal_Cross
5) Repeat step 4 K times, function, where one of the parents is the fittest individual

Here (Tk, tk) is a sequence of pairs representing, respec- in the current generation whereas the mating partner is
tively, the temperature and the number of times of per- selected randomly. The two parents are mated randomly
turbation required at the kth generation of annealing, to produce offspring which will then be evaluated. The
and K represents the total number of generations used good ones will replace the parents for the next round of
for annealing. To perturb the current state, that is, step crossovers, whereas those that are less fit than their par-
2, a generation mechanism for the transition would have ents will only replace the parents with a certain probabil-
to be defined for the particular optimization problem, ity characterized by the Boltzmann distribution. The
Step 3 refers to a fitness test in which, if the perturbed mating will stop after a predefined number of offspring
state is a fitter state than the current state, the perturbed are produced. Another mating partner from the original
state is accepted as the next current state. Otherwise the population is then selected at random, and the mating
probability of acceptance of the perturbed state is given process described repeats. The Anneal_Cross function
by Eq. (4). The pseudo code for the simulated annealing will stop when the number of partners mated reaches a
algorithm is as follows, where f(i) is the energy when predefined number. In effect, the Anneal_Cross function
the system is in state i: incorporates a complete simulation annealing cycle into

the crossover process.
BEGIN Thus the AnnealCross function can be divided into

INITIALIZE; the following steps, in analogy with simulated annealing:
Repeat 1) Choose sequence (Tk, tk), a value of K, and select

Repeat the best individual.
PERTURB(statei -->statej); 2) Do crossover with a random partner.
if f(j) < f(i) then i: =j 3) Perform fitness test using the Boltzmann distribution.
else 4) Repeat steps 2 and 3 for a total of tk times with the

ifexp (f(i) - f(j)/T0 > Random[O,1)thenUPDATE(i:=j); same partner.
Until NEAR_THERMAL_EQUILIBRIUM; 5) Repeat steps 2, 3, and 4 with the new random
DECREMENT TEMP (T0; partner for a total of K times.

Until SOLID_FROZEN; Tk is now called the fitness temperature, tk is the hum-
End ber of crossovers with the kth partner, and K represents

the total number of partners required for crossover. The

3 THE GENETIC ANNEALING ALGORITHM crossing over in step 2 is equivalent to the crossover
function defined in the simple genetic algorithm. Step 3

In the genetic algorithm the crossover process is fun- refers to a fitness test in which, if the offspring are fitter
damental since it is the mechanism that generates new than the parents, then the former are accepted as the
solutions which are offspring of the fitter solutions and parents. Otherwise the probability of acceptance of the
thus more likely to be an improvement on the previous offspring is given by Eq. (4).
generation. However, the crossover mechanism is inher- The pseudo code of the algorithm is given as follows:
ently a disruptive process as far as searching for the
correct or fittest solution is concerned, since an offspring · Genetic annealing algorithm:
of two parents is not likely to be close to its parents in Begin

the solution space. Hence the genetic algorithm, while RECRUITMENT
it can quickly arrive at better solutions through several Repeat

generations, does not always converge to an optimum SELECTION o

solution, which may be close to the parents. ANNEAL_CROSS

On the other hand, the nature of simulated annealing Until GOODRESULTS

is more localized in the sense that only a little perturba- End

J.AudioEng.Soc.,Vol.44,No.1/2,1996Januanj/Febma_j 5



TAN AND LIM PAPERS

· Procedure Anneal_Cross: done based on the fitness values of the individuals. We
Begin chooseto use the binary tournamentselectionscheme

SELECT_FITTEST_INDIVIDUAL [8], as shown in Fig. 2, in which all individuals of the
Repeat populationare paired up to have their fitness values

SELECT_RANDOMMATINGPARTNER compared. The fitter individual of each pair is retained
Repeat and the less fit individualdiscarded after comparison.

GENERATE_RANDOM_OFFSPRING This process (binary tournament) is repeated so that the
if (OFFSPRING better than PARENTS) new population size is equal to the old population size.

then UPDATE(PARENTS:= OFFSPRING) This selection scheme will ensure that the best individual
else UPDATEwithProb(Boltzmann Distribution) will appear twice in the new population and the worse

Until TIME TO CHANGE_PARTNER individual will not be propagated at all.

Until MAX_NO. OF PARTNERS After the binary tournament selection, the next pro-
End cess for the genetic algorithm is the crossover process

followed by mutation, whereas that for the genetic an-

4 PARAMETER ESTIMATION PROCESS nealing algorithm is the Anneal_Cross process.
In both algorithms each individual bit string consists

The process by which the genetic algorithm or the of four shorter strings of binary numbers, each of which

genetic annealing algorithm is used to obtain an opti- represents one of the four parameters for one DFM oper-
mized set of parameters for the DFM synthesis of a ator. This representation ensures that at each crossing
particularmusical instrument waveform consists of three over, only one parameter of the four is crossed, resulting
steps, in the offspringbeingdifferentonly for that parameter.

The first step is the spectrum analysis process in which The other three parameters will remain the same after
a sampled waveform of the musical instrument obthined crossing. In this way, at each crossing the optimization
from the McGill University Master Samples (MUMS) process will work on only one parameter without affect-
compact discs is analyzed on a Hewlett Packard dynamic ing the other three parameters. We can also choose to
signal analyzer using the fast Fourier transform (FFT). keep one or more of the parameters constant throughout

In the second step the genetic algorithm or the genetic by restricting the crossover points to the parameters that
annealing algorithm is used to obtain an optimized set are allowed to be varied. For example, we may choose
of DFM parameters, using the spectrum from the signal to '_ary just the DFM indices and keep the frequencies
analyzer to determine the fitness function by which the constant, as we can still generate a wide variety of spec-
solutions generated are tested. Finally the optimized tra in this way.
DFM parameters are input into the Motorola DSP56000 The crossover process is illustrated in Fig. 3. Paramet-
digital signal processor (DSP) to obtain the DFM synthe- erSelected in Fig. 3 refers to the parameter to cross, that ·
sized sound of the musical instrument.

For the estimation and optimization of the DFM pa-

rameters, both algorithms begin with a recruitment pro- [ I1:=Random(Maxlndex);cess, as shown in Fig. 1. We will use the parameterf _ I2:=Random(Maxlndex);
[for frequency instead of to, where f = to/2xr. In this

process we use a uniform random generator to generate

four random numbers standing for the four parameters fl := Random(integer)x 1'
for a single DFM operator, namely, the frequencies ft, FundamentalFreq;

f2 := Random(integer) x
f2 and the modulation indices Il, 12 with some user- FundamentalFreq;
defined constraints. The values of fl and f2 have to be /

checked to ensure that they will generate the required

harmonics, and the maximum value of the indices has [CheckFrequenCyHarm°nicsl

to be defined depending on the characteristics of the [ I

sample spectrum. One set of four parameters represents _ Correct

one individual solution if only one DFM operator is Fitness Evaluation [
used. For two DFM operators, one individual requires !

eightparameters. The numberof individualsrequired to

be generated will depend on the predefinedpopulation I StoreIndividual

size. Each set of parameters generated is tested by being

input into a fitnessevaluationfunctionwhichthen as-
signs a fitness value to that individual. In our algorithm
we have computed the fitness value by summing the NO
squares of the absolute differences between the ampli-
tudes of the corresponding harmonics of the real sample

and those of the waveformsynthesizedfrom the given
parameters. t I

After the recruitment process, a selection has to be Fig. 1. Recruitment process.
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is, whether to cross I1 or 12 orft orf2, It is equal to a scribed earlier to produce two offspring. Using the new
random integer number from 0 to 3, with each number value of the parameter I l together with the other original
representing one of the DFM parameters. Each of the values of the parameters of the parents, the new fitness
parameter strings is 16 bits long, the bits being numbered values for both offspring can be evaluated. If the new
from 0 to 15. Crossover Point is a random integer from fitness value of Offspring_A is lower (that is, better)
4 to 15. The bits less significant than this crossover than the old fitness value of Parent_A, then the param-
point will be swapped between the selected parameter eter value ofI l will be updated to the new value. Other-
of P_arent A and that of Parent_B. For example, let the wise the probability characterized by Boltzmann distri-
selected parameter be I_ and the crossover point be 8. bution is evaluated and compared with a normalized
If I 1 of Parent_A in binary is 0001101101011000 and random number. The new value, which is less fit, is
I_of Parent_B is 0000010111011100, then the following only accepted if the random number is less than the
are the values of 1_ before and after crossing:

Parent_A.I 1 (before crossover) 00011011 01011000 b or 1B58 h
Parent_B.I_ (before crossover) 00000101 11011100b or 05DC h

Offspring A.I l (after crossover) 00011011 11011100 b or IBDCh
Offspring B.I l (after crossover) 00000101 01011000b or 0558h

After the crossover process, mutation follows With
5% probability to change a random bit of the offspring, calculated probability.
Using the new value of the parameter It together with This mating process with the current partner is re-
the original values of the other parameters of the parents, peated with the two offspring taking the role of parents,
the new fitness values for both can be evaluated. The generating a new pair of offspring, using different values

offspring will then replace the parents, and the processes of the selected parameter and the crossover point. This
of selection, crossover, and mutation for the next genera- process is repeated for a specified number of times,
tion will repeat until the offspring achieve the best possi- sufficient to ensure that the best possible solution for
ble optimized values, the starting pair ofparents is achieved. This is analogous

For the genetic annealing algorithm, the new popula- to achieving thermal equilibrium in simulated annealing
tion has to undergo a mating or crossing process after at a given temperature.
the binary tournament selection, which we call the An- After this entire process, both Parent_A and Parent_B
neal Cross process (Fig. 4) in .our genetic annealing may or may not have been replaced by fitter individuals.
algor-ithm. To begin with, the best, that is, the fittest The fittest individual from among the entire population
individual in the new population, which we call Par- is then selected. This may in fact be the same as the
entA, is selected to be one of the parents for crossing, previous Parent_A. Another partner will then be se-
This best individual is allowed to mate with a panner, lected randomly from the population as Parent_B to re-
called Parent_B, selected randomly from the population, peat the entire crossing process again. The temperature
to produce two offspring. An initial temperature is de- is also reduced by 10% for the purpose of the Boltzmann
fined, in order that the thermal equilibrium can be de- distributioti comparison. In this way the best individual
fined according to a Boltzmann distribution function, will have the chance to mate with different partners,

The two parents then undergo a crossover process
similar to that for the standard genetic algorithm de-

Pair Up The Individuals

[ Cu entPopulon[
rparameterSelected=Random(44

individuals =Random/
_l PairUpall I CrossoverPoint

J

IStoretheFitterindividuals I CrossovertheParameterSelected

!

ofeachpairasmember ]ofthepairofindividualsatthe J
[ Crossover Point to generate two ]

I of the new population
[ new parameters, j

Evaluate the New Fitness of
each offspring using the
new parameter generated.

Fig. 2. Binarytournamentselectionprocess. Fig. 3. Crossoverprocess.
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and for each partner the crossover is combined with a tions 5.1-5.4. The weight W[n] is used for the amplitude
simulated annealing type procedure, as described, of each of the DFM operators, that is,

The crossing over with a number of partners exploits
the ability of the genetic algorithm to combine the good X(t) = WIll sin[Iii1 ] sin(2xrfl[1]t )
qualities of two different parents, while the simulated
annealinglike procedure exploits its ability to search for + 1211] sin(2,rrf2[1]) ]
optimal solutions over the whole solution space. We
acknowledge that this is certainly not the only way in + WI2] sin[ll[2] sin(2xrfl[2]t )
which the genetic algorithm can be combined with simu-
lated annealing. Brown et al. [9] also combined simu- + 1212] sin(21Tf2[2]t) ]
lated annealing with the genetic algorithm to solve the
quadratic assignment problem, but they cascade both for the case of two DFM operators..
techniques, whereas in our genetic annealing algorithm
the simulated annealing process is more closely inte- 5.1 The Oboe
grated into the crossover procedure. In our case the cum- The DFM parameters of an oboe were estimated to

putational load is probably less, which has contributed good accuracy using 0nly two DFM operators. The spec-
to the speed and quality of the optimized solution using tra are shown in Fig. 5.

our genetic annealing algorithm. Some optimized results The parameters estimated by the genetic algorithm for
obtained from a genetic algorithm and a genetic anneal- the oboe are I 1 = 2.605, fl = 660, 12 = 0.097, fe =
ing algorithm are shown for comparison in the next 880 for the first operator, which carries a weight of
section. 0.648809, whereas for the second operator, I 1 = 1.437,

fl = 440, 12 = 0.037, f2 = 220, carrying a weight of

5 SYNTHESIS RESULTS 1.849750. Since our fitness value is defined to be the
sum of the square of the differences in the amplitudes

The FFT spectra of the real samples were obtained of th e sample and synthesized harmonics (as defined in
fiom the steady-state waveforms of each musical instru- Section 4), the lower the fitness, the better is the set of
ment from the MUMs compact disc set. Here we present parameters. The fitness value of the resulting param-
the DFM synthesized spectra of a number of musical eters, estimated by the genetic algorithm, is 0.047810.
instruments. The parameter estimation was done inde- By using the genetic annealing algorithm, the param-
pendently by both the genetic algorithm and the genetic eters estimated for the oboe are Il = 1.618, fl = 660,
annealing algorithm. Their results are compared in Sec- 12 = 0.961 ,f2 = 880 for the first operator, which carries

Findtheindividualwith I

LOWEST Fimess Value
-- Best Individual, and
make it PARENT A

and make it PARENT_B

CROSSOVERPARENT_A
WITH PARENT_B

NewFitnes_<__ , _ NO

YES Prob(Bohz.)>Ra_

YES, Farmer. No_.ofoffspringgenerat__ed._Change . . _,

withthepart_
I NO, generate more offspring

Fig. 4. Anneal_Cross process.
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a weight of 0.776809, whereas for the second operator, 0.020239.
I l = 1.44,fl -- 440,12 = 0.118,f2 = 220, contributing By using the genetic annealing algorithm, the param-
a weight of 1.977013. The fitness value calculated for eters estimated for the French horn are I l = 0.384, fl =
this set of parameters is 0.018030, which is much better 440, 12 = 3.174, f: = 220 for the first operator, which
than that of the genetic algorithm, carries a weight of 2.826249, whereas for the second

operator, I1 = 5.475,fl = 220, 12 = 3.055,f2 = 440,
5.2 The French Horn contributing a weight of -0.02898. The fitness value

The DFM parameters of a French horn can be esti- calculated for this set of parameters is 0.014579, which
mated to high accuracy using only two DFM operators, is again better than that of the genetic algorithm.
The spectra are shown in Fig. 6.

The parameters estimated by the genetic algorithm for 5.3 The Saxophone
the French horn are Il = 0.412, fl = 440, 12 = The DFM parameters of a saxophone can be estimated
3.206641, f2 = 220 for the first operator, which carries to good accuracy using three DFM operators. The spec-
a weight of 2.804504, whereas for the second operator, tra are shown in Fig. 7.
I ! = 0.185,fl = 220, 12 = 3.91,f2 = 440, carrying a The parameters estimated by the genetic algorithm
weight of - 0.202384. The fitness value of the resulting for the saxophone are I l = 1.470382, fl --- 440, 12 =
parameters, estimated by the genetic algorithm, is 0.032411,f2 = 220 for the first operator, which carries

I AmpAI_M'__kT_*? 0.648809 _pB__L'_ 1.849750
IndexA1 = 2.605 lndexB 1 = 1.437
FreqA1 = 660 Hz FreqB1 = 440 Hz
lndexASI = 0.097 lndexB2 = 0.037
FreqA2 = 880 Hz FreqB2 = 220 Hz

0.8- · MUMS Sample _
:m Genetic Algorithm

0.6- Oboe

0.4- fitness = 0.047810 -

o JnI I I I I I I I I I I I I I
1 2 3 4 5 6 7 8 9 1011 121314

Harmonic Frequency ( x 220 Hz )

(a)

[ .a,,mp_ DFM OPERATOR B0,776809 AmpB = 1.977013
I lndexA1 = 1.618000 lndexB 1 -- 1.440000
[ FreqA1 · = 660 Hz FreqB1 = 440 Hz
I lndexA2 = 0.961000 IndexB2 = 0.118000
I FreqA2 = 880 Hz FreqB2 = 220 Hz

1 Ill I I I I I I I [ I I I _
I · MUMSSample J

081_ GeneticAnnealingAlgorithm_ _
0.6 I Oboe

0.20.4 I _ fitness = 0.018030 1
0 _ll t ,gill_nigim , , _, :i_, =_r_,_, ,14 II I: t 31 4D 5i 61 71 8t 9_10_11B12t131

Harmonic Frequency ( x 220 Hz )

(b)

Fig. 5. DFM parameters of oboe. (a) Using genetic algorithm. (b) Using genetic annealing algorithm.
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a weight of 2.204397, for the second operator, Il =
0.494217,ft = 440, 12 = 3.222,f2 = 220, carrying a 5.4 The Harpsichord
weight of 1.801916, and for the third operator of weight The DFM parameters of a harpsichord can be esti-
-0.239075, Il = 2.788232, fl = 660, 12 = 4.895, mated to high accuracy using three DFM operators. The

fa = 440. The fitness value of the resulting parameters, spectra are shown in Fig. 8.
estimated by the genetic algorithm, is 0.024215. The parameters estimated by the genetic algorithm for

By using the genetic annealing algorithm, the param- the harpsichord are I] = 0.29078,fl = 220,/2 = 1.649,

eters estimated for the saxophone are Il = 5.055, fl = f2 = 440 for the first operator, which carries a weight
220, Ie = 2.073, f: = 440 for the first operator, which of !.949715, for the second operator, I1 = 2.997, fl =
carries a weight of 0.525090, whereas for the second 0.220, 12 = 0.464, f: = 440, carrying a weight of
operator, I I = 4.222, fl -- 220, 12 = 0.526, f: = 440, 0.826759, and for the third operator of weight 0.608628,
contributing a weight of 1.277130, and for the third, I1 = 4.778222, fl = 220, 12 = 0.129, f 2 = 440. The
Ii = 0.718,fi = 440, 12 = 0.355,f2 -- 220, having a fitness value of the resulting parameters, estimated by
weight of 4.190951. The fitness value calculated for this the genetic algorithm, is 0.014251.
set of parameters is 0.003901, which is still better than By using the genetic annealing algorithm, the param-
that of the genetic algorithm, eters estimated for the harpsichord are 11 = 2.367, fl =

] AmpA_,_._? DFM OPERATOR B ·2.804504 AmpB = -0.202384
· I IndexAl = 0.412000 IndexB1 = 0.185000

[ FreqA1 = 440 Hz FreqB 1 · = 220 Hz
[,Inde. xA2 = 3.206641 IndexB2 = 3.910000
] FreqA2 = 220 Hz FreqB2 = 440 Hz

0.8--_ ii/] · MUMS Sample

I;i!!l _D Genetic Algorithm

O'4l!i']Iii fitness -- 0.020239 _'

I I I I I I I I *1 I I I I

1 2 3 4 5 6 7 8 9 1011121314
Harmonic Freauencv _ x 220 Hz

(a)

A=Amp_Lg_'_[3_ pFM OPERATOR B2.826249 AmpB = -0.028980
IndexA1 = 0.384000 lndex. B 1 = 5.475000
FreqA1 = 440 Hz FreqB1 = 220 Hz
lndexA2 = 3.174000 IndexB2 = 3,055000
FreqA2 = 220 Hz FreqB2 = 440 Hz

 :l,ltlllllllll I1!
,, ,, _- I!i!] · MUMS Sample
u.oi liiii] Genetic Annealing

o4iiiiilI!iiii .om
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Fig. 6. DFM parameters of French horn. (a) Using genetic algorithm. (b) Using genetic annealing algorithm.
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220, 12 = 1.607, f2 = 440 for the first operator, which tra are shown in Fig. 9.
carries a weight of 0.546932, whereas for the second The parameters estimated by the genetic algorithm for
operator, I1 = 4.377, fl = 220, 12 = 0.509, the steady-state trumpet are I 1 = 2.503, fl = 440,
f2 = 440, contributing a weight of 1.056423, and for 12 = 5.722,f2 = 220 for the first operator, which carries
the third, I 1 = 0.745, fl = 440, 12 ---- 0.189, f2 = a weight of 2.948724, for the second operator, Il =
220, having a weight of 3.433636. The fitness value 0.019, fl = 440, 12 = 5.238, f2 = 220, carrying a
calculated for this set of parameters is 0.001890, which weight of 3.374904, and for the third operator of weight
is again much better than that of the genetic algorithm. 5.366608, Il = 1.535, fl = 440, 12 = 1.939695,
Thus the DFM parameters estimated by the genetic an- f2 = 220. The fitness value of the resulting parameters,
nealing algorithm can generate a spectrum that is much estimated by the genetic algorithm, is 0.684556.
closer to the real sample of the harpsichord than those By using the genetic annealing algorithm, the param-
using the genetic algorithm, eters estimated for the trumpet are I l = 1.39,fl = 220,

12 = 1.288,f2 = 440 for the first operator, which carries
5.5 The Trumpet a weight of 5.262182, whereas for the second operator,

The DFM parameters of a trumpet can be estimated I 1 = 4.835,f_ = 220, 12 = 3.326,f2 = 440, contribut-
to good accuracy using three DFM operators. The spec- ing a weight of 2.815760, and for the third, I_ = 5.246,

_ LO_W_, l LT._]_ · AmlE1B_916AmpA = 2.204397 AmpC = -0.239075
IndexA1 = 1.470382 IndexB1 = 0.494217 _ IndexC1 = 2.788232
FzeqA1 _ 440 Hz FreqB1 = 440 Hz ] FreqC1 = 660 Hz
IndexA2 _ 0.032411 IndexB2 = 3.222000 ] IndexC2 = 4.895000
FreqA2 =_ 220 Hz FreqB2 = 220 Hz [ FreqC2 = 440 Hz

'L iiliII''a'llll'J'
_L I!] · MUMSSample
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IndexA1 = 5.055000 ] lndexB1 = 4.222000 IndexC1 = 0.718000
FreqA1 _- 220 Hz I FreqB1 = 220 Hz [ FreqCl = 440 Hz
IndexA2 = 2.073000 ] Inde_,.B2 = 0.526000 ] Ind--2 = 0.355000
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Fig. 7. DFM parameters of saxophone. (a) Using genetic algorithm. (b) Using genetic annealing algorithm.
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fl = 220, 12 = 0.479, f2 = 440, having a weight of 0.443, fl = 440, 12 = 3.024, f2 = 220, carrying a
4.787540. The fitness value calculated for this set of weight of 3.929953, and for the third operator of weight
parameters is 0.155515, which is again much better than 2.219697, Il = 0.953917, fl = 220, 12 = 2.014,
that of the genetic algorithm. Thus the DFM parameters f2 = 440. The fitness value of the resulting parameters,
estimated by the genetic annealing algorithm can gener- estimated by the genetic algorithm, is 0.582676.
ate a spectrum that is much closer to the real sample of By using thegenetic annealing algorithm, the param-
the trumpet than those using the genetic algorithm, eters estimated for the pipe organ are I1 = 4.587, fl =

440, 12 = 2.814,f2 = 220 for the first operator, which
5.6 The Pipe Organ carries a weight of 1.653801, whereas for the second

The DFM parameters of a pipe organ can be estimated operator, I 1 = 0.145,fl = 220,12 = 2.896, f2 = 440,
to good accuracy using three DFM operators. The spec- , contributing a weight of 2.743604, and for the third,
tra are shown in Fig. 10. I 1 = 0.774, fl = 440, 12 = 2.922, f2 = 220, having a

The parameters estimated by the genetic algorithm for weight of 4.337077. The fitness value calculated for this
the steady-state pipe organ are I 1 = 2.04, fl = 220, set of parameters is 0.186845, which is again much
12 = 4.606,f2 = 440 for the first operator, which carries better than that of the genetic algorithm.
a weight of 1.584622, for the second operator, I l = For all six instruments it is clear that the DFM param-

_ %.g49AmvA]__z_ 715 {DFM OPERATOR B DFM OPERATOR C ][ AmplB = 0.826759 AmpC = 0.6086'28

IIndexAl = 0.290780 [ IndexBl = 2,997000 lndexC1 = 4.778222
FreqA1 = 220 Hz [ FreqB1 ' = 220 Hz FreqC1 = 220 Hz
lndexP_ ;: 1.649000 [ lndexB2 = 0,464000 Inde. xC2 = 0.129000
FreqA2 = 440 Hz [ FreqB2 = 440 Hz FreqC2 = 440 Hz
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1 t Ili?iil[[[ll['ll[ll
!iiii]· MUMSSample

 onoto^neanA,orthm
lil .ar s, .or

0.4 --_- liiiiil fitness : 0001890 t

02 :!iE L.._
1 2 3 4 5 6 7 8 9 10111213

Harmonic Freeuencv ( x 220 Hz

(b)

Fig. 8. DFM parameters of harpsichord. (a) Using genetic algorithm. (b) Using genetic annealing algorithm.
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eters estimated by the genetic annealing algorithm are spring often possess characteristics that resemble both
capable of generating spectra that are much closer to the parents. Thus in order to produce good offspring, we
real samples of the instruments from the MUMS CDs need two parents which possess different sets of good
than by using the genetic algorithm alone, characteristics to cross in such a way that most of the

good characteristics of each parent are inherited by the

6 CONCLUSION offspring and most of the bad ones are eliminated. This
is done in our algorithm by making the best individual

In this paper we have proposed a new combinatorial in the population (the one that contains the most good
optimization technique which we call the genetic anneal- characteristics but is still lacking in some other good
lng algorithm (GAA). In this algorithm, simulated an- characteristics) in the current generation mate with sev-
nealing, first proposed by Kirkpatrick et al. [5], is eom- eral other individuals in the current generation. In this
bined with the simple genetic algorithm, proposed by way, the best individual has a chance of meeting one or
Holland [6], such that the crossover process of the ge- more partners that contain other required good character-
netic algorithm is modified to incorporate a simulated istics which it is lacking.
annealing-like procedure. Furthermore, we need to cross the best individual with

In physical terms we are assuming the fact that off- a partner that is at the most optimum bit position possible

A_!-2.94A_'J_!_]_L_8724 n P M O Pg gA T OR S '_'__C_66AmpB _ 3.374904 08
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Fig. 9. DFM parameters of trumpet. (a) Using genetic algorithm. (b) Using genetic annealing algorithm.
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in order to generate offspring that are as improved as to generate the random states with which to compare
- possible. To achieve this, each partner is allowed to the initial state. The advantage of-our algorithm over

generate offspring with the best individual several times, simulated annealing is that the random states (or off-
The improved offspring replace the parents, whereas the spring) generated are not random neighboring states but,
others may replace them after evaluation according to the being the result of crossovers within a population already
Boltzmann distribution. The advantage of this algorithm selected for superior fitness, they have a better chance

over the simple genetic algorithm is that this algorithm of being fitter than the parents.
will result in better optimize d offspring in a smaller In Section 5 we found that the parameters obtained
number of generations, by the geneticannealing algorithm are significantly bet-

The best individual selected as the initial Parent_A ter than those from the genetic algorithm. As shown,
in genetic annealing is analogous to the initial state de- the spectra generated are very closely matched to those
fined in simulated annealing. In standard simulated an- of the real MUMS samples. Such close matches are very

nealing the initial state is perturbed by randomly generat- difficult but not impossible, using the small number of
ing neighboring states whose energy levels are compared DFM operators that we have used, if the normal trial-
with the initial state. In genetic annealing we make use and-error method of obtaining the DFM parameters is
of the random crossOver process of the genetic algorithm used. Even by using the genetic algorithm, this close
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Fig. 10. DFM parameters of pipe organ. (a) Using genetic algorithm. (b) Using genetic annealing algorithm.

14 J. Audio Eng. Soc., Vol. 44, No. 1/2, 1996 January/February



PAPERS DOUBLE FREQUENCY MODULATION SYNTHESIS

match might be achieved only if either the number of 42, pp. 918-926 (1994 Nov.).
DFM operators or the population size is increased. This [4] B. Schottsteadt, "The Simulation of Natural In-
new optimization algorithm has thus helped to realize strument Tones Using Frequency Modulation with a
more fully the potential of the DFM synthesis technique. Complex Modulating Wave," Computer Music J., vol.

In conclusion, the genetic annealing algorithm has the 1, no. 4, pp. 46-50 (1977).
best of both worlds. It can converge solutions to the [5] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vec-
most optimized state, just like the simulated annealing chi, "Optimization by Simulated Annealing," Science,
algorithm, while allowing a fast convergence to that vol. 220, pp. 671-680 (1983 May).
optimized state, as in a genetic algorithm. [6] J. Holland, Adaptation in Natural and Artificial

Systems (University of Michigan Press, Ann Arbor,

7 REFERENCES 1975).
[7] D. Goldberg, Genetic Algorithms in Search, Opti-

[1] J. M. Chowning, "The Synthesis of Complex mization, and Machine Learning (Addison-Wesley,
Audio Spectra by Means of Frequency Modulation," J. Reading, MA, 1989).
Audio Eng. Soc., vol. 21, pp. 526-534 (1973 Sept.). [8] A. Homer, J. Beauchamp, and L. Haken, "Ma-

[2] B. T. G. Tan and S. L. Gan, "Real-Time Imple- chine Tongues XVI: Genetic Algorithms and Their Ap-
mentation of Asymmetrical Frequency-Modulation Syn- plication to FM Matching Synthesis," Computer Music
thesis," J. Audio Eng. Soc. (Engineering Reports), vol. J., vol. 17, pp. 17-29 (1993 Winter).
41, pp. 357-363 (1993 May). [9] D. E. Brown, C. L. Huntley, and A. R. Spillane,

[3] B. T. G. Tan, S. L. Gan, S. M. Lim, and S.H. "A Parallel Genetic Heuristic for the Quadratic Assign-
Tang, "Real-Time Implementation of Double Frequency ment Problem," in Proc. 3rdlnt. Conf. on Genetic Algo-
Modulation (DFM) Synthesis," J. Audio Eng. Soc., vol. rithms (Arlington, VA, 1989, pp. 406-415.

THE AUTHORS

I m

B. T. G. Tan S.M. Lira

B. T. G. Tan graduated in 1965 with a B.Sc. (Hons) properties of semiconductors and dielectrics, surface
in physics from the University of Singapore, and in 1968 physics, image processing, and digital sound synthesis.
with a Ph.D. from Oxford University. He is a chartered
engineer and a member of the Institution of Electrical ·
Engineers. S.M. Lim obtained a B.Sc. (Hons) in physics in 1994

Since 1968 Dr. Tan has taught at the National Univer- from the NationalUniversity of Singapore. She iscurrently
sity of Singapore where he is now an associate professor working towards an M.Sc. in the field of digital sound
in physics. His research interests include the microwave synthesis at the National University of Singapore.

J. Audio Eng. Soc., Vol. 44, No. 1/2, 1996 January/February 15


