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Linear Dependence of Steering Vectors
Associated with Tripole Arrays
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Abstract—We are concerned with the linear independence of
steering vectors associated with tripoles, each of which provides
measurements of the three components of electric field induced
by electromagnetic signals. We first establish that for a single
tripole, any steering vector is linearly dependent on at least one
other steering vector corresponding to a different direction-of-
arrival (DOA) for a general problem where signals may arrive
from anywhere in a three-dimensional (3-D) space, but every two
steering vectors with distinct DOA’s are linearly independent if
the signals are nonlinearly polarized and arrive from a strictly
hemispherical space. We then obtain a series of upper bounds for
the number of linearly independent steering vectors associated
with a tripole array with general sensor configurations. We also
show that for applications where signals are known to be linearly
polarized in the same direction, the ability to estimate DOA’s
using a tripole array is identical to that using a scalar-sensor
array if both of them have identical sensor configurations.

Index Terms—Array signal processing, direction of arrival
estimation.

I. INTRODUCTION

ONE main objective of array signal processing is esti-
mating the directions-of-arrival (DOA’s) of narrow-band

electromagnetic (EM) waves. As a matter of fact, many
existing DOA-estimation systems are developed based on an
array of scalar sensors, each of which provides measurements
of only one component of the electric field induced at the
sensor. For such systems, it is the phase delays of signals
received at the sensors that provide the necessary information
for DOA estimation.

In recent years, researchers have proposed the use of sensors
that provide measurements of more than one component
of electric/magnetic field, for example, EM vector sensors
[1]–[8], for DOA estimation. An EM vector sensor provides
measurements of the three components of electric field and
three components of magnetic field. The measurements ob-
tained with such sensors contain polarization information of
the signals impinging on the array in addition to phase delay
information. Since the DOA and polarization of an EM signal
(assuming a planewave) are closely related, one can expect
a better DOA estimation performance with the use of such
sensors. Indeed, Nehorai and Paldi [1] have demonstrated, via
an explicit evaluation of the Cram´er–Rao bound, that superior
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DOA estimates can be obtained with EM vector sensors.
Moreover, Tanet al. [2] (see also [3]–[5]) have established that
with just one EM vector sensor, one can determine uniquely
the DOA’s of two uncorrelated EM signals, in general, or
three uncorrelated signals if they are skywaves. In comparison,
one would need four appropriately spaced scalar sensors to
determine uniquely the DOA of even one signal.

A shortcoming of EM vector sensor is its high implementa-
tion cost and complexity. Indeed, it requires appreciable design
effort to ensure that the measurements of the electric field
and those of magnetic field are effectively independent of
one another. In addition, it is a nontrivial task to develop
EM vector sensors with adequate sensitivity for sufficient
long-range applications.

A good compromise between scalar sensor and EM vec-
tor sensor is one which provides measurements of only the
three components of electric field, commonly referred to as
tripole. As a matter of fact, tripole measurements provide
some polarization information that scalar sensor measurements
lack. In addition, considerable reduction in implementation
cost/complexity can be expected because the complications
due to simultaneously measuring the electric and magnetic
fields are absent. Therefore, it is of both theoretical interest
and practical importance to investigate DOA estimation using
tripoles. In this connection, we are aware of the work carried
out by Compton [11] on the use of tripoles for interference
rejection, a subject related to DOA estimation. We shall discuss
his findings in relation to ours in more detail.

In this work, we focus on the linear independence of steering
vectors associated with a tripole array, an issue very closely
related to that of the number of signals whose DOA’s are
uniquely determinable. We shall not discuss the relationship
here, but refer interested readers to [4],[5], [9], and [10]. We
first establish that for a single tripole, any steering vector
is linearly dependent on at least one other steering vector
corresponding to a different DOA in the general case where
signals may arrive from anywhere in a three-dimensional (3-
D) space, but every two steering vectors with distinct DOA’s
are linearly independent if the signals are nonlinearly polarized
and arrive from a strictly hemispherical space. We then obtain
a series of upper bounds for the number of linearly independent
steering vectors associated with a tripole array with general
sensor configurations. We also show that for applications
where signals are known to be linearly polarized in the same
direction, the ability to estimate DOA’s using a tripole array
is identical to that using a scalar-sensor array if both of them
have identical sensor configurations. (The main idea of the
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Fig. 1. The azimuth� and the elevation of the DOA of a signal in the
Cartesian coordinate system.

paper has been presented in [12] and the detailed derivations
are provided here.)

II. DATA MODEL AND PRELIMINARY DISCUSSION

Consider narrow-band plane EM waves impinging on an
array of tripoles and assume that the waves are completely
polarized and travel in a nonconductive, homogeneous, and
isotropic medium. We set up a Cartesian coordinate system
with the origin colocated with the reference sensor and each
of the axes coinciding with a component of the electric field
being measurable by the tripoles. Let for

, be the coordinate of theth sensor (the coordinate
of the first sensor is ), the frequency of the signals,

, and , respectively, the azimuth and elevation of theth
signal (see Fig. 1), and and the polarization parameters
commonly referred to as the orientation and ellipticity angles
(see [1] for a more detailed description). Then the phasor
measurement of the array of tripoles is given by

where is a 3 1 complex vector containing measure-
ments recorded with the tripole array at timeand is the
corresponding noise in the measurement

, , and “ ” are, respectively, the Kronecker product oper-
ator, the dot product operator, and the transpose operator and

, for . Note that and

are, respectively, the three-component measurements
of the electric field and the corresponding noise components
at the th sensor at time. The symbol is the differential
delay of the th signal at the th sensor with respect to the
reference sensor, is the velocity of wave propagation, and
the th entry of the vector is the complex envelope
of the th signal at time . The vector is commonly
referred to as thesteering vector (corresponding to the th
signal with DOA-cum-polarization parameter) of thetripole
array. It is beneficial to note that if one replaces each of
the tripoles with a scalar sensor, then will be the
steering vector of the scalar-sensor array. The two columns
of are orthogonal vectors that span the same plane
as the electric and magnetic field vectors of theth signal
and the vector is the unit vector pointing toward
the DOA . Here, we shall consider falling within

and within , meaning that the signals
can come from any direction in a 3-D space. The ranges
of the polarization parameters are ,

.

III. L INEAR INDEPENDENCE OFSTEERING

VECTORS OF ASINGLE TRIPOLE

A relevant result has been obtained by Compton [11], who
investigated the performance of a single tripole in rejecting an
interference in the presence of a desired signal. He showed
that the performance is dependent on a measure called signal-
to-interference-plus-noise ratio (SINR):

SINR (1)

where “ ” is the Hermitian operator ,
, , and are some nonnegative constants, is

the strength of noise, , and denote the DOA-cum-
polarization parameters of the desired and interference signals,
respectively, and is the steering
vector (of a single tripole) corresponding to. The ability to
reject interference is poorest when the value of SINR is at its
minimum.

Interestingly enough, the value ofSINRis closely dependent
on the linear dependence of , the steering vector associ-
ated with the desired signal, and , that of the interference.
Indeed, the following lemma yields one of these relationships.

Lemma 1: The value of SINR (as defined in (1)) is at
its minimum if and only if the steering vectors

and
associated with a single tripole are linearly dependent.

Proof: See Appendix A.
Remark: For ease of comparison with our results, we shall

state Compton’s results in terms of linear dependence of
and instead of his original statement of SINR attaining
its minimum value.

Before discussing Compton’s results, we shall state three
relevant definitions.

Definition 1 (R. T. Compton [11]):Let and
be the polarization parameters of two signals. Then the
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two signals are said to haveconjugate polarizationsif the
following two conditions are satisfied:

1) ;
2) if .

Definition 2: Let and be
the DOA-cum-polarization parameters of two signals. Then
the two signals are said to belinearly polarized with parallel
electric fieldif the following two conditions are satisfied:

1) ;
2) .

Remark: Physically, the first condition indicates that the
two signals are linearly polarized (see [1] for a detailed
description of ellipticity angle). Note that it can be shown
that for a linearly polarized signal with DOA-cum-polarization
parameter , the vector is point-
ing in the same direction as the electric field vector of the
signal. Thus, the second condition means that the electric fields
induced by the two linearly polarized signals at the tripole
array are parallel.

Definition 3: Let and be the DOA’s of
two signals. Then the two signals are said to be ofopposite
DOA’s if .

Remark: Note that if and only if
the following two conditions are satisfied:

1) ;
2) if , .

Theorem 1 (Compton [11]):Consider a desired signal with
steering vector and an inter-
ference signal with steering vector

, impinging on a single tripole and suppose the DOA’s
of the signals are distinct (i.e., ). Then

and are linearly dependent if any one of the
following conditions is satisfied

1) the two signals are of opposite DOA’s with conjugate
polarizations;

2) the two signals are linearly polarized with parallel
electric field.

Remarks:

1) An interpretation of Theorem 1 is that if there is no
constraint on the DOA’s of signals (i.e.,
and ), then with a single tripole, a
steering vector with any DOA-cum-polarization param-
eter is linearly dependent on at least one other steering
vector corresponding to a different DOA. This implies
that one cannot determine uniquely the DOA of even
one signal with a single tripole, regardless of the DOA
and polarization of the signal.

2) Since the earth is approximately a conductor, ground-
waves are practically linearly polarized with electric
fields perpendicular to the earth surface. Consequently,
an implication of Theorem 1 is that it is never possible
to determine uniquely the DOA of a groundwave.

Conditions 1) and 2) of Theorem 1 are sufficient conditions
for two steering vectors (with distinct DOA’s) to be linearly
dependent. The immediate question of concern is whether
there are other conditions that can lead to being linearly

dependent on . If there are many more, then the appli-
cability of a single tripole will be limited. In this connection,
we establish the following theorem.

Theorem 2: Consider a desired signal with steering vector
and an interference signal

with steering vector impinging
on a single tripole and suppose the DOA’s of the signals are
distinct. Then and are linearly dependentif and
only if any one of the following conditions is satisfied:

1) the two signals are of opposite DOA’s with conjugate
polarizations;

2) the two signals are linearly polarized with parallel
electric field.

Proof: See Appendix B.
Remarks:

1) Theorem 2 means that the sufficient conditions estab-
lished in [11] are, in fact, necessary. This implies that
it is generally rare to encounter situations where
and are linearly dependent.

2) Consider estimating the DOA’s of skywaves with a
ground-based tripole. Since the signals strictly arrive
from the upper hemisphere of the ground plane con-
taining the tripole, the allowable range of the DOA’s
are and . This implies
that Condition 1) of Theorem 2 will not be satisfied.
Moreover, skywave is unlikely to be linearly polarized
since each reflection from the ionosphere will cause a
change in polarization. Consequently, Condition 2) is
satisfied only for some sets of DOA-cum-polarization
parameters with measure zero. Effectively, the above
two arguments imply that every two steering vectors are
linearly independent, except for some sets of DOA-cum-
polarization parameters with measure zero and, thus, one
can determine uniquely the DOA of one skywave for
virtually all cases in practice.

IV. UPPERBOUNDS FOR THENUMBER OF LINEARLY

INDEPENDENT STEERING VECTORS OFTRIPOLE ARRAYS

Here we shall establish some upper bounds for the number
of linearly independent steering vectors of tripole arrays with
general sensor configurations. We first establish a theorem
which relates linear dependence of steering vectors of a tripole
array to those of a scalar-sensor array having the same sensor
configuration as that of the tripole array.

Theorem 3: Consider an -tripole array and
distinct DOA’s , . If the

signals are all linearly polarized with parallel electric field,
then

Proof: See Appendix C.
Remarks:

1) is the steering vector of the tripole array for the
signal arriving from and by replacing each of
the tripoles with a scalar sensor, the steering vector will
become .
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2) Since groundwaves are all linearly polarized in the
direction normal to the ground plane, Theorem 3 means
that the identifiability of a tripole array for groundwaves
is identical to that of a scalar-sensor array if both of them
have identical sensor configurations. On the other hand,
since skywaves are unlikely to be linearly polarized, this
problem does not exist for scenarios involving skywaves.

Corollary 1: Consider an -tripole array, where .
Then any steering vectors corresponding to
signals, which are linearly polarized with parallel electric field,
are linearly dependent.

Corollary 2: Consider an -tripole array, where .
Then any steering vectors, corresponding to linearly
polarized signals with electric fields all parallel to the line
joining two of the sensors, are linearly dependent.

Proof of Corollary 2: See Appendix D.
Remarks of the Corollaries:

1) It is immediate from Corollary 1 that one cannot de-
termine uniquely the DOA’s of uncorrelated ground-
waves with an -tripole array, regardless of the sensor
configuration, although the array actually provides-
dimensional measurements.

2) Corollary 2 suggests that on estimating the DOA’s of
groundwaves, one should not arrange the sensors such
that there exist two sensors with the line joining them
being perpendicular to the ground plane.

Next, we shall establish a theorem that yields a hint as to
the identifiability limit of a tripole array.

Theorem 4: Given any steering vectors of an -
tripole array, then for any DOA there exists a steering vector
which is linearly dependent on the steering vectors.

Proof: See Appendix E.
Remark: It follows from Theorem 4 that when there are

signals impinging on a -tripole array, there exists
a steering vector corresponding to an arbitrary DOA that in-
tersects the signal subspace (the space spanned by the steering
vectors of the signals). Thus, estimating the DOA’s
of signals with an -tripole array, using subspace
methods such as MUSIC [13], is impossible. In particular,
for a single tripole (i.e., ), it is always impossible to
estimate the DOA’s of two signals using subspace methods.
(It is interesting to note that it has been established in [2] that
with a single EM vector sensor, one can determine uniquely
the DOA’s of three uncorrelated skywaves.)

Next, we shall establish a theorem which provides an insight
into estimation of signals with -tripole arrays, where

denotes the integer part of.
Theorem 5: Consider an -tripole array and

signals with arbitrary DOA’s ,
that are distinct. Then, there is a set of polarizations

associated with the signals
such that the steering vectors are
linearly dependent.

Proof: See Appendix F.
Remark: It follows from Theorem 5 that with an -tripole

array, it is not always possible to estimate uniquely the DOA’s
of signals.

Before we end this section, we shall highlight the main
differences among the four upper bounds that we have estab-
lished in this section. The two bounds given by Corollaries
1 and 2 of Theorem 3 are applicable to cases where the
DOA’s of the signals are all linearly polarized with parallel
electric fields. One practical application is estimating the
DOA’s of groundwaves with ground-based tripole array. On
the other hand, the bound given by Theorem 4 is applicable for
signals with arbitrary DOA’s and polarizations, whereas that
by Theorem 5 is applicable for signals with arbitrary DOA’s
but specific polarizations.

V. CONCLUDING REMARKS

We have shown that the sufficient conditions established by
Compton [11] for two steering vectors of a single tripole to be
linearly dependent are, in fact, necessary. We have also shown
that any steering vector is linearly dependent on at least one
other steering vector corresponding to a different DOA for
a general problem where signals may arrive from anywhere
in a 3-D space, but every two steering vectors with distinct
DOA’s are linearly independent if the signals are nonlinearly
polarized and arrive from a strictly hemispherical space. This
implies that for a single tripole, the DOA of a signal can be
uniquely determined if the signals are nonlinearly polarized
and arrive from a strictly hemispherical space, but not from
anywhere in a 3-D space. In addition, we have shown that it
is impossible to determine uniquely the DOA’s of two signals
with a single tripole.

We have also obtained four upper bounds for the number of
linearly independent steering vectors associated with a tripole
array with general sensor configurations. These bounds are
potentially useful for determining the maximum number of
signals whose DOA’s can be uniquely identified with such an
array. Moreover, for scenarios involving the estimation of the
DOA’s of linearly polarized signals with parallel electric field,
we have established that the ability to identify DOA’s using a
tripole array is identical to that using a scalar-sensor array if
both of them have identical sensor configurations. This then
enables one to obtain more insight into the identifiability of
tripole arrays using the results that have been established for
scalar-sensor arrays (see [14]–[17]).

APPENDIX A
PROOF OF LEMMA 1

It is easy to see from (1) that SINR reaches its minimum if
and only if reaches its maximum. Therefore,
what we need to show here is that reaches its
maximum if and only if for some constant.

Let and be two orthonormal vectors lying in the null
space of . Then the vectors , and are mutually
orthonormal vectors that span the 3-D space for which
is in. Consequently, we can write

(A.1)

for some complex constants, , and . Since , ,
and are mutually orthogonal vectors, we obtain from (A.1)
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that

(A.2)

Since , we obtain from (A.2) that . Now,
premultiplying (A.1) by , we have

(A.3)

Since , it follows from (A.3) that
reaches its maximum if and only if . From (A.1), it
can be easily shown that if and only if
and for some constant . Thus, we conclude from
(A.1) that reaches its maximum (i.e., one) if
and only if for some constant.

APPENDIX B
PROOF OF THEOREM 2

We shall first state a lemma derived in [1] and then establish
another lemma.

Lemma 2 (Nehorai & Paldi [1]): Every vector ,
has the representation

where , , and .
Moreover, the parameters, , , and in the above equation
are uniquely determined if and only if .

Remark: It is further established by Nehorai and Paldi that
if , then if and only if .
Furthermore, if and , then , but
not , are unique.

Lemma 3: Let and
be two linearly dependent

steering vectors of a single tripole with distinct DOA’s
and . Then equals zero if and only if

equals zero.
Remark: Note that a signal is linearly polarized if and only

if its ellipticity angle is equal to zero. Therefore, Lemma
3 implies that two steering vectors with distinct DOA’s of
a single tripole are linearly dependent only if they are both
linearly polarized or both nonlinearly polarized.

Proof of Lemma 3:Since
and are linearly dependent
steering vectors of a single tripole with distinct DOA’s, we
have

(B.1)

for some complex number. Since the norm of and
are the same, we have for some .

Now, suppose and we shall show that .
Premultiplying (B.1) by , we obtain

(B.2)

Since , is real. This, together with the fact
that , , , and are real, en-
sure that the left-hand side of (B.2) is real. Therefore, the

right-hand side (RHS) of (B.2), which can be expressed as
, must also be a real vector. Since

, must be a real number (i.e., either1 or 1).
Now, since and are both real numbers,
must be zero, implying that . Therefore, we have shown
that if .

Using the same strategy, one can show that if
.

Proof of Theorem 2:Although a proof for the sufficiency
part is available in [11], we shall provide another version.

Sufficiency part:Let and be the DOA-cum-
polarization parameters of two signals with distinct DOA’s
and consider a single tripole.

First, suppose and correspond to two signals with
opposite DOA’s and conjugate polarizations. Then, we have

. It can be verified that
and this establishes Condition 1 of the sufficiency part.

Next, suppose and correspond to two linearly po-
larized signals (i.e., ) whose electric fields
are parallel, then, by Definition 2, we immediately obtain

. Therefore,
we have . This establishes Condition 2 of the
sufficiency part.

Necessity part:Let and be linearly depen-
dent steering vectors of one tripole that correspond to distinct
DOA’s. It follows from Lemma 3 that the ellipticity angles of
the signals satisfy either: 1) or 2) .

Case 1: . We have established in the proof of
Lemma 3 that if , then . By Definition
2, the electric fields of the two linearly polarized signals are
parallel, which leads to Theorem 2, Condition 2.

Case 2: . We have established in the proof of
Lemma 3 that

(B.3)

where . Premultiplying both sides of (B.3) by
, we ob-

tain

where . Equating the real and
imaginary parts of the above equation and using the fact that

and (since and
), we obtain

and

Solving the above two equations, we obtain .
Therefore, we have . This,
together with the fact that ,
imply that and both lie in the orthogonal
complement of the column space of , which is
of dimension one. Since and are both
real unit vectors and and correspond to
distinct DOA’s, must be equal to . Thus,

and correspond to opposite DOA’s and,
hence

(B.4)
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Now, substituting into (B.3) and
then premultiplying it by , we obtain

The RHS of the above equation can be simplified to
. It then follows immediately from

Lemma 2 and its remark that . Moreover, we
have if , . Therefore, and

correspond to conjugate polarizations. This, together
with (B.4), lead to Theorem 2, Condition 1.

Combining the results for both cases, we obtain the necessity
part of Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

Let , , where
, be the steering

vectors (of a multitripole array) associated with
linearly polarized signals with distinct DOA’s and
parallel electric fields. By Condition 2 of Theorem
2, , , ,

, the steering vectors associated
with a single tripole (notice that “ ” has been
removed) are pairwise linearly dependent. Thus, each row of

is linearly dependent on one other row of. Since
is a nonzero vector, at least one

of the entries of is nonzero. Now
assuming that the th entry of is
nonzero where . Since

and that the th entry of ,
is nonzero, the th row of is

linearly dependent on the th row for
and where

Consequently, we have ,
.

APPENDIX D
PROOF OF COROLLARY 2 OF THEOREM 3

Consider an -tripole array and steering vectors ,
that correspond to linearly polarized

signals with electric fields all parallel to the line joining two
sensors. Since the electric fields of all signals are parallel, by
Theorem 3 we have

(D.1)

We shall show that rank .
Without loss of generality, let the electric fields of all the
signals be parallel to the line joining the first two sensors. Then
the DOA’s of the signals are all normal to the line joining the
first two sensors. Consequently, the phase delay of theth

signal at the second sensor with respect to the first sensor is
zero for . This leads to

...
...

...

(D.2)

Thus, it follows from (D.1) and (D.2) that rank
.

APPENDIX E
PROOF OF THEOREM 4

Consider steering vectors
and a DOA . Let ,

. Then the vectors ,
and are linearly dependent since

they are 1 complex vectors. Therefore, there exists,
that satisfies

(E.1)

By Lemma 2, we can write

for some , and
. Therefore, we have

(E.2)

It follows from (E.1) and (E.2) that

Therefore, the steering vectors , are
linearly dependent.

APPENDIX F
PROOF OF THEOREM 5

Consider an -tripole array. Let be
distinct DOA’s associated with signals and

where . Then the columns of are linearly
dependent since the number of columns ofis more than
the number of rows. Therefore, there exists

(with each such that

(F.1)
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By Lemma 2, we may write for
for some , ,

, and . Hence, we may write (F.1)

where and
. Since , we have

. This implies that
are linearly dependent. [Note that the polarization parameter
associated with theth signal is ].
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