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Abstract: The authors examine the possibility of 
improving the quality of speech obtained with 
continuously variable slope delta-modulation 
(CVSD), a speech coding method that has been 
quite widely employed in mobile radios. CVSD is 
well-known for its robustness and implementation 
simplicity, but the quality of the resultant speech 
(commonly at 16 kbps) is often not very 
satisfactory. Through their study, the authors 
obtain two crucial findings on the characteristics 
of the disturbancehoise introduced by CVSD. 
Based on their findings, they develop a method 
for estimating the short-time power spectra of 
CVSD noise, and this enables them to apply 
existing speech enhancement methods to 
effectively suppress CVSD noise. Performance 
assessments based on objective measures such as 
signal-to-noise ratio (SNR), segmental SNR, and 
COSH distortion measure, and informal 
subjective listening tests have all indicated 
significant improvements in speech quality. 

1 Introduction 

There is a great demand for the use of mobile radios in 
recent years in both military and civilian contexts. To 
achieve mobility, it is almost essential for such radios 
to transmit signals which carry information on speech, 
image, data, etc., via wireless means. Unfortunately, 
the allowable transmission bandwidth is limited in 
many practical scenarios, and this prohibits more 
extensive use of mobile radios. One common approach 
to tackling the problem resulting from bandwidth limi- 
tation is to reduce the bit rate required for signal trans- 
mission. In this connection, considerable research 
attention has been given to the reduction of the bit rate 
for transmitting speech signals during the process of 
speech coding. 
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Although a major objective of speech coding is to 
achieve bit-rate reduction (while maintaining reasona- 
bly high speech quality and intelligibility), there arc 
other crucial considerations in designing speech coding 
algorithms. In particular, the robustness against trans- 
mission channel errors and implementation simplicity 
are often of concern. Consequently, continuously varia- 
ble slope delta-modulation (CVSD) [l,  21, which is 
well-known for robustness and implementation simplic- 
ity, remains attractive despite the fact that the quality 
of the resultant speech is not completely satisfactory 
(though the speech intelligibility is often very accepta- 
ble), and that modern methods, for example those pro- 
posed in [3, 41, are able to achieve higher bit-rate 
reduction than CVSD. 

The main objective of this work is to investigate 
methods for improving the quality of speech obtained 
with CVSD (commonly operating at 16 kbps). As a 
matter of fact, the ‘noise’ CVSD introduces, which 
arises from quantisation, is of considerably large band- 
width and quite annoying. Therefore, some existing 
speech enhancement methods capable of suppressing 
wide-band noise, such as those proposed in [5, 61, 
appear to be applicable. These speech enhancement 
methods require reasonably good estimates of the 
short-time power spectra of the noise, which arc often 
obtained from the short-time power spectra of those 
frames containing only noise. Such estimates would be 
good if the noise characteristics remain quite stationary 
over time. Unfortunately, the characteristics of CVSD 
quantisation noise vary as rapidly as those of the 
speech itself, and this prohibits direct application of the 
existing enhancement methods. 

We begin with a detailed analysis of the characteris- 
tics of CVSD quantisation noise. Note that although 
there are studies of quantisation noise introduced by 
general delta-modulation coding schemes [l, 7, 81, we 
have not come across one specifically devoted to 
CVSD. Also, these studies adopt a speech model which 
is statistically stationary. However, speech is stationary 
only during a somewhat short period, and thus it is not 
easy to develop a general model which incorporates the 
time varying nature of speech. In addition, it is not 
straightforward to characterise the effect due to a vari- 
ety of factors such as speaker, language, conversation 
content, etc.. Therefore, we carry out the analysis 
through statistical means, using some ‘representative’ 
input speech from the TIMIT database [9]. 

Through our analysis, we quantify the dependence of 
CVSD quantisation noise on the uncoded speech. In 
addition, we work out a crucial relationship between 
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the quantisation noise and the CVSD decoded speech. 
Based on these two findings, we develop a method for 
estimating the short-time power spectra of CVSD 
noise, and this enables us to apply existing speech 
enhancement methods [5, 61 to effectively suppress 
CVSD noise. One encouraging observation is that our 
method works reasonably well even for speech which is 
different from that used for our analysis (to be elabo- 
rated in Section 5). Note that the main ideas of this 
work have been presented in [lo]. 

2 Discussion on speech enhancement 

We shall present a brief description of two relevant 
existing speech enhancement methods, namely spectral 
subtraction [5] and the Ephraim-Malah method [6]. 
Spectral subtraction is attractive because of its simplic- 
ity and (computational) efficiency. However, it often 
introduces a specific disturbance, commonly known as 
‘musical noise’. The Ephraim-Malah method, on the 
other hand, does not usually introduce such distur- 
bance and will be of good use in some demanding 
applications. But the trade-off is high complexity and 
computational overheads. 

The two enhancement methods are based on the fol- 
lowing model: 

where y[n],  s[n] and w[n] denote discrete-time samples 
of noisy speech, clean speech and noise respectively. A 
sampled short-time Fourier transform (SSTFT) on 
eqn. 1 leads to 

Y b l  = 4.1 1- 4.1 (1) 

Yr[k] = S,[k] + Wr[k] (2) 
where Yr[k], S,[k] and W,[k] denote respectively the 
SSTFTs of y[n], s[n] and w[n] for the rth frame and the 
index k denotes the kth frequency component. To carry 
out spectral subtraction, we first obtain lsy[k]ls, the 
magnitudes of the SSTFT of the enhanced speech, with 
the following equation: { :K[kI12 - P E ( I w ~ [ ~ I / ~ ) ) ~ ’ ~  

l S r [ k I ~  = if IYr[k]12 > PE(IWr[k]12) 
otherwise 

( 3 )  
where E(I Wr[k]I2) denotes the statistical mean of 
1 Wr[k]I2, the short-time power spectrum of noise, and p 
is a constant which controls the amount of noise sup- 
pression. Note that larger p gives more noise suppres- 
sion and reduction of musical noise, but speech 
intelligibility will be compromised. In conducting the 
experiments to be reported in Section 5, we shall use p 
= 3.7, which often yields a reasonable compromise 
between noise suppression and intelligibility preserva- 
tion. For the Ephraim-Malah method, the spectral 
magnitudes Is,[k]Is are obtained in a more sophisticated 
way (please refer to [6] for details). 

Next, the spectral phases arg($Jk])s of the enhanced 
speech are taken to be those of the noisy speech. With 
lS,[k]l and arg(,!?,[k]), the enhanced speech can be 
obtained via inverse fast Fourier transform and the 
standard overlap-add processing [5, 61. 

It is clear that both enhancement methods involve 
the use of E(IWr[k]12), the statistical mean of the short- 
time power spectrum of the noise, which is usually esti- 
mated by E(I Wr[k]I2), the average of the short-time 
power spectra for those frames of noisy speech contain- 
ing only the noise. In general, it can be expected that if 
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I W,[k]I2, the actual short-time power spectrum of the 
noise for that frame (i.e., frame r) ,  is available and is 
used as a substitute for E(I Wv[k]I2), the enhancement 
result should be better. In cases where the noise is sta- 
tionary, 8(1 Wr[k]12) is a reasonably good approximation 
of lW,[k]12, and the enhancement result would be good. 
However, when the noise is nonstationary, &(I W,[k]I2) 
will differ significantly from 1 W,[k]I2, and the enhance- 
ment result may not be satisfactory. Here, we are con- 
cerned with the noise introduced by CVSD which is 
nonstationary in nature, and thus &((IW,[k]l2) will not 
be a good estimate of lW,[k]I2. Consequently, we shall 
attempt to obtain a better estimate in Section 4. 

3 

In this Section, we shall study the characteristics of the 
noise introduced by CVSD, in the hope of obtaining a 
good estimate of the short-time power spectra of the 
noise. 

An analysis of CVSD noise 

3. I Speech-dependent nature of CVSD 
quantisation noise 
It can be deduced by listening that CVSD quantisation 
noise (the difference between CVSD decoded speech 
and the original speech) often contains some speech 
components. A simple way to model this is: 

4[n] = c ‘ s[n] + 4.1 (4) 
where q[n] denotes CVSD quantisation noise, c s[n] 
denotes the ‘speech’ component with s[n] being the 
original (uncoded) speech and c a non-zero constant, 
and d[n] denotes the ‘noise’ component. For conven- 
ience, we shall call d[n] the ‘uncorrelated’ noise. 

To make use of the above model (i.e., eqn. 4) to esti- 
mate the power spectra of CVSD noise, the value of c 
has to be first determined. In this connection, the 
approach we adopt is to minimise over c a measure of 
correlation between d[n] (= 4[n] - c . s[n]), the ‘uncorre- 
lated’ noise, and s[n], the speech itself, for a particular 
class of speech. The value of c giving rise to the mini- 
mum correlation measure will be chosen and will be 
used in the estimation of CVSD noise when the class of 
speech is encountered. We choose the measure to be 
K(c), the correlation between the normalised short-time 
power spectra of d[n] and s[n]: 

(5) 
where 

a r , k ]  and y[r,k] denote the means of ?JY, k] and 
y[v, k]  respectively, and iD,[k]12 and lSv[k]I2 denote the 
short-time power spectra of d[n] (= q[n] - c . s[n]) and 
s[n] respectively. The rationale behind choosing the 
above short-time power spectrum correlation measure 
is that we find it more appropriate to assess the close- 

IEE Proc.- Vis. Image Signal Process, Vol. 145, No. 1, Februavy 1998 



ness of two signals based on their short-time power 
spectra than their time-domain waveforms. 

The minimisation of K(c) is done by statistical means 
in the following manner. For each value of e, we com- 
pute K(c) using 50 speech sentences (which contain 
8563 short-time spectra) taken from the TIMIT data- 
base [9]. To achieve as much diversity in the short-time 
spectra as possible, we choose sentences spoken by 25 
male and 25 female speakers which are phonetically 
quite distinct. We then take the representative value of 
c to be one giving rise to the smallest K(c) ~ assigning 
such a value to c for the model specified by eqn. 4 will 
yield a d[n] that is statistically most uncorrelated with 
the speech signal itself. 

0‘41 

0.11 I I I I 
-0.15 -0.1 -0.05 0 

C 
Fig. 1 The correlation measure K(c) against c 

Fig. 1 shows the graph of K(c) versus e. At c = -0.07, 
K(c) attains its minimum amounting to 0.13. (In com- 
parison, K(c) attains a much higher value of 0.28 at c = 
0, the case where d[n] is exactly q[n].) Consequently, we 
adopt the following model hereafter: 

4[n] = -0.07. ~ [ n ]  + d[n ]  (7 )  
Basically, the result we obtain here is that q[n], the 
CVSD quantisation noise, in fact contains some speech 
components, and this is in agreement with our listening 
assessment. Therefore, one should be concerned with 
suppression of d[n],  the ‘uncorrelated’ noise, rather 
than q[n] as a whole, since suppression of q[n] (which 
has speech components) will affect the desired speech 
signal. 

In essence, it is the ‘uncorrelated’ noise, rather than 
the CVSD quantisation noise as a whole, that one 
should suppress. Thus one should focus on estimating 
the short-time power spectra of the ‘uncorrelated’ 
noise. In this connection, our approach is to first estab- 
lish a relationship between the ‘uncorrelated’ noise and 
CVSD decoded speech (to be discussed in the next sub- 
section), and then make use of this relationship to esti- 
mate the short-time power spectra of the ‘uncorrelated’ 
noise (to be discussed in Section 4). 

Remark: It is interesting to note that in cases where 
the ‘correlated’ part of CVSD quantisation noise (i.e., 
c . s[n]) is of concern, it could be removed by amplitude 
scaling. 

3.2 Dependence of the ‘uncorrelated‘ noise 
on CVSD decoded speech 
To analyse the dependence of the ‘uncorrelated’ noise 
on CVSD decoded speech, we use the same 50 speech 
sentences mentioned in Section 3.1. Indeed. we first 

generate CVSD decoded speech from the original 
speech for all the 50 speech sentences. We then 
compute q[n], the CVSD quantisation noise, as the 
difference between the CVSD decoded speech and s[n], 
the original speech. Subsequently, we compute d[n],  the 
‘uncorrelated’ noise, using the formulation 4[n] + 0.07 
s[n], for all the SO speech sentences. Finally, we segment 
the CVSD decoded speech and the ‘uncorrelated’ noise 
into 8.563 overlapping frames, each of which is 32 msec 
long (overlap by 28 msec). These 8563 frames of the 
‘uncorrelated’ noise and 8563 frames of the CVSD 
decoded speech are then used in our subsequent 
analysis. 

Our preliminary analysis reveals that there is in fact a 
close relationship between the ‘uncorrelated’ noise and 
CVSD decoded speech. Indeed, it is apparent in Fig. 2, 
which shows a scattered diagram of the 8.563 short-time 
energies of the ‘uncorrelated’ noise versus that of the 
CVSD decoded speech, that there could be a linear 
relationship between them. However, the spread of the 
data is somewhat large and this prevents one from 
exploiting the result directly. This then motivated us to 
search for another ‘energy’ measure which yields a 
closer relationship, and in turn leads to a more accu- 
rate estimate of the short-time power spectra of the 
‘uncorrelated’ noise. 

30 40 50 60 70 80 
short-time energy of CVSD decoded speech,dB 

Fig. 2 Scattered diagram of short-time energy of the ‘uncorrelated’ noise 
against that of CVSD decoded speech for  a total of8563 speech frames 
Each dot represents a point (EN’, EN”), where EN‘ and EN” denote the short- 
time energy ol‘ CVSD decoded speech and that of the ‘uncorrelated’ noise 
respectively for a particular frame 

Indeed, we have found that the mean of the short- 
time log power spectrum (we shall refer to as short-time 
CEPl hereafter) is a good candidate. Let us first exam- 
ine Fig. 3, which shows a scattered diagram of the 8563 
short-time CEPls of the ‘uncorrelated’ noise versus 
that of the CVSD decoded speech. There is clearly a 
close relationship. We then perform regression analysis 
on the data and obtain the following cubic polynomial 
which best fits the data in the least-square-error sense 
(refer to [l 11 for details of regression analysis): 

y = (5.58 x 10-5)23 + (5.51 x 10-3)22 + 1.02z+ 1.66 

where x and y denote the short-time CEPl of CVSD 
decoded speech and that of the ‘uncorrelated’ noise 
respectively. Note that such regression analysis will be 

( 8 )  
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carried out once and for all for a particular class of 
speech signals. 

I I I I I 
I I I I 

short-time CEPI of CVSD decoded speech,dB 

Fig.3 Scattered diagram o short-time CEPI o ‘uncorrelated’ noise 
against that of CVSD decode&xxhfor a total ofd/563 speech frames 
Each dot represents a point (CEPI’, CEPI”), where CEPIS, CEPI”, denote the 
short-time CEPl of CVSD decoded speech and that of the ‘uncorrelated’ noise 
respectively for a particular frame 

Although eqn. 8, relative to all other possible cubic 
polynomials, best fits the data in the least-square sense, 
one should also be concerned with how well it fits the 
data in an absolute sense (i.e., how ‘good’ the 
goodness-of-fit is in statistical terms). In this 
connection, we propose using two measurements. The 
first is the coefficient-of-determination [1 I]. It gives a 
value of 0.98 (a value of 1 means perfect fit), indicating 
that the regression model (eqn. 8) fits the data very 
well. The other measurement is the standard error, 
which is the standard deviation of the estimation error 
[ l l ] .  It gives a value of 1.36dB, and this implies that 
95% of the estimated values are at most only 2.67dB 
(1.96 times of the standard error) away from the actual 
values. 

Our analysis here indicates that there is indeed a 
close relationship between the ‘uncorrelated’ noise and 
CVSD decoded speech. Moreover, the relationship 
established, i.e., eqn. 8, allows one to obtain a reasona- 
bly good estimate of the short-time CEPI of the 
‘uncorrelated’ noise from that of the CVSD decoded 
speech. This in turn allows one to obtain a reasonably 
good estimate of the power spectra of the ‘uncorre- 
lated’ noise from CVSD decoded speech, which is the 
main topic of Section 4. 

3.3 Remarks 
Note that although the analysis has been carried out 
for CVSD, it could similarly be carried out for other 
waveform coders such as constant factor delta-modula- 
tion (CFDM), hybrid companding delta-modulation 
(HCDM), adaptive differential pulse code modulation 
(ADPCM), etc.. Like CVSD, CFDM and HCDM 
belong to the class of delta-modulation (DM) methods. 
Thus the analysis/results presented here should be rele- 
vant. As for ADPCM, the quantisation noise it pro- 
duces is usually not as annoying as those of DM 
methods, and so the pay-offs of carrying out such anal- 
ysis on ADPCM might not be as rewarding. 
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For vocoders and hybrid coders such as linear pre- 
dictive coder (LPC), code excited LPC (CELP), multi- 
band excitation vocoder (MBE), mixed excitation LPC 
(MELP), etc., one can also consider using the approach 
we presented. However, the residual noise/distortions 
generated by vocoders/hybrid coders are usually more 
complex than those generated by waveform coders (in 
particular, they can be both additive and convolu- 
tional). Consequently, a more comprehensive analysis 
on such noise will be necessary. 

4 Method for estimating CVSD noise and the 
complete enhancement procedure 

By exploiting the specific characteristics of the noise 
introduced by CVSD as discussed in Section 3, we pro- 
pose a method for estimating the short-time power 
spectra of the ‘uncorrelated’ noise. First, we establish 
that the short-time power spectra of the ‘uncorrelated’ 
noise can be sensibly split into two components, one of 
which is of high variation and varies as rapidly as the 
characteristics of speech while the other is of low varia- 
tion. Next, we suggest a method for estimating these 
two components separately. After obtaining the esti- 
mates of these two components, we combine them and 
then apply the existing speech enhancement methods 
discussed in Section 2. 

4.7 Splitting the noise power spectrum into 
high - va ria tion and lo w-va ria tion compon en ts 
To facilitate our analysis, we express IDr[k]12, the short- 
time power spectra of the ‘uncorrelated’ noise, in loga- 
rithmic scale: 

Pr[JGI = 1010g,, lPr[Ji:l12 (9) 
At this juncture, it is worthwhile to recall that the sub- 
script r denotes the rth frame and k the kth frequency 
component. Our study reveals that if one estimates 
Pr[k] by the statistical mean Pr[k] given by 

&[q = 1 0 l o g , , q ~ , [ k ] l Z )  (10) 
where the expectation operation is performed over 
frames, then the standard deviations of the estimation 
errors (which will be referred to as standard error here- 
after) of such estimates for all frequency components 
are generally quite high (more details will be presented 
in Section 4.3). Therefore, we will have to take another 
approach. Indeed, we first express P,[k] as a sum of 
two components: 

where A, denotes the short-time CEPl of the ‘uncorre- 
lated’ noise which varies considerably over speech 
frames, and B,[k] = P,[k] - A, which is relatively more 
stationary. As a matter of fact, it is apparent in Fig. 3 
that A,, being the short-time CEPl of the ‘uncorre- 
Iated’ noise, can vary as much as 50dB over different 
speech frames. On the other hand, some fairly extensive 
experiments indicate that the variation of B,[k] is only 
about lOdB for each frequency component. By splitting 
Pr[k] as a sum of A, and Br[k], it facilitates a relatively 
more accurate way of estimating Pr[k]. 

4.2 Estimation of high-variation and low- 
variation components 
Before we discuss the estimation procedure, we shall 
highlight the fact that A, (for each and every frame), 
the high variation component, needs to be estimated 
for every enhancement process, while B,[k], the low 

PT[k] = A, + &[k]  (11) 
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variation component, needs to be estimated only once 
and for all, during the ‘training’ process. 

We estimate each A ,  based on eqn. 8. Indeed, for 
each frame r ,  we first compute the short-time CEPl of 
the CVSD decoded speech. We then substitute it into 
eqn. 8 and obtain A,, the estimated short-time CEPl of 
the ‘uncorrelated’ noise for the same frame. We would 
like to reiterate that for each speech frame, we have to 
carry out such an estimation once to obtain the A,. 

For B,[k], we propose estimating it by E(B,[k]), its 
statistical mean, and do it once and for all during the 
‘training’ process. Indeed, using the short-time power 
spectra of the ‘uncorrelated’ noise in 8563 different 
speech frames obtained from the same SO speech sen- 
tences mentioned in Section 3.1, one can compute an 
estimate of E(B,[k]) by averaging over the 8563 speech 
frames for each k (i.e., for each frequency component). 
More precisely, we first generate CVSD decoded speech 
from the original speech for all the SO speech sentences. 
We then compute 4[n], the CVSD quantisation noise, 
which is the difference between the CVSD decoded 
speech and s[n], the original speech. Next, we compute 
d[n], the ‘uncorrelated’ noise, from 4[n] and s[n] accord- 
ing to eqn. 7. Subsequently, for each frame r ,  we com- 
pute lDr[k]i2, the short-time power spectrum of d[n],  
and then compute P,[k] according to eqn. 9. Next, we 
compute the short-time CEPl of 4721, which is the 
exuct A ,  for the current frame (note that during such 
training process, we do not use eqn. 8 to estimate A, 
since d[n] is available and thus A,  can be precisely com- 
puted). We then compute B,[k] by PJk] - A ,  for each r 
and k.  Finally, we will have a total of 8563 B,[k]s (since 
there are 8563 frames altogether) for each k and use 
them to obtain an estimate of the statistical mean 
E(B,[k]). The values of the estimated E(B,[k])s, for all k ,  
is shown in Fig. 4. 

frequency,kHz 
Fig.4 Gmph of E(B,(kJ) (amplitude) versus k (fvequency) 

4.3 The proposed estimator for PJkl and its 
performance 
In Section 4.1, we have mentioned that p,[k] as given 
by eqn. 10 will result in a poor estimate for P,[k]. Here, 
we propose a better estimator F,.[k] for P,[k] as follows, 
using the estimates of the high-variation and low-varia- 
tion components discussed in the previous subsection: 

Now we shall assess how good our estimator is. We use 
the same 50 speech sentences (which contain 8563 
speech frames) mentioned in Section 3.1 as our analysis 
data. For each of the 8563 speech frames, we first 
compute the exact value of P,[k], and then compute its 

-r;,[k] = A, + E(B,[k])  (12) 
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estimate F,[k] according to our proposed formulation 
given by eqn. 12. For comparison, we also compute 
P,[k], the straight forward estimator, according to 
eqn. 10. Subsequently, we compute the standard error 
of estimating P,[k] by p,[k], and also that by P,[k].  It 
turns out that our proposed estimator pr[k] g’ Ives a 
significantly smaller standard error than Pr[k] for every 
k.  In absolute terms P,[k], gives an average standard 
error of 18.9dB which is more than three times that of 
our proposed estimator p,[k], which is only 5.5dB. 

Our objective is to obtain a good estimator for 
lD,[k]12, the short-time power spectrum of the ‘uncorre- 
lated’ noise. With P,[k],  which is a reasonably good 
estimator for P,[k], one can obtain IBr[k]I2, the estimate 
for lDr[k]12, directly using the relationship given by 
eqn. 9 as follows: 

lij,[k]IZ = 10R [k1/10 (13) 
which should give us a satisfactory result for the esti- 
mation. 

4.4 The complete enhancement procedure 
Now we shall present the complete enhancement proce- 
dure. First, CVSD decoded speech (the noisy speech of 
concern) is buffered into overlapping frames, each of 
which is 32 msec long (overlap by 28 msec). Each 
frame is then multiplied by a Hamming window and 
transformed to the frequency domain via a fast Fourier 
transform (FFT). The FFT magnitude is used to com- 
pute the short-time CEPl of the CVSD decoded 
speech, which is then used to compute A,, the estimate 
for the short-time CEPl of the ‘uncorrelated’ noise via 
eqn. 8. Next, the estimated short-time CEPI, together 
with the estimated E(B,[k]) obtained during training 
(see Section 4.2), will be used to compute Fr[k] via 
eqn. 12, and then IBr[k]I2 via eqn. 13. Subsequently, 
enhancement has to be carried out according to the 
spectral subtraction formulation (see eqn. 3) or the 
Ephraim-Malah formulation [6], with E(/ W,[k]12) being 
replaced by lbr[k]I2 to compute l$,[k]l, the SSTFT mag- 
nitude of the enhanced speech. The l,!?,[k]I so obtained 
is then combined with the spectral phase of CVSD 
decoded speech to obtain the resultant spectral value 
followed by an inverse FFT. Finally, the time domain 
signals are overlap-added to obtain the enhanced 
speech. 

5 Performance assessments 

We shall now assess the performance of our method. 
We use 20 phonetically balanced speech sentences, of 
which 10 are produced by male speakers and 10 by 
female, taken from the TIMIT database [9]. It should 
be noted that these speakers and sentences are entirely 
different from those (25 male and 25 female sentences) 
used in Section 3 and 4 for training. To measure 
performance, we rely on both objective measures, in 
particular signal-to-noise ratio (SNR), segmental SNR 
(SEGSNR), and COSH spectral distortion measure 
[12], and informal subjective listening tests. The 
measures SNR and SEGSNR yield the ‘closeness’ of 
the processed signal to the original signal in the time- 
domain, whereas COSH yields that in the frequency- 
domain. The COSH distortion measure, although less 
frequently used in the speech processing community, IS 
employed here because it can be considered as a 
symmetric version of the well-established Itakura-Saito 
measure (see [12] for advantages of using symmteric 
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measures). Since COSH is a distortion measure, small 
values will indicate less distortion. For example, a 
speech signal corrupted by white gaussian noise at 
SNRs of 20dB and 30dB will yield COSH values of 
about 400 and 40 respectively. (For SNR and 
SEGSNR, the higher the values are, the better the 
quality.) 

We compute SNR, SEGSNR and COSH with the 
use of all the 20 sentences mentioned above (which 
contain 1633 speech frames), for the following signals: 
CVSD decoded speech, ‘enhanced’ speech obtained 
with spectral subtraction using E(ID,[k]12), the straight- 
forward estimator, enhanced speech obtained with 
spectral subtraction using lhr[k]12, our proposed estima- 
tor given by eqn. 13, ‘enhanced’ speech obtained with 
the Ephraim-Malah method using the straight-forward 
estimator, and enhanced speech obtained with the 
Ephraim-Malah method using our proposed estimator. 
Note that the computation is based on a concatenation 
of all sentences. The results, as tabulated in Table 1, 
show that the enhanced speeches obtained with both 
enhancement methods using our proposed estimator 
yielded significant improvements over the noisy CVSD 
decoded speech in terms of all three objective measures: 
SNR improves by 2.8 dB, SEGSNR improves by at 
least 2.6 dB, and COSH improves by at least 50 points. 
On the other hand, the ‘enhanced’ speeches obtained 
with both enhancement methods using the straightfor- 
ward estimator result in degradation in terms of SNR 
and COSH, and only slight improvement in terms of 
SEGSNR (at most 1 dB). One main reason for the poor 
performance of the straight-forward estimator is that it 
requires the noise to be stationary, but here, the noise 
of concern (i.e. CVSD noise) is highly nonstationary. 

Table 1: Various objective measurements 

CVSD decoded speech (noisy 11.7 6.5 110 
speech 

’Enhanced’ speech by spectral 11.4 7.3 130 
subtraction using E(IDJk1l2), 
the straight-forward estimator 

Enhanced speech by spectral 14.5 9.1 60 
subtraction using IDr[k112, our 
proposed estimator given by 
eqn. 13 

’Enhanced‘ speech by Ephraim- 11.5 7.5 131 
Malah method using €(IDrlkl12), 
the straight-forward estimator 

Enhanced speech by Ephraim- 14.5 9.3 30 
Malah method using l~7,[kl1~, 
our proposed estimator given 
by eqn. 13 

*Note that for COSH, lower value implies better quality 

It is interesting to note that although spectral 
subtraction and the Ephraim-Malah method (with the 
use of our proposed estimator) give similar 
performance in terms of SNR, their performances 
differ quite significantly in terms of COSH, with the 
Ephraim-Malah method giving better performance. As 
a matter of fact, SNR does not often give reliable 
indication of the speech quality. Therefore, many 
performance measures (including SEGSNR, Itakura- 
Saito measure, COSH) have been proposed to 
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supplement SNR for performance assessment. In this 
case, the COSH measure indicates that the Ephraim- 
Malah method outperforms spectral subtraction and 
this is further confirmed by the informal subjective 
listening tests (see the next paragraph). 

Finally, we conduct informal subjective listening tests 
as follows. There are two tests and for each test, 20 lis- 
teners (10 males and 10 females) are involved. The first 
test is to assess which of the two methods, namely 
Ephraim-Malah method and spectral subtraction, are 
better when being used in conjunction with our pro- 
posed estimator for the noise spectrum. We first esti- 
mate the noise spectrum and then obtain the enhanced 
speeches using the two methods, for the 20 speech sen- 
tences. Each pair of enhanced speeches are then ran- 
domly arranged. Subsequently, the listeners are asked 
to assess the 20 pairs of enhanced speeches and indicate 
their choices for each pair of speeches. The three 
choices are that he/she prefers the first one, prefers the 
second one, has no preference. The result is that 37% 
preferred the Ephraim-Malah method, 18% preferred 
spectral subtraction, and 45% indicated no preference. 
In response to our further questions, some listeners 
mentioned that they prefer the Ephraim-Malah 
method since slight ‘musical noise’ could be heard in 
the enhanced speech obtained with spectral subtraction 
but not Ephraim-Malah method. The second test is to 
examine whether the enhanced speech obtained using 
our proposed estimator (with the Ephraim-Malah 
method) is preferred to the raw (original) CVSD 
decoded speech. The setup of this test is the same as 
the first one. The result is that 84% preferred the 
enhanced speech, 6% preferred the raw speech, and 
10% indicated no preference. 

6 Conclusion and discussion 

Using a statistical analysis, we have obtained crucial 
insights into the characteristics of the disturbance 
introduced by CVSD. With such insights, we have 
developed a method for estimating the short-time 
power spectra of CVSD noise, and this enables us to 
apply existing speech enhancement methods to effec- 
tively suppress CVSD noise. 

Objective assessments based on SNR, SEGSNR and 
COSH, and informal subjective listening tests all indi- 
cated that our method is reasonably effective. One 
encouraging observation is that our method works rea- 
sonably well even for speeches that are different from 
those used for analysis and training. 

The extra delay introduced by the proposed enhance- 
ment procedure is about two speech frames (Le., 64 
msec) and this will not cause significant disturbance in 
some applications, especially those not involving satel- 
lite communications. On computation, we would like to 
highlight that considerable processing is needed for 
obtaining the constant c mentioned in Section 3.1, the 
regression curve mentioned in Section 3.2, as well as 
the estimator for E(B,[k]) mentioned in Section 4.2. 
Fortunately, this processing needs to be carried out 
only once, for a particular class of speech. As far as the 
online enhancement is concerned, the computational 
overhead is quite low. On applying our method in real- 
world scenario, we would like to mention that more 
research effort, in addition to that reported in this 
paper, is needed. For example, when implementing the 
method on a mobile system, other disturbances such as 
background noise, channel noise, electrical noise, etc. 
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will have to be taken into consideration. Some of these 
issues will be looked into in future work. 
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