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Kalman-Filtering Speech Enhancement Method
Based on a Voiced-Unvoiced Speech Model

Zenton Goh, Kah-Chye Targenior Member, IEEEand B. T. G. Tan

Abstract—in this work, we are concerned with optimal estima- characteristics are naturally taken care of in the autoregressive
tion of clean speech from its noisy version based on a speech(AR) approach [6]-[9] as speech signals are not modeled on a

model we propose. We first propose a (single) speech modelgp .y time basis but as a whole. The AR model is also known
which satisfactorily describes voiced and unvoiced speech and

silence (i.e., pauses between speech utterances), and also allow9 be QOOd for representlng_unvomed spegch. quever, It is
for exploitation of the long term characteristics of noise. We then Not quite appropriate for voiced speech since voiced speech
reformulate the model equations so as to facilitate subsequent is often quite periodic in nature. This has motivated us to

application of the well-established Kalman filter for computing ook into speech models which can satisfactorily describe both

the optimal estimate of the clean speech in the minimum-mean- ,,jo0q and unvoiced speech, and allow for exploitation of the
square-error sense. Since the standard algorithm for Kalman

filtering involves multiplications of very large matrices and thus Iong-te.rm characte'ristics of noise.' _
demands high computational cost, we devise a mathematically In this work, we first propose a (single) speech model which

equivalent algorithm which is computationally much more ef- can satisfactorily describe both voiced and unvoiced speech,
ficient, by exploiting the sparsity of the matrices concerned. 55 well as silence. Since it originates from AR modeling,

Next, we present the methods we use for estimating the model the long-term characteristics of noise are naturally taken care
parameters and give a complete description of the enhancement g y

process. Performance assessment based on spectrogram plotQf. Coupling the proposed speech model with the popular
objective measures and informal subjective listening tests all additive white-Gaussian-noise model, we are able to treat the

indicate that our method gives consistently good results. As far as enhancement problem quite realistically on a theoretical basis.
S|gnal-to-n0|se ratio Is Concerned, the |mprovements over eX|st|ng Our Objective is to obtain an Optlmal estimate of the clean
methods can be as high as 4 dB. . ..
_ _ _ speech in the minimum-mean-square-error (MMSE) sense,
Index Terms—Kalman filter, noise reduction, speech enhance- ysing the abovementioned models. To achieve this, we first
ment, speech model, speech processing. reformulate the model equations so as to facilitate a subsequent
application of the well-established Kalman filter for computing
|. INTRODUCTION the desired estimate.

EECH enhancement is a subject of both theoreticalSince the standard algorithm for Kalman filtering involves
SFr:terest and practical importance. As a matter of factpultiplications of very large matrices and thus demands high

the presence of noise can result in appreciable degradat?&'inpmat'onal C,QSt’ We improve the eff|C|en(_:y quite signifi-
in the quality and intelligibility of recorded speech. ConseEantly by exploiting the sparsity of the matrices concerned.
quently, not only can it cause difficulty in interpreting andn this connection, we propose a mathematically equivalent

understanding the speech message, but it can also lead@prithm whose computational cost (in terms of additions and

unsatisfactory results on subjecting the noisy recorded spedtitiplications) is only 1/900th of that of the standard algo-

to speech coding, speech recognition, or speaker identificatigf!M- AS the proposed algorithm requiraspriori knowledge

One key to speech enhancement is satisfactorily mod@aRout the model parameters, we estimate them from the noisy

ing the human speech production process. Such modelﬁﬁfeCh using an iterative procedure which can be viewed as a
is difficult because speech signals are, in general, higHfm of expectation-maximization (EM).

nonstationary. Classical speech enhancement methods [1]-[5pi"ce the proposed algorithm is developed based on white-
consider only models for short-time speech segment, and t gussian-noise assumption, it is expected that its performance
overcomes the difficulty to a certain extent since speech signiiscolored noise will degrade. In this connection, we propose

are often quite stationary during a short period. Howevet, Practical and effective scheme for enhancing the applica-
such short-time models preclude exploitation of the long-terfility of the proposed algorithm in colored-noise scenarios.

characteristics of noise. On the other hand, such long-teffpreover, the algorithm can be implemented online.

Performance assessment based on spectrogram plots, ob-

g/lagushcriptd rice(i:veg August 4t,h 13]97:(;6\/:86? S%Ptemlbgf 4, 1998. S hjelctive measures and informal subjective listening tests show
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Il. PROBLEM STATEMENT period andi(n, p,) is a measure of the instantaneous degree
of voicing (or “periodicity”). For the next few paragraphs, we
shall discuss how our proposed model caters for both voiced
y(n) = s(n) + w(n) (1) and unvoiced speech and silence as well.

To represent unvoiced speech which is by nature quite

Consider the following model for noisy speech:

wheren = 1,2,---, andy(n), s(n), andw(n) denote discrete-

time samples of noisy speech, clean speech and noise, FRAdOMY

(n, py,) Is setto zero so tha{n) = d(n) and thus the
spectively. Basically, our objective is to devise a method f&>2<C|tat|on signak(n) is white Gaussian noise (with variance

obtaining an optimal (in the MMSE sense) estimate for eaéh(n))' (,NOt? thatp_" does not have any effgct here anq one
sample of the clean speech, based on the past and curféaht arbitrarily set it to any value, say 0.) Since the excitation
samples, as well as future samples in a neighborhood of {gnal for unvoiced speech can be well represented by white
noisy speech. In other words, we want to develop an algoritiiussian noise, our proposed model is quite appropriate for

for computings(n), the MMSE estimate of(n), which can unvoiced speech. _ o
be expressed as On the other hand, to represent voiced speech which is

R quite periodic, we setp, to be the pitch period of the
3(n) = E(sm)|ly(n+ 1), -, y(n), -, y(1)) (2) voiced speechp(n,p,) close to one andag(n) close to
zero, so thate(n) =~ e(n — p,) and thus the excitation
) signal is quite periodic. If the voiced speech is relatively less
samples of the noisy speech to be used, &f¢) denotes periodic,b(n,p, ) will be assigned a value closer to zero, and

the expectation operator. 2 . will be assigned a value significantly larger than zero
To achieve the objective, one has to first specify the statfgd(») 9 L 19 y larg '
onsequently, the periodicity will be weakened.

tical models forw(n), the noise, andi(n), the clean speech. To represent silence. bo ando?. . are set to zero
In this connection, our model assumptions @) are the P » botltn, pn) H%am) ¢ _
so thate(n) = 0, and thus the excitation signal is a zero

usual ones as follows: ,
ignal. (Note thap,, does not have any effect and can be set

. . . S
1) itis generated by a stationary zero-mean white Gauss%ﬂzero_) Consequently, the speech sigsal) will eventually

r with variance?;
process with variance,; decay to zero.

2) itis indep.endent 0B(n). In summary, we have proposed a single speech model, as
Our assumptions on(n) are based on the speech modejescribed by (3) and (4), which can appropriately describe

for n = 1,2,---, where 7 denotes the number of future

that we shall propose in the next section. the three different states of a speech signal, namely voiced
speech, unvoiced speech, and silence. In Section VI, we shall
lll. THE PROPOSEDSPEECH MODEL present the methods for estimating the values of the parameters

Before introducing the proposed speech model, it is worth{n, k), p., b(n, p,), and o3, .
while mentioning the speech model employed in [6] and [7],
which has influenced our work. In [6] and [7], speech is
assumed to be generated by AR process:

s(n) = Z a(n, k)s(n — k) (3)

— Considering the speech model given by (3) and (4) and the

o _ ) additive noise model given by (1), our objective is to obtain an
wheree(n), the excitation signal, is generated by a zero-megjhtimal estimate (in the MMSE sense) of the clean speech as
white Gaussian process with varianeg, . a(n, k)'s are the expressed in (2). Our approach is to utilize the well-established
adaptive filter coefficients; is the filter order, and(n) is the  Kalman filter [10] to obtain our desired estimate. (Kalman
output (clean) speech. Such an AR model is quite approprigiger is capable of providing the optimal estimate for a specific
for describing unvoiced speech. However, it is not appropria@t of linear equations [10]-[11].) In this connection, we first

for describing voiced speech, since the excitation signal fRgformulate the model equations (1), (3), and (4) to a specific
voiced speech is often quite periodic and not as random f@fm required by the Kalman filter.
white Gaussian noise.
Our aim is to propose a single model to describe both

voiced and unvoiced speech as well as the silence. SingeRreformulation of Model Equations
both voiced and unvoiced speech are characterized by thei[:. : : . .

o . . : irst, it can be easily shown that (3) is equivalent to the
excitation signals, our strategy is to appropriately model tf{ge : .

o . ) . oélowmg state-space equation:
excitation signals to accommodate both voiced and unvoice
speech. In this connection, we propose the following model for
the excitation signals [in conjunction with the speech model

given by (3)] sp = Apsp_1+11e, (5)
e(n) = b(n, pp)e(n — pp) +d(n). 4)

where d(n) is generated by a zero-mean white Gaussigh ras — (s(n)
process with variancerg(n), pn is the instantaneous pitch " ;

1 IV. OPTIMAL ESTIMATION OF CLEAN SPEECH
+e(n)

cos(n—r+ 1) r = max(q, 7+ 1),y
is an (r x 1) vector given by(1,0,---,0)%, ¢, = e(n), and
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A, is an(r x r) matrix given by B. Desired Optimal Estimate Obtained with the Kalman Filter
Now with the state-space equations given by (10) and (12)
a(n,1) --- aln,g) 0 --- 0 [which are equivalent to (1), (3), and (4)], we are ready to
1 0 o 0 - 0 apply the Kalman filter [10], i.e., using the following algorithm
B 0 1 g : 5 for computing the outpus(n), our desired optimal estimate
Ay = : e (6) (in the MMSE sense) of clean speech.
: . oot 1) Initialization:
0 - o 0 1 0
a(0,1) = --- = a(0,q) = 5(0) = --- = s(1 — q) = ¢(0)
Second, to reformulate (4) into state-space form, we first = =c¢(-p) =y(0) = op ) = 0, (13)
note that (4) can be written as Po =0 4p)xr4+p), %0 = O@rypyx1- (14)
2) Recursion: Fom = 1,2,---,
e(n) = bln,De(n — 1) +d(n) (7)
=1 Q. =F, 1P, \F}_| +05,,[s%, (15)

where p is taken to be a constant equal to the maximum Gn =Q.Ta(T{Q.Ta+ 05 1)) (16)
possible pitch period of human speech, ake,!) = 0 P,=(I1-G.I'HQ,, a7
for all I # p,, wherep, is the instantaneous pitch period. & —F, 2. | +G.(y(n—1) =TT F,_1%,_1). (18)
Subsequently, it can be easily shown that (7), as thus also (4),

is equivalent to the following state-space equation: 3) Output: Forn = 1,2,---,

€n = Bnen—l + FQ dn (8) §(7’L) = (07 e 707 17 07 e 0)";'.71-1-7'-1-1' (19)
———

wheree,, = (e(n),---,e(n —p+ 1)), I'> is a(p x 1) vector

given by(1,0,---,0)T,d, = d(n), andB,, is a(p x p) matrix For convenience, we shall hereafter call the above algorithm

given by Algorithm 1.
b(n,1) b(n,2) --- -+ bn,p) V. COMPUTATION REDUCTION
! .0 . 0 0 We have obtained an algorithm, i.e., Algorithm 1 as dis-
B.=| 0 E R : - (9) cussed in the preceding section, for computing the optimal
: - o0 : estimate (in the MMSE sense) of clean speech. Unfortunately,
0 et 0 1 0 the computational cost is very high. One main reason for this is

as follows. The maximum pitch period of human speech can be

Third, it can be shown that (5) and (8) can be combinetb high as 20 ms, which translates to 160 samples for an 8-kHz
into a single state-space equation as follows: sampling rate. By definition of the constanfsee the sentence
after (7)], it is then assigned the value of 160. Consequently,

(10) the sizes of the matricels,, and P,, which appear in (15) will

be at least 16« 160. Therefore, Algorithm 1 involves many
multiplications of very large matrices [see, e.g., (15)] and this
leads to high computational overhead.

In this section, we shall reduce the computational cost of
Algorithm 1 by exploiting the sparsity of the matrik,,. The
reduced-computation algorithm, which we shall call Algorithm
A [T 2, will be shown to be equivalent to Algorithm 1 in Theorem 1.

F, = <O“ Bl 2 ) (11) Although our presentation of Algorithm 2 will appear lengthy
ntl and complicated, the computational cost involved is only 1/900
) , ) ) of that required by Algorithm 1 (this will be elaborated later).
Fourth, it can be easily shown that (1) is equivalent to t& his juncture, it is worthwhile noting that in relevant studies

Tn4+1 = Fn-'l"n + F3 dn—l—l

wherez,, = (%~'),I'3 is an((r + p) x 1) vector given by

(0,--+,0,1,0,---,0)7, and F,, is an(r + p) x (r + p) matrix
—

givéh by

following state-space equation: such as [6]-[9], the computational cost required is relatively
much less since the algorithms employed in these studies
y(n) =[{zny1 +w(n) (12)  do not involve multiplications of very large matrices due to
incorporation of (8).
wherel'y is an((r + p) x 1) vector given by(1,0,---,0)7. We will first introduce some notations for ease of discussion

In summary, we have reformulated the model equatiomsid then state a crucial theorem. Subsequently, we shall
given by (1), (3), and (4) into the equivalent state-spastate and compare the amount of computations required by
equations given by (10) and (12). Algorithms 1 and 2.
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Notations: Let H be an(m x n) matrix andmy,mz,nq,
and no be integers such that < m; < ms < m and
1 < ny £ ny < n. Then H[my : ma,n1 : ng] shall denote
the (mo — mqy + 1) X (n2 — ny + 1) submatrix ofH formed
by Rowm; to Rowm, and Columnn; to Columnng of H.
Moreover, the notatio# [m; : m2, n; : nz] will be simplified
for some special cases:

1) if mq = mo, then we simply writeH [mq : mq,nq : na
as H[ml,nl : 712], and H[ml DoMmo,ny 711] as
H[ml . mg,nl] for ny = no;

2) if my = 1 andmo = m, then we simply writeH|[1 :
m,ny : no] @SH[:,ny : no], and H[my : mo,1 : n] as
H[my : mg,:] for ny = 1 andny = n;

3) if mi = my = m = 1, then H is a row vector and
we simply write H[1 : 1,7 : na] as H[n; : n2], and
H[m; : mg,1:1]asH[my : ma] forny = na =n =1;

4) if my = mo = m = 1 andn; = ns, then we simply
write H[1 : 1,71 : n1] asH[ny], andH[my : my,1: 1]
as H[m,] for ny = nz =n =1 andm; = ma.

Note that the((r + p) x (r + p)) matricesP,,_; andQ,,

appearing in (15) are symmetric and can be written as

P, P, _ n n
P, = < 1,1 1,2 >’ Q — <8T,1 Q ,2)
n,2

PZ_LQ Pn—l,3 Qn,3
(20)
where P, and Q,,; are symmetric(r x r) matrices,
P,_1,andq, , are (r x p) matrices, andP,,_; 3 and Q3
are symmetridp x p) matrices. We are now ready to state
crucial theorem.
Theorem 1: The following algorithm [stated in (21) to (37)]
is equivalent to Algorithm 1 [stated in (13) to (19)].

1) Initialization:

a(0.1) = ---=a(0,q) = s(0) = -~ = 5(1 — q) = ¢(0)
=e(—p) =y(0) = 05 =0, (21)
Py1 =0,xr, Po2=0,xp,
Py3=0pxp, Zo=O@ip)x1- (22)
2) Recursion: Fom = 1,2,---,
a,_1=(a(n—1,1),---,aln—1,¢))%, (23)

fo1i =Pr11[1 i dlan—1 + Pro12[5, 1], (24)
9, :Pn—l,?)[:vpn]b(nvpn)v (25)
Gn1 =ap ([ 1[1:ql+ Pp12[1:¢,1])
+ Pro13[1,1], (26)
Gn2 =(al_Pn_1[1:q,p,]
+ Pn,Lg[l,pn])b(ﬂ,pn), (27)
qn,3 =9n [Pn]b(”apn) + Ug(n), (28)
g = (arz:—lpn—l,Q[l tq,1:p—1]
+ P11, 1:p—1])7, (29)
9,5 :PN—1,2[1 = 1,pn]b(n,pn), (30)
qn,1
G = | I = g o2y (31)
qn,2
In 4
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P — 4n,1 fn—l[]- = 1]T
TNl =1] Paga[lir—1,1:7 —1]
- Gn[l : T](Qﬂ,lvfn—l[]‘ = 1]T)7 (32)
T
_ Qn,Q qn,4
Pn72_<n,6 Pn—l,Q[]—:T_]-v]-:p_l])
= Go[1:7(an,2, €,); (33)
P 3:< qn,3 gn[l:p—l]T )
™ Zdip—1] Pr_1s[l:p—1,1:p—1]
—Go[r + 17+ pl(gn 2, 454, (34)
ho_1 :az_l-';;nfl[]- : Q] + -';'.nfl[T + 1]7 (35)
hn—l
P Tp_1[l:7r—1]
" Zp—1[r + pu]bln, pn)
Epoa[r+1:r+p—1]
+ (y(?’L - 1) - hn—l)Gn- (36)
3) Output: Forn = 1,2,---,
8(n) = &nqrpa[r +1]. (37)

Remarks:

1) For convenience, we shall call the algorithm stated in
(21)—(37) Algorithm 2. Clearly, Algorithm 2 is also one
that produces the outpétn), our desired optimal esti-
mate (in the MMSE sense) of clean speech as expressed
in (2), based on the model assumptions stated in (1),
(3), and (4).

In addition to establishing Theorem 1 via mathematical
proof, our extensive experiments show that the outputs
of Algorithms 1 and 2 are numerically identical.

Proof: See Appendix A. [ |
Amount of Computation Reductiorkirst, note that both
Algorithms 1 and 2 involve only additions and multiplica-
tions (and 1 division), but not specific functions such as
trigonometric or exponential. Therefore, we shall compare the
computational costs of the two algorithms only in terms of
the number of additions and the number of multiplications

required for each iteration.

It can be verified that each iteration of Algorithm 1 as
specified by (15)-(18) and each iteration of Algorithm 2
as specified by (23)—(36) require the following amount of
computations:

a
2)

Mult; =3(r +p)® +4(r +p)? +4(r+p),  (38)

Addy =3(r +p)* + (r +p)* + (v +p), (39)
Multy =v* +p* +rp+ (r+p+2)(g+1)

+2(r + p), (40)

Addy =7 +p? +rp+ (r+p+3)(g+1)  (41)

where Mult; and Add; denote, respectively, the number of
multiplications and additions required by each iteration of
Algorithm k for k = 1 and 2. At this juncture, it is worthwhile
recalling thatp is the maximum possible pitch period of human
speechy is the number of columns of the matri,, defined

in (6), andq is the total number of filter coefficients used in
the model given by (3).
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Reasonable choices of the values forq, and » are process), and then mention the choice of the constant parame-
p = 160,q = 10, and » = 101 (which are indeed adoptedters. Subsequently, we provide a summary of our enhancement
in our implementation of Algorithm 2, and the details willmethod.
be discussed in the next section). For these vall&glt; =
53,612,271, Add, = 53,407,125, Multo = 55,376, and o _ _

Add, = 54,865, and thus Mult,/Mult; =~ 968 and A. Estimation of Clean Speech and Time-Varying Parameters
Addy/Addy, ~ 973. Clearly, the amount of computation For this purpose, we have identified a fairly effective
reduction is quite significant, as both the number gfrocedure similar to those mentioned in [3] and [7]. The
multiplications and the number of additions are reduced Byocedure, which can be considered as a version of the EM
more than 900 times. algorithm (as noted in [7]), involves alternately estimating the

Note that the computational requirement for the AR-basgrrameters based on the last version of the estimate for the
method (which is separately referred to as the Kalman-filteringean speech and estimating the clean speech based on the
method in [6] and the scalar-Kalman-filter method in [7]) ifast version of the estimates for the parameters, until a stage
about 3440 multiplications and 3110 additions, both abowutere the quality/intelligibility of the estimate of the clean
1/16th those of Algorithm 2. In comparison, the computatiorspeech has reached a desired level. The details are as follows.
are about 1/15 000th those of Algorithm 1, which is a primitive For the first iteration of the procedure, the time-varying
version of Algorithm 2 without computation reduction. Noteyarameters(n, k), p,, b(n, p,), andgg(n) are estimated based
that it is not entirely unexpected that the computational regn y(n), the noisy speech, in the following way. For each
quirement of Algorithm 2 is higher than that of the AR-baseg the estimates ot(n,k)'s for k = 1,---,¢, are obtained
method since Algorithm 2 is based on a more sophisticat@fth the well-established Durbin—Levinson algorithm [12],
speech model. However, as we shall see in Section V|Using a “smoothed version” of(n) as input. (If they were
Algorithm 2 will give appreciably better performance, in termg be obtained using the noisy speeg) directly without

of quality improvement, than the AR-based method. “smoothing,” the estimates for then, k)’s, which are closely
related to the spectral envelopes, would vary so drastically that
VI. SOME OTHER CRUCIAL ISSUES AND undesirable “musical” noise will become apparent. By using
SUMMARY OF OUR ENHANCEMENT METHOD a “smoothed version” ofy(n), we found that such “musical”

In the preceding section, we have proposed an aIgoritH?ﬂise will bg significar)tly weakened.) Indeed, we first compute
for computing the optimal estimate of the clean speech. TH¥ short-ime magnitude spectrum and phase spectrum of
algorithm requires knowledge about the parameters of tHi Segment in a neighborhood (32 ms) of the samypig.
additive noise model given by (1) and those of the speeH?te that the spectra are obtained through first multiplying

model given by (3) and (4). For the additive noise model, tH8€ Segment by a 256-point Hamming window followed by
only parameter is>2, the variance of the stationary noisePerforming fast Fourier transform (FFT) analysis. Moreover,

A commonly accepted estimate f is the variance of such operations are carried out for each sample. Second, we
v Of];fpympute the short-time magnitude spectra of four neighboring

those segments of the noisy speech signals that contain > J .
the noise. In this connection, one may use a voice activigfdments which overlap with the original segment by 12 or
4 ms (i.e., two of the neighboring segments are obtained by

detector [4] to identify the noise-only segments. Howev hifti e X
for simplicity and consistency, we simply take the beginningnifting the analysis window 8 ms back and forth into the

100 ms of the speech signals as the noise-only segmen@et and into the future, and two others 20 ms into the past
this study (the results obtained with such a simple approa@fd into the future). Third, we generate a “smooth” magnitude
are quite reasonable). For the speech model, there are foRFCtrum by taking the minimum of the five magnitude spectra

time-varying and three constant parameters. The time-varyifj €ach frequency bin. Before we proceed, it is worthwhile
parameters are explaining the choice of the word “smooth.” Indeed, we

, . . - ) have observed through our experiments that taking minimum
1) a(n,k)'s, the adaptive filter coefficients; . X . .
) . . o in each frequency bin could effectively reduce undesirable
2) p’s, the instantaneous pitch periods; “spikes” which appear in the frequency domain, resulting in
3) b(n,pn)’s, the instantaneous periodicities; P bp g Y : g

Y . : , a relatively “smoother” spectrum. Fourth, we obtain a time-
4) 9d(n) s,.the'(mstantaneous) variances of the sigi(al) domain signal by taking the inverse FFT of the “smooth”
appearing in (4).

magnitude spectrum combined with the phase spectrum ob-
The constant parameters are tained in the first step. Finally, we estimate e, k)’s from
1) 7, the number of future samples of the noisy speech tRe signal so obtained using the Durbin—Levinson algorithm.
be used in the formulation of the MMSE estimate giveNote that the number of samples we use for calculating the

in (2); _ N a(n,k)'s is 256.
2) g, the total number of the filter coefficientgn, k)’s for The other three parameters (i.g.., b(n, p,.) andrfﬁ(n)) are
eachn; estimated as follows. First, each estimateppf the instanta-

3) p, the maximum possible pitch period of human speecheous pitch period, is obtained usift), the autocorrelation
For the rest of the section, we first discuss how the timé&inction of the speech segment in a neighborhood (32 ms)
varying parameters are estimated using an iterative procedafehe sampley(rn), with 40% center clipping [12]. Second,
(note that the clean speech will also be estimated in teachb(n, p,), the instantaneous periodicity, is estimated using
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the ratio R(p,,)/R(0). If the ratio is more than 0.5, the
speech segment is considered periodic &fid p,,) is set to
R(p,)/R(0). Otherwise,b(n,p,,) is set to zero. Third, each
Ui(n)’ the (instantaneous) variancedifn), is estimated in the
following manner. We first computé(n) based on (3) and (4),
and then estimate ea@lj(n) by the variance of the segment
in a small 8 ms neighborhood centereddé&t). Note that at
the beginning (end) of the speech signal, such neighborhood
is taken to be only 4 ms into the future (4 ms into the past)
related ton.

With these estimates of the time-varying parameters, we use
them as input parameters to the algorithm stated in (21)—(37).
Note that the input signal to the algorithm is the noisy speech,

I noisy speech l

estimate parameter
of noise model

constant parameters
of speech model

estimate time-
varying parameters
of speech model

estimate clean
speech using our

proposed algorithm
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and the output signal is the first version of the estimate for the
clean speech, which shall be denotedig%). This completes
the first iteration of the procedure.

For the second iteration, we first reestimate the four param-
eters (i.e.,a(n,k),pn,b(n,p,), and ag(n)) using the above
methods, except that heg(n) is used, instead of(n), as
input to those methods. These reestimated parameters are then
used as input parameters to the algorithm stated in (21)—(37).
Note that the input signal to the algorithm is also the noisy
speech (and would always be the noisy speech), and the output
signal is the second version of the estimate for the C'G%B. 1. Block diagram of our proposed speech enhancement method (based
speech, which shall be denoted &$n). on white-Gaussian-noise assumption).

Subsequent iterations are similar, and we stop the iterative
procedure when the quality/intelligibility of the latest version

of the estimate of the clean speech has reached a desired Iet\r}gl constant parameters of the speech model are chosen based

. - . : on the justifications provided in Section VI-B. Subsequently,
This completes the description of the iterative procedure. . ) . . .
we use the iterative procedure mentioned in Section VI-A

to obtain estimates for the time-varying parameters of the

speech model and estimates for the clean speech. Based on
First, we address, the number of future samples of thethe experiments we conducted, we found that at the third

noisy speech to be used in the estimation process. On amefourth iteration, the quality/intelligibility of the enhanced

hand, a larger means more noisy speech samples are ussgeech (i.e., the estimate of the clean speech) usually reaches

and thus more information is exploited. Consequently, tt#n acceptable level.

estimation error may be expected to be relatively smaller. On

the other hand, a very large valuerofvould lead to very high D. Online Processing

computational cost. In this connection= 100 gives a good

yes

re-estimate time-
varying parameters?

enhanced speech

B. Choice of the Constant Parameters

. . . : One straightforward way to carry out the iterative procedure
compromise for the scenarios under consideration. : : . o
Lo . is to perform each iteration of parameter and speech estimation
For the value ofg, which is the total number of the filter : .
. : o based on the entire speech utterance. However, we would like
coefficients, our consideration is that there should be a large, . |, . . : .
. - highlight that the iterative procedure can also be carried out
enough number of filter coefficients so that the spectral envelg . . .
. oh each speech sampland so online processing with some
of speech is adequately represented. Hence we chpdse : : .
e%ﬁlay is possible. Indeed, processing of each speech sample

be ten, .Wh'Ch 'S a f!gure commonly accepted by the spe requires up to421m future samples (as have been worked
processing community. Note thatthe number of columns of . . . i :
out in Appendix C), wheren is the number of iterations.

the matrixA,, as given by (6), will then be equal to 101 Sinc%onsequently the time delay will b&2.625m ms (for the

r = max(q,7 + 1). . o o :
Since the pitch period of human speech rarely exceeds %np_lmg rate of 8 kHz). At th!s Juncture, it is yvorthwhﬂe
: : alling that a typical value of: is three (see Section VI-C),
ms (which translates to 160 samples for a sampling rate of ganngt .
resulting in a total of about 158 ms time delay.
kHz), we setp to 160. . .
Now we shall discuss our proposed procedure for online
processing. Our approach is to describe how to obtain the first
sample, the second sample, and so on, for#héeration,
Now we shall present a summary of our enhancememherem is a positive integer.
method, for which a block diagram is shown in Fig. 1. First, we shall describe how to obtai#, (1), the first
Given a noisy speech sampled at 8 kHz, we first estimatample of then-iteration enhanced speech. For convenience,
the parameter of the additive noise model according to thet § denote the delay per iteration, which is 421 samples,
method mentioned in the first paragraph of Section VI. Nex; = 133, 8, = 101, and é3 = 576. In order to obtains,,(1),

C. Summary of Our Enhancement Method
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one has to go through the first, second,, (m—1)th iterations for obtainings,,(2), and thus we shall not elaborate it further
involving the noisy speech samplegl),---,y(1 + mé). and hereby end the discussion of on-line processing.
Indeed, with thos€1 + mé) noisy speech samples, one can To achieve real-time processing, we need a computer which
compute altogethetl 4 (m — 1)6) first-iteration enhanced can perform about 0.3 millidnfloating-point operations per
speech samples, namedy(1),---,5 (1 + (m — 1)§), using speech sample. This results in computational requirement of
the algorithm stated in (21)—(37). Next, witia(1),---,5;(1+ about 2.4 giga-floating-point operations per second (GFLOPS).
(m—1)§), one can compute altogeth@r+ (m —2)§) second- In this connection, real-time processing is possible with to-
iteration enhanced speech samples, narégly), - --,5,(1+ day’s high-end computers [13]-[15]. Moreover, there will
(m — 2)6) (note that one would obtai® samples fewer be relatively much cheaper digital signal processors (DSP's)
for a particular iteration as compared to the previous on@&gpable of yielding 3 GFLOPS performance in the near future
Eventually, one would obtair,,(1) at the end of thenth (0ne example is Texas Instruments TMS320C67x DSP [16]).
iteration.

Now we shall discuss the parameters that have to be VII. DEALING WITH COLORED NOISE

computed in the process of obtaining,(1). In fact, to |4 the previous sections, we have developed a speech en-
obtains; (1), -, 81 (1 + (m —1)6) from y(1), -, y(14+m8),  hancement method based on white-Gaussian-noise assumption.
one has to first compute the parametgrs, b1(n,pn,1) @nd  \when colored noise is encountered, it is expected that the
ar(n,k)forn=1,--- (1+(m—1)6+é)andk=1,---,4, enhancement method, as it is, will not perform as optimally
ando,,, forn=1,---,(1+(m—1)6 +62), based on the g in the case of white Gaussian noise. Here, we shall propose

parameter estimation methods outlined in Section VI-A. Noggscheme that enhances the performance of our method in the
that we have appended the subsctipb all the parameters to presence of colored noise.

indicate that these parameters would be obtained in the process
of carrying out the steps required for the first-iteration. Thg Overcoming Colored Noise

values of these parameters will have to be recomputed in all . A . .
QOur strategy is to “whiten” the noise before applying our

subsequent iterations and we shall make similar indications thancement method described in Section VI-C. and “undo

using appropriate subscripts. Subsequently, in a similar way, NN :
one has to first compute the parametgxs, bi(n ), and the whitening” after the enhancement process. The details are
ai(n, k) for n =1, (14 (m— )6+ 6 )7a{nék ’_p"1’1. T as follows. To begin, let us consider the additive noise model
aznd ;2 fOI’_n a 1, O (e i)<19 +62) ;] o’rder’ %) given by (1) wherewv(n) now denotegolored noisanstead of

bt .dﬁ’f%l’i “_1 () from &+ (1 AN |4 White Gaussian noise. The objective is to estimste) from
(() am(sbz( )17)')'6')7 ;;(r .Jrim; 1)6) from ;1 (1), -+ i1 (14 y(n). We first carry out AR modeling ofu(n)

m— (1 — 1 > 2.

Next, we shall describe how to obtaif,(2), the second

u

sample of then-iteration enhanced speech. In order to obtain w(n) = Z c(n, yw(n — 1) +v(n) (42)
$m(2), one has to go through the first, second,, (m — 1)th =t
iterations involving noisy speech samplgs), - - - ,y(2+mé), whereuv(n) is the output of a white Gaussian process,, ¢)'s

wherej = max(1,2 4+ mé(—6s + 1). Indeed, with the noisy are the filter coefficients and u is the filter order. Note that such
speech samples, one can compute the first-iteration enhangedodeling is commonly employed [7]-[9] and is appropriate
speech samplé; (2 + (m — 1)§), using the algorithm stated so long as the filter order is large enough. We then fijier)

in (23)—(37). Next, withs; (j),---,51(2+ (m — 1)§), where using thec(n,4)’s in the following way:

J = max(1, 24+(m—1)6—63+1), one can compute the second- w
iteration enhanced speech sam@lé€2 + (m — 2)4) [note that yr(n) = y(n) — Z c(n,d)y(n — 1) (43)
the first-iteration enhanced speech samplgg),-- -, §1(1 + im1

(m — 1)6) have been computed previously in the process of _ ) . .
computings,..(1)]. Eventually, one would obtaié,,(2) at the wherey(n) is the filtered signal. It ?an be easily shown that
; : yy(n) can be expressed as follows:

end of themth iteration.

Now we shall mentipn the parameters that have to be com- yr(n) = sp(n) + v(n) (44)
puted. Indeed, to obtaify (24 (m—1)6) from y(j),-- -, y(2+ _
mé) where j = max(1,2 + mé — 63 + 1), one has to first Wheres(n) = s(n) — Xj, ¢(n,1)s(n — 1) denotes a filtered
compute the parameters, 1,b1(n,pn1), and a;(n,k) for speech signal, andn) is the white Gaussian noise. Note that

n=(2+(m-15+6&)andk =1,---,q, ando?, ,, for s¢(n) itself fits well into our proposed speech model presented
n = (24 (m — 1)§ + 6,), based on the parameter estimatioff! Section Il. o .
methods outlined in Section VI-A. Similarly, to obtasn(2 + Now the problem of estimating(n) from y(n) is translated

(m — 1)6) from §;_1(j), -, §i_1(2 + (m — (i — 1))8) where into the problem of estimating;(n) from y(n). The main
j = max(1,2 + (m — (i — 1))§ — 63 + 1), and fori > 2 difference is that we are now dealing with white Gaussian

one has to first compute the parametexs, b;(n, p, 1), and 1This figure originates from the fact thedZ ults + Adds)*3 = (55,376 +
a;(n,k) forn = (24 (m — )6+ &) andk = 1,---,q, and 54865)"3 ~ 0.3 milion, where Mult; and Adds are the number of

5 for n — (2 +( _ ;)5 Iy ) multiplications and additions required by each iteration of Algorithm 2,
Tamn),i n= m t 2/ o and that three iterations are often enough to achieve enhanced speech with
The steps for obtaining,,(3), $,,(4), - - -, are similar to that reasonably good quality.
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noise instead of colored noise. Consequently, the enhancement :

method we have developed on the basis of white Gaussian [ noisy speech l
noise can be used to obtady(n), the MMSE estimate of

sp(n).

With §;(n), we can obtain an estimate sfn) by “inverse-
filtering” using the following recipe:

identify frames filtering
containing only
noise

compute filter
coefficients based

u

8(n) = e(n,i)3(n — i)+ 3(n) (45)

i=1 on those frames
- . . . . . estimate filtered
wheres(n) is the desired estimate, which is also the enhanced (clean) speech
speech signal. using our method

In a subsequent section (Section VIII-B), we shall demon- shown in Fig. |

strate that the proposed scheme work well with real-life noise
which is colored in nature.

Inverse filtering

B. Complete Colored-Noise Enhancement Procedure

Now we shall present the complete colored-noise enhance-
ment procedure, for which a block diagram is shown in Fig. 2.

. . . . . enhanced speech
Given a noisy speech (with colored noise), one has to first
identify the fra.mes which cqntam only D?Ise' Itis fo."oweq:ig. 2. Block diagram of the enhancement procedure we propose for tackling
by a computation of the estimates ¢fn,)’s, the AR filter giored noise.

coefficients of the colored noise based on those frames using

the Durbin—Levinson algorithm [12]. In this connection, the ) )
filter order we recommend is 16. On identification of segmen#@€ech signals are marked out through manual observation and

containing only noise, one may use a voice activity detectstening effort. Note also that we have removed the silent

[4]. However, for simplicity and consistency, we simply takéhtérvals in the speech signals before computing SEGSNR
the beginning 100 ms of the speech signals as the noise-ofifyce they could drastically affect its value.

segment in this study (the results obtained with such a simple

approach are quite reasonable). Next, the AR coefficiefts Case of White Gaussian Noise

estimated are used to computg(n), the filtered noisy speech  Here we are concerned with white Gaussian noise and since
according to (43). Subsequently, we apply the enhancement proposed model is developed on the basis of such noise,
method mentioned in Section VI-C to the filtered noisy speeghere is no necessity of noise whitening. But in the next

and obtains(n), the MMSE estimate of the filtered speectsubsection, whitening is necessary since it involves colored
signal. Finally, the desired enhanced speech signal is obtaifgfse.

from s;(n) according to (45). For the sake of predicting the best and worst performance
of our proposed method, we first consider two extreme cases.
VIIl. PERFORMANCE ASSESSMENTS One extreme case is that the time-varying parameters of the

We shall dd h ; fs eech model are estimated using the clean speech, which
e shall now address the performance assessment o ''shall refer to as theideal’ casé. Note that the methods

enhancement method. The test signals we use are 20 pho P'estimating the parameters are basically the same as those
cally balanced speech sentences, of which ten are produce hods mentioned in Section VI-A, except that 1) the clean

male speakers and ten by female, taken from the TIMIT spee ech, instead of the noisy one, is used as input, and 2) the

dat?(base [1710'1 The 5|gn|aI§, Wh'CE are (l)nglnalriy sampled_ &timation of theu(n, k)’s are carried out without “smoothing”

16 kHz, are downsampled to 8 kHz. Also, white Gaussiag cjean speech. (In contrast, we have recommended working
noise as well as automobile noise amounting to various valuss .« oothed version” of the noisy speech in Section VI-
(namely—5, 0, 5, and 10 dB) of signal-to-noise ratio (SNR QThe other extreme case is that the parameters are estimated

are considered. NOt? that the autom_obne noise 1S recor ng the noisy speech with only one iteration, which we shall
inside a slowly moving car (Hyundai Excel) with the air-

conditioner being switched on. For performance assessmen%;l’he “ideal” case serves as a possible “upperbound” for the performance
| bi . h SNR d ogﬁ(tur proposed enhancement method. Indeed, our enhancement method
we rely on objective measures, such as anad segmeiitains a parameter-estimation submodule. We would not want to assume

SNR (SEGSNR), spectrogram plots, and informal subjectidet the parameter-estimation methods we employ could yield the best possible
listening tests. The objective measures will first be Computg/gimates of the parameters concerned. On the other hand, we would expect

b d th h si | hol d th b etter estimates if more effective methods could be devised and employed,
ased on the speech signals as a whole, an en base in turn leads to better enhancement results. While we do not attempt to

only the voiced part of the speech signals (the motivatiafevise such better methods here, we assume that if the methods we employ
is that our proposed methods, unlike the existing methoWgre applied on clean speech instead of its noisy version, the estimates would

6119 K i id . f th iced h be better and this would result in higher SNR/SEGSNR figures. Consequently,
[ ]_[ ]' takes specific considerations of the voiced speec W& would like to take such figures as “upperbounds” for the performance of

addition to the unvoiced). Note that the voiced part of all th&ur proposed enhancement method.
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TABLE |
SNR’s AND SEGSNRs FOR THE ENHANCED SPEECH OBTAINED WITH THE AR-BASED METHOD AND OUR PROPOSEDMETHOD FOR TWO EXTREME
CAsES (SEe SecTioN VIII FOR ELABORATION), BASED ON ALL 20 SENTENCES NOTE THAT WHITE GAUSSIAN NOISE |s CONSIDERED HERE

SNR (dB) SEGSNR (dB)

Noisy speech -5 0 5 10 |-11.72}1 -6.73 | -1.71 | 3.29

Enhanced speech; AR-based

. -0.27 | 4.01 8.19 | 1245 | -6.98 | -2.70 | 1.48 5.68
method; baseline case

Enhanced speech; our proposed

. -0.10 | 4.38 876 | 13.09 | -6.82 | -2.39 | 1.96 | 6.25
method; baseline case

Enhanced speech; AR-based

. 492 | 734 | 1036 | 13.87 | 2.21 3.75 5.89 8.63
method; ideal case

Enhanced speech; our proposed

. 7.51 9.89 | 12.60 | 15.73 | 3.51 5.31 748 | 10.18
method; ideal case

TABLE I
SAME AS TABLE | EXCEPT THAT ONLY THE VOICED PART OF ALL 20 SENTENCESIS CONSIDERED NOTE THAT WHITE GAUSSIAN NOISE IS CONSIDERED HERE

SNR (dB) SEGSNR (dB)

Noisy speech -208 1 292 | 793 | 1294 | 488 | 0.14 | 514 | 10.15

Enhanced speech; AR-based

method; baseline case

193 | 593 | 993 | 1413 | -0.78 | 324 | 724 | 1141

Enhanced speech; our proposed

X 225 | 652 11079 | 1507 | -049 | 3.82 8.07 | 12.35
method; baseline case

Enhanced speech; AR-based

X 520 | 7.75 | 1098 | 1471 | 3.57 5.76 8.68 | 12.20
method; ideal case

Enhanced speech; our proposed 8.16

. 10.72 | 13.59 | 1690 | 6.09 848 | 11.26 | 1446
method; ideal case

call the “baseline” case. For comparison, we also consideur proposed method is consistently superior to the AR-based
the same two extreme cases for the AR-based method (whivkthod. Moreover, it is evident from Table IV that for voiced
is referred to as the Kalman-filtering method in [6] andpeech, our proposed method gives much better performance
the scalar-Kalman-filter method in [7]). Table | tabulates thi&an the AR-based method. On a separate note, observe that
SNR’s and SEGSNR's for the enhanced speech obtained wifi¢ best results are obtained with around three iterations, and
both methods for the two extreme cases, based on the enBR/SEGSNR decreases thereafter. Such phenomenon that
speech signals (i.e., with voiced, unvoiced and silence) of SNR/SEGSNR decreases after a fixed number (in this case
twenty sentences. Table Il is similar to Table | except that tiiaree) of iterations is also observed by Lim and Oppenheim
objective measures are computed based on only the voiced paktand Gibsonet al. [7].
of all twenty sentences. Both tables indicate that our proposed! Ni'd, we make a comparison among the enhanced speech
method is consistently superior to the AR-based method foptained with spectral subtraction [1], the AR-based method
the two extreme cases. at the third iteration, and our proposed method at the third
Second, we compare at various iterations the enhan 'Eed'ation (we choose the third iteration since it usually give;
speech obtained using the AR-based method with that obtai eec‘f‘,t results). Note that the formula for spectral subtraction is

using our proposed method. The comparison of our propos%&en by

method with the AR-based method can be done with Table I, (V. [K]2 = (Do KDV2, if |V[K]2 > | D[k
The table tabulates the SNR’s and SEGSNR's for the enhand&dl[*1l = { 0 ' ' 7 othe7rwise 1
speech obtained with both methods at the first to sixth itera- ’ (46)

tions, based on the entire speech signals of all 20 sentences.

(Note that the first iteration is identical to the “baseline” casghere |5, [k]|,|Y,[k]|, are |D,[k]| the rth-frame magnitude
mentioned earlier.) Table IV is similar to Table Il exceptpectra of enhanced speech, noisy speech and noise, respec-
that the objective measures are computed based on only tilkely. Note also that the noise spectra is estimated using
voiced part of all twenty sentences. Both tables indicate thibse segments of the noisy speech that contain only the
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TABLE I
SNR’s AND SEGSNRS FOR THE ENHANCED SPEECH OBTAINED WITH THE AR-BASED METHOD AND OUR PROPOSEDMETHOD AT
THE FIRST TO SIXTH ITERATIONS, BASED ON ALL 20 SENTENCES NOTE THAT WHITE GAUSSIAN NoISE |s CONSIDERED HERE

Iteration SNR (dB) SEGSNR (dB)
no.
Noisy speech -5 0 5 10 |-1172| -6.73 | -1.71 | 3.29
Enhanced speech; 1 -0.27 | 4.01 8.19 | 1245 | 698 | -2.70 | 1.48 5.68
AR-based method 2 2.95 6.06 | 944 | 1323 | 297 | 0.14 | 341 6.93
3 371 | 633 | 953 | 13.26 | 033 | 171 434 7.50
4 3.31 596 | 924 | 13.07 | 056 | 218 | 4.52 7.56
5 292 | 561 895 | 1287 | 0.78 | 218 | 440 | 7.44
6 263 | 534 | 871 | 12.68 | 0.66 196 | 4.18 7.21
Enhanced speech; ~0.10 | 4.38 876 | 13.09 | -6.82 | 239 | 1.96 6.25
our proposed 3.55 7.07 | 10.62 | 1429 | -2.67 | 0.79 4.24 7.8%
method 494 | 786 | 11.01 | 1445 | 0.12 | 260 | 5.39 8.50

481 764 | 1074 | 1420 | 105 | 3.09 5.58 8.51
442 7.23 | 1036 | 13.89 [ 0.83 2.70 5.19 8.15
4.04 6.85 | 10.07 | 13.64 [ 0.37 2.18 4.71 7.83

[« Y R S

TABLE IV
SAME AS TABLE Il EXCEPT THAT ONLY THE VOICED PART OF ALL 20 SENTENCESIS CoNSIDERED NOTE THAT WHITE GAUSSIAN NOISE IS CONSIDERED HERE

Iteration SNR (dB) SEGSNR (dB)
no.
Noisy speech -2.08 | 292 7.93 | 1294 | 488 | 0.14 5.14 | 10.15
Enhanced speech; 1 1.93 5.93 9.93 14.13 | -0.78 3.24 7.24 1141
AR-based method 2 392 | 690 | 1035 | 1430 | 1.75 4.58 7.86 | 11.68
3 4.04 6.80 | 1022 | 1423 | 2.39 | 4.68 7.80 | 11.63
4 3.54 6.40 9.95 14.08 2.01 4.33 7.53 1148
5 312 6.05 9.67 | 13.92 | 1.69 4,01 7.28 | 11.31
6 2.81 5.76 942 | 1374 | 145 374 705 | 11.14

225 652 | 10.79 | 15.07 [ -0.49 | 3.82 8.07 | 12.35
4.80 823 | 11.86 | 15.67 | 2.42 5.79 934 | 13.09
5.50 8.64 | 12.04 | 15.71 | 3.48 640 | 9.70 | 13.26
5.27 8.41 11.80 | 1554 | 3.34 6.27 9.59 | 13.18
4.87 8.04 | 1148 | 1531 ] 298 5.96 935 | 13.02
448 764 | 11.19 | 15.08 | 2.69 5.64 9.11 | 12.84

Enhanced speech;
our proposed
method

N B W N =

noise. Table V, which tabulates the SNR’s and SEGSNRspeech obtained with spectral subtraction, enhanced speech
for the enhanced speech obtained with the three methoditained with the AR-based method, and enhanced speech ob-
shows that our proposed method is consistently superiortgned with our proposed method. First, note that both Fig. 3(e)
the other two, and the SNR improvements over the AR-basgalir proposed method) and Fig. 3(d) (the AR-based method)
method, spectral subtraction and the original noisy speegppear much “cleaner” and more similar to Fig. 3(a) (the clean
are 1.2-1.5 dB, 1.7-4.1 dB, and 4.5-9.9 dB, respectivelpeech) than Fig. 3(c) (spectral subtraction). This indicates that
(As shown in Table IV, for the voiced part alone, the SNRur proposed method and the AR-based method are superior
improvement upon the AR-based method can attain up t® spectral subtraction. Second, the voiced part of speech in
2 dB.) Informal subjective listening tests which we hav€&ig. 3(e) appears “cleaner” than that in Fig. 3(d). Third, some
conducted also yield similar findings. In particular, undesirabigeak harmonics, which appear as parallel “stripes” in the clean
“musical” noise can be heard in the enhanced speech obtaisgéech [see Fig. 3(a)], are removed in the enhanced speech
with spectral subtraction, but not that obtained with oupbtained with spectral subtraction and the AR-based method
proposed method. Moreover, the enhanced speech obtaifss® Fig. 3(c) and (d)]. On the other hand, many of these weak
with our proposed method demonstrates clarity and naturalnbesmonics are still present in the enhanced speech obtained
whereas that obtained with the AR-based method souriigh our proposed method [see Fig. 3(e)].
somewhat distorted and occasionally muffled, especially for
voiced speech. )

Next, we compare the spectrograms of the enhanced speBctf-ase of Colored Noise
obtained with the three methods. Fig. 3 shows the spectro-Similar to the case of white Gaussian noise, we compare
grams of: the (original) clean speech, noisy speech, enhantieel various iterations of the enhanced speech obtained using
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Fig. 3. Spectrograms of (a) (original) clean speech, (b) noisy speech, (c) enhanced speech obtained with spectral subtraction, (d) enharstathedeech o
with the AR-based method, and (e) enhanced speech obtained with our proposed method.
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TABLE V
SNR’s AND SEGSNRS FOR THEENHANCED SPEECH OBTAINED WITH (@) SPECTRAL SUBTRACTION, (b) THE AR-BASED METHOD AT THE THIRD |ITERATION, AND
(c) OuR PROPOSEDMETHOD AT THE THIRD ITERATION, BASED ON ALL 20 SENTENCES NOTE THAT WHITE GAUSSIAN Noise |s CONSIDERED HERE

SNR (dB) SEGSNR (dB)

Noisy speech -5 0 5 10 |-11.72] -6.73 | -1.71 | 3.29

Enhanced speech; spectral

. -0.86 | 3.76 827 | 1272 | -7.62 | =3.02 | 147 5.88
subtraction

Enhanced speech; AR-based

371 6.33 9.53 | 13.26 | -0.33 | 1.71 434 | 7.50
method

Enhanced speech; our proposed

494 | 786 | 11.01 | 1445 0.12 | 260 | 539 | 8.50
method

TABLE VI
SNR’s AND SEGSNRS FOR THE ENHANCED SPEECH OBTAINED WITH THE AR-BASED METHOD AND OUR PROPOSED
MEeTHOD (BOTH WiTH COLORED NOISE CONSIDERATION) AT THE FIRST TO SIXTH ITERATIONS AND FOR THE IDEAL
CasE, BAsSED ON ALL 20 SENTENCES NoTE THAT CoLoRED (AuToMOBILE) Noise |s CONSIDERED HERE

Iteration no. SNR (dB) SEGSNR (dB)
Noisy speech -5 0 5 10 |-11.67| -6.67 | -1.67 | 3.34
Enhanced speech; |1 (baseline)| —1.13 | 3.07 734 | 11.76 | -7.78 | -3.60 | 0.62 497
AR-based method 2 1.12 4.46 820 | 1230 | 480 | -1.56 | 1.95 5.83
3 2.01 4.93 845 | 1246 | -2.70 | -0.24 | 2.78 6.36
4 2.28 5.07 853 | 1249 [ -1.41 | 0.56 3.25 6.63
5 2.40 5.17 858 | 12.51 | -0.76 | 0.96 3.46 6.73
6 2.48 522 8.60 | 1252 | -0.56 | 1.08 3.53 6.76

Ideal 3.49 6.06 925 | 1298 | 040 1.99 4.30 7.33

Enhanced speech; |1 (baseline}| -0.29 | 4.11 8.33 12.53 | -7.03 | -2.65 1.58 5.79

our proposed 2 293 6.33 970 | 1335 | -3.39 | 0.02 3.39 6.99
method 3 4.29 7.07 10.09 | 1356 | =090 | 1.67 4.46 7.68
4 457 | 7.18 | 10.12 | 13.56 | 033 | 243 | 491 7.97
5 447 | 7.05 | 10.00 | 1348 | 0.63 | 256 | 499 | 8.01
6 435 | 690 | 9.86 | 1337 | 070 | 265 | 5.01 7.94

Ideal 834 | 1049 | 12.85 | 1560 | 4.65 6.32 828 | 10.59

the AR-based method with that obtained using our propossgeech amounting to 1.1-2.3 dB, 0-4.1 dB, and 3.6-9.3 dB,
method, both with colored-noise consideration. The whiteningspectively.

preprocessing scheme we propose in Section VII will be We have also conducted informal subjective listening tests
applied to both our proposed method and the AR-bastmt the colored noise case. Indeed, we have invited ten listeners
method. In addition, both the two extreme cases (the “baselingith speech processing experience to assess the quality of
case and the “ideal” case as mentioned in the preceditigg enhanced speech obtained with our proposed method,
subsection) will be considered. Table VI tabulates the SNRad that with the AR-based method as well as that with
and SEGSNR'’s for the enhanced speech obtained with bsfectral subtraction. All listeners found the enhanced speech
methods at the 1st to 6th iterations and also for the “baselinelitained with spectral subtraction quite annoying (we think
and “ideal” cases (note that the results of the 1st iteratidnis due to “musical” noise), but not those obtained with
are identical to those of the “baseline” case). Note that tilee AR-based method and our proposed method. As to the
results are computed using all twenty sentences mentiormamparison between the AR-based method and our method,
in the first paragraph of Section VIII. We also compare oweven out of the ten listeners prefer the enhanced speech
method with spectral subtraction. Indeed, Table VIl is similaybtained with the latter. Our own assessment is that it is mainly
to Table V except here the colored noise, which is recordéde to the relative clarity of the voiced speech obtained with
in close proximity of an automobile with both engine and aimur method.

conditioner being turned on, is considered instead of white Before we end this section, we shall demonstrate that our
Gaussian noise. Both Tables VI and VII indicate that oyroposed scheme for tackling colored noise is indeed effective.
proposed method is consistently superior to the AR-base&able VIII shows the results of our method based on white-
method and spectral subtraction. Moreover, Table VII showZaussian-noise assumption and our method with colored-noise
that our method has led to SNR improvements over tle@nsideration (both at the third iteration). It is obvious that the
AR-based method, spectral subtraction and the original noigyter perform significantly better.
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TABLE VII
SNR’s AND SEGSNRS FOR THE ENHANCED SPEECH OBTAINED WITH (@) SPECTRAL SUBTRACTION, (b) THE AR-BASED METHOD WITH
CoLORED-NOISE CONSIDERATION AT THE THIRD |ITERATION, AND (C) OUR PROPOSEDMETHOD WITH COLORED-NOISE CONSIDERATION
AT THE THIRD ITERATION, BASED ONALL 20 SENTENCES NOTE THAT COLORED (AUTOMOBILE) NoOISE IS CONSIDERED HERE

SNR (dB) SEGSNR (dB)
Noisy speech -5 0 5 10 |[-11.67} -6.67 | -1.67 | 3.34
Enhanced speech; spectral 020 | 483 | 936 | 1353 | =630 | -1.72 | 276 | 7.23

subtraction

Enhanced speech; AR-based

2.01 4.93 845 | 1246 | =270 | -0.24 | 2.78 6.36
method

Enhanced speech; our proposed | o9 | 707 | 1009 | 13.56 | -0.90 | 1.67 | 446 | 768
method

TABLE VIII
SNR'’s AND SEGSNRS FOR THE ENHANCED SPEECH OBTAINED WITH (&) QUR PROPOSEDMETHOD BASED ON WHITE-GAUSSIAN-NOISE
ASSUMPTION AT THE THIRD ITERATION, AND (b) OUR PROPOSEDMETHOD WITH COLORED-NOISE CONSIDERATION AT THE
THIRD ITERATION, BASED ON ALL 20 SENTENCES NOTE THAT CoLORED (AUTOMOBILE) NOISE |s CONSIDERED HERE

SNR (dB) SEGSNR (dB)

Noisy speech -5 0 5 10 |-11.67| —6.67 | -1.67 | 3.34

Enhanced speech; our proposed
method based on white-Gaussian | —3.32 | 0.99 540 | 1003 | -9.35 [ -5.10 | —0.72 | 3.88

noise assumption

Enhanced speech; our proposed
method with colored-noise 4.29 7.07 | 10.09 | 13.56 | -0.90 | 1.67 4.46 7.68

consideration

IX. CONCLUSION employed for this work, or uses later/better parameter estima-

We have developed an effective speech enhancemifif methods such as those proposed byg8istet al. [8] and
method based on a speech model that satisfactorily descrif? no,tet al.. [9]. On a separate note, the mod.ell parameter
voiced and unvoiced speech and silence. We have a ,k)'s, which denote the adaptive filter coefficients, have

reformulated the model equations to facilitate the applicati(?hgreat influence on the quaIity/inteIIigibi!ity .Of the enhaqced
of the well-established Kalman filter. In addition, we havgpeech. Therefore, methods capable of yielding good estimates

addressed the computation issue and obtained an eﬁicig%q(n’k) s, such as that proposed by Hansen and Clements

. . . . can potentially lead to better enhancement results.
algorithm for computing the optimal estimate of the cleal o .
. Second, further reduction in the computational cost of the
speech in the MMSE sense. We went on to present the

methods we use for estimating the model parameters rg posed method can be achieved by exploiting the fact
g the b X Nt human speech is often quite stationary in a reasonably
the scheme we propose for tackling colored noise, a Ha

ort period. As a matter of fact, during such a short pe-
conduct performance assessments of our enhancement met

Althouah th ‘ " ducted indi ; the model parameters are practically constant and so
oug € periormance assessments conducted In |ca§% e computationally efficient methods specially developed

that our enhancement me_tho_d ylel_ded co_n_3|stently go%jr Kalman filter with constant parameters (interested readers
performance, further scrutinization using additional real d ase refer to [11] for details) can be considered. Furthermore,
as well as formal Iist_ening or intelligibility .tests will bethe model parameters need to be estimated only once (in
necessary before making a concrete conclusion. contrast, they are estimated as many times as the number of

For further research work, we suggest investigating ™o, mples during the short period under consideration). As a

issues, namely 1) using more sophisticated methods for Parg@syl, the computational cost is relatively lower.
eter estimation, and 2) further reducing the computational cost.

We shall elaborate these issues in the next few paragraphs.

First, since estimation of model parameters from noisy APPENDIX A
(speech) signal is not the main issue of this paper, we have PROOF OF THEOREM 1
relied on some reasonable (existing) methods for parameteOur strategy is to exploit the sparsity of some matrices
estimation. Better enhancement results could be expectedhiit appear in Algorithm 1. Basically, the approach we adopt
one fine-tunes the parameter estimation methods that we hasvéo analyze each step of Algorithm 1, identify redundant
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computations/assignments (which originate from the sparsBybsequently, it can be easily shown that (50)—(53) are
of matrices), remove these redundancies and then show thativalent to (31)—(34), by using the relationships among
the remaining (i.e., those that are not redundant) COMPUR:1; Gn,2: In,3: @ 45 9n 50 @1, @ 2» AN Q,, 5. Finally, it

tions/assignments are exactly identical to those of Algorithman be easily shown that the last 2 steps [i.e., (18) and (19)]
2. Note that the proof of this theorem requires two lemmad Algorithm 1 are equivalent to the last three steps [i.e.,

and they are stated in Appendix B. (35)—(37)] of Algorithm 2. This completes the proof. =
The first two steps [i.e., (13) and (14)] of Algorithm 1
are clearly equivalent to the first two steps [i.e., (21) and APPENDIX B

(22)] of Algorithm 2. Next, (15) involves computation of the
matrix Q,,. By Lemma 1 (see Appendix B), computiig, is
equivalent to computing its submatrios ;, Q,, », and@,, 5.

We shall now state two lemmas, the proofs of which are
quite straightforward and thus omitted.

) . Lemma 1: Equation (15) is equivalent to the three equa-
Smce_ the formulae _[(47)_(49)] for computn@n?l,Qn?Q,_ and tions, (47) (49) shown at the bottom of the page, where
Q,, 5 involve the variables,,_1, f,,_;, andg,,, these variables —1,1),- - aln—1Lg)T, f [

? ? sdn—1— n 1L .

have to be computed first, and it is done in (23)—(25). Novxra L +P i 2[ 1] andg = P [ pa]b(ns o)
since @, \[2 : 7, 1.] - f"*%[l. :r —1] and f,,_, has already Lemma 2: Consider (16) and (17).7 First, (16) is equivalent
been computed in (24), it is redundant to comp@e, [2 to the following equation:

7, 1]. Similarly, it is redundant to compu®,, ;[1,2 : 7]. Next '
since@,,1[2: 72 :7] = Ppg [1:r—11:7—1]it Q. - <Qn71[:,1] )(Q L]+ 02) (50)

is redundant to comput€,, ;[2 : 7,2 : 7] since P,, ; 1[1 Q.17

r—1,1:7— 1] will have been computed in the previous (i.e. : . : )
(n— 1)th) iteration of the Algorithm 2. Consequently, it is notSecond, (17) is equivalent to the three equations that follow:

necessary to compute the whole mat@y ;—only @, ;[1, 1] Po.1=Q,,-Gu[1:7]Q, [ 117, (51)
needs to be computed. Note that the computatio,of 1, 1] Pos=0Q,,— Gu[1:7]Q, L, ] (52)
is done in (26) wherey,,; = @, [1,1]. " ’ "

Next, sinceQ,, ,[2:7,2:p] = Pp_1p[1:r—1,1:p—1], Py =Qns— Gulr+1:7+p]Q, (1,1 (53)
it is redundant to comput@,, ,[2 : 7,2 : p] since P,, 1 2[1
r — 1,1 : p — 1] will have been computed in the previous APPENDIX C

iteration of Algorithm 2. Consequently, it is not necessary to The objective of this appendix is to derive the minimum
compute the whole matrig,, ,—only @, »[1,1],@Q,, 5[1,2 : number of future speech samples that one will make use of
p], and @,, »[2 : 7, 1] need to be computed. Note that thén order to obtain the enhanced speech with our method. Let
computation of these three terms are done in (27), (29), ansl consider a particular speech samglén), which is the
(30), whereg, 2 = @Q,,5[1,1],q,, = @, 5[1.2 : p|", and nth sample of the first-iteration enhanced speech. Next, let
g5 = Q.52 :71] us assume that to compufe(n), the noisy speech samples
For @, 3, since @, 512 : p,1] = g,[1 : p — 1] and involved arey(1),---,y(n+ &), whereé is a positive integer
g, has already been computed in (25), it is redundant e shall determine. Now recall that the computatiors gfn)
compute@,, 5[2 : p,1]. Similarly, it is redundant to computeis done using (37), which requires the knowledge of the
Q, 3[1,2 : p]. Next, sinceQ, 5[2 : p,2 : p| = Pr13[1 : vectori, 1. To computez, .41, we need to carry out
p—1,1:p—1], itis redundant to comput@, ;[2: p,2: p| computations based on (23)—(36). In this connection, it can
sinceP,_1 3[1:p—1,1:p— 1] will have been computed in be verified that such computations require the knowledge
the previous iteration of Algorithm 2. Consequently, it is nodf y(n + 7), ptayrt1), 8(n + 7 + 1, pngrt1y), a(n + 7, k)

necessary to compute the whole ma@}y ;—only @, ;[1,1] for k¥ = 1,-.-,¢, and 03(n+7+1). As a matter of fact, it
needs to be computed. Note that the computatio,0§[1,1] is the computations of the parametqr@JrTJrl), bin + 7+
is done in (28) wherey,, 3 = Q,, 5[1,1]. 1, P(ntr+1)); a(n + 7, k), and O—d(n—l—‘r-l—l) that involve future

The next two steps [i.e., (16) and (17)] of Algorithmnoisy speech samples.
1 involve the computation ofF, and P,. By Lemma 2 (In order to follow the subsequent arguments, it is beneficial
(see Appendix B), computing these 2 terms is equivaletd be familiar with the methods for computing the parameters
to computing G,,, P, 1, P, 2, and P, 3, using (50)—(53). are described in Section VI-A.) For the first and second

Q _ a’Z—l(fnfl[l : Q] + Pn—l,Q[l - q, 1]) +Pn—1,3[17 1] fnfl[l = 1]T (47)
ml Joil:r—1] P, [1:r—1,1:7—1]
Q _ (ari;_an—l,Q[]- : (Lpn] + Pn—1,3[17pn])b(n7pn) ari;_an—l,Q[]- - q, 1 P 1] +Pn—1,3[17 1 B 1] (48)
™2 Pn—l,2[1 T 17pn]b(n7pn) Pn—l,2[1 LT 17 1 P 1]
_ gn[pn]b(nvpn) + 03{(71) gn(l P 1]T
Qn,3_< gn[lp—l] Pn—1,3[1 Ip—].,]. p_].] (49)
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parameterg 4,41y andb(n + 7 + 1, piryr41)), it is quite  [9] S. Gannot, D. Burshtein, and E. Weinstein, “Iterative-batch and sequen-

clear that the computations require future samples up to U@ allgzigthlrgi;orsingle microphone speech enhancemeRaSSP'97
pp. — .

y(n + 7+ 1+ 128), assuming_ 8-kHz samp_li_ng rate. FOf10] R. E. Kalman, “A new approach to linear filtering and prediction
the third parametern(n + 7, k), it can be verified that the problems,”J. Basic Eng., Trans. ASMESer. D, vol. 82, pp. 35-45,

i i Mar. 1960.
compu_ta’_[lon requires future samples upy(m + T+ 128+ [%1] B. D. O. Anderson and J. B. Moor&®ptimal Filtering Englewood
160) (it involves more future samples mainly because of ~ ciifts, NJ: Prentice-Hall, 1979.
the “smoothing process” as discussed in Section VI-A). F6¥2] L. R. Rabiner and R. W. Schafebjgital Processing of Speech Signals

2 ; e Englewood Cliffs, NJ: Prentice-Hall, 1978.
the fourth parametebd(n+‘r+l)’ it can be verified that the [13] http://www.hpc.comp.nec.co.jp/sx-e/Products/sx-4b.html.

computation requires the knowledge abautr + 7 + 1 +  [14] http://www.digital.com/info/hpc/systems/systems.html.

[15] http://www.hp.com/hpwebcat/ch_gsumm.html.
32)’p(N+T+1+32)’ b(n+7+1+32, p(n+7+1+32))’ anda(n + [16] http://www.ti.com/sc/docs/dsps/products/c67x/index.htm.

T4+1+432,k)fork=1,---,¢, and it is the computation of [17] National Institute of Standards and Technology (NISTARPA TIMIT
a(n + 7+ 1+ 32, k) that requires a sample that is most into gc?uig%sdPhonetic Continuous Speech CorpliST Speech Disc 1-1.1,
. CL. .
the fUture:_ i.e.y(n + T+ 1+ 32+ 128 + 160). [18] J. H. L. Hansen and M. A. Clements, “Constrained iterative speech
Comparing the requirement of future samples for the above enhancement with application to speech recognitiofEE Trans.

computations—computations Qf(n+r+1) and b(n 4+ 4+ Signal Processingvol. 39, pp. 795-805, Apr. 1991.
1, P(ntr+1)) iINVOlve up toy(n +74-14-128); computation of
a(n+ 7, k) involves up toy(n + 7 + 128 + 160); computation

9 . .
F’f Ta(ntr+1) involves up toy(n+7 + 1_+ 32+ 128 +160)—it _ Zenton Gohwas born in Singapore. He received the
is clear that the maximum delay is incurred on computatic B.Sc. degree (with first class honors) in mathematics

2 i i from the National University of Singapore in 1992.
of Td(ntr41) which amounts to 421 samples (recall that il From 1993 to 1996, he was with DSO National
Section VI-B, we have chosen= 100). Therefore,r = 421, Laboratories, Singapore. Since August 1996, he has
and this translates to 52.625 ms in time. been with the Center for Signal Processing (CSP),

; - Nanyang Technological University, Singapore. He

. Th_e above delay that W_e ha\{e W(_)rkEd out is for the fl_r' is currently a program manager for the voice based
iteration. For the second iteration, it can be shown, usir biometrics program of CSP. His research interests
similar arguments, that it involves the first-iteration enhance are in speech processing, especially speech enhance-
speech up to the same number of future samples. So the totg] - . .o recipime“t' and array signal processing.

. . . . . ent of the Singapore National Academy of Science
delay for computing the first and second iterations is 52.62&ard in 1991, Tan Siak Kew Gold Medal in 1990 and 1991, Lijen Industrial
x 2 ms. Based on the similar arguments, one can arrive R@velepment Medal in 1992, Toh Chin Chye Book Prize in 1989, Sugar
52.625m ms total delay form iterations. :Qdfgsgg of Singapore Book Prize in 1989, and Lim Soo Peng Book Prize
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