Applied Acoustics 25 (1988) 243-268

A Microcomputer-Based Audio Digital Delay System

B. T.G. Tan & T. H. Ong

Department of Physics, National University of Singapore,
Singapore 0511

(Received 7 March 1988; accepted 21 April 1988)

ABSTRACT

An audio digital time delay system based on a bus-oriented microcomputer,
the Apple 11, has been designed and tested. Analog interface boards for the
microcomputer bus were designed and constructed to interface the incoming
and outgoing audio signals to the microcomputer. To speed up the processing
of the audio samples, coprocessor boards using the 6809 and 68008
microprocessors were used. The delay system is capable of changing the
required time delay dynamically under software control.

INTRODUCTION

Audio frequency delay units are widely used in audio and acoustical
engineering as well as in basic research on psycho-acoustics. They are an
essential component of all but the most simple sound reinforcement systems
which aim to deliver intelligible speech in large halls and auditoriums. They
are also being increasingly used in sound reproduction equipment to
enhance domestic listening rooms by simulating the reverberation
characteristics of large concert halls.

Before the advent of large-scale integrated (LSI) circuits, audio delay units
were largely analog in nature. A common method then of obtaining an audio
delay was to employ a closed-loop tape unit with a record and playback head
closely spaced together. The main drawback of such units was the difficulty
of obtaining very short delay times and the invevitable wear and tear on the
tape and tape heads. Another electro-mechanical method was the use of a
coiled spring to act as an electro-acoustical delay line. The quality of the

243
Applied Acoustics 0003-682X/88/303-50 «(* 1988 Elsevicr Science Publishers Ltd, England.
Printed in Great Britain

244 B.7.G. Tan, T. H. Ong

delayed signal was usually only good enough for reverberation systems
which did not require a high quality delayed signal.

The conversion of the analog signal to a digital form would have
eliminated most of the problems associated with electro-mechanical analog
delay units. However, this was not practicable with discrete electronic device
technology, as the digital storage capacities required for audio delays of even
a few milliseconds were far too large for discrete electronics. One family of
integrated circuit devices, variously known as charge-coupled or bucket-
brigade devices, represented an intermediate step in the progress to fully
digital audio delay units. Such devices were able to store sampled audio
signals in analog form efficiently enough to enable highly effective audio
delay units to be constructed. These units were however, soon made obsolete
by the arrival of fully digital audio delay units, made possible by rapid
advances in semiconductor technology. Fully digital audio delay units are
now in the midst of a transition from 12 bits to 16 bits which is driven by the
decreasing costs both of 16-bit analog-to-digital (A/D) converters as well as
random-access memory (RAM).

BASIC PRINCIPLES OF AUDIO DIGITAL DELAY UNITS

The main objective of an audio delay unit is to store an input audio signal
and output the signal after it has been stored for a required length of time.
The whole process is done in real time, with the input signal being
continuously stored and output as it changes in accordance with the audio
waveform. The amount of audio signal to be stored depends on the length of
the delay time; a longer delay time means that the storage buffer for the
signal needs to be larger.

Thus the basic delay unit must consist of three elements: an input unit
which captures the audio signal, a storage unit which stores the signal, and
an output unit which sends the delayed signal out again. The process is
dynamic, with the audio signal progressing through the input unit, storage
and output unit continuously as the audio waveform changes. An analog
tape-based delay unit clearly shows these three elements, with the record
head as the input unit, the playback head as the output unit, and the length of
tape in between as the storage unit, which is continuously moved by the tape
recorder transport system from input to output head.

In a digital delay unit, the stored signal is not in analog form, but is
converted into digital form. This implies that two operations are performed
on the audio waveform:

1. The waveform is first ‘sampled’ i.c. its magnitude at regularly-spaced
time intervals is stored. The sampling frequency i.e. the frequency at

A Microcomputer-Based Audio Digital Delay System 245

which these samples are taken is dependent on the upper frequency
limit of the signal. By the Nyquist criterion, for an upper frequency
limit of f Hz, the sampling frequency should be at least equal to 2f.

2. The analog samples are then ‘digitized’ i.e. each sample value is
converted to a binary digital number. The length of the binary
numbers determines the accuracy with which the values are
preserved. This accuracy in turn determines the signal-to-noise ratio
of the audio signal when it is reconverted to its analog form. As a rule
of thumb, 6 dB is obtained for each bit, e.g. 12bits will yield a 72 dB
S/N ratio. This can be further enhanced by more subtle methods of
digital conversion.

The great advantage of digital processing is that the accuracy of the
analog waveform, once fixed by the choice of sampling rate and bit length, is
perfectly preserved. In addition, the time delay lengths can also be accurately
set. Audio digital delay units as used in the audio industry are usually stand-
alone or modular units. The bit length is usually 12- or 16-bits depending on
the price of the unit. In order for such units to be of general use in typical
applications such as sound reinforcement systems, the time delays available
range from a few to several hundred milliseconds. The variation in delay
time is usually controlled by a front-panel control. Some sophisticated units
provide external control of the time delay, usually by the application of an
external analog voltage. Such methods are adequate for real-time control in
musical performance, which does not require extremely precise control of
the delay length. Time delay units meant for sound reinforcement systems
are usually preset to some fixed value and hence seldom provide a means of
rapid real-time control of the delay time.

In the course of experiments on psycho-acoustics, a need was felt for a
digital time delay system whose delay time could be instantaneously varied
under computer control. The availability of inexpensive microcomputer
systems made it worthwhile to investigate the possibility of designing a time
delay system based on such a microcomputer system. The time delay system
which is described in this paper was designed specifically for use in a series of
psycho-acoustic experiments to determine the effect of time delays in
stereophonic sound reproduction. It may have more general applicability in
any work in which a rapidly variable software-controllable delay length is
required.

DESIGN OF THE DELAY SYSTEM

It was decided at the outset that the use of a microcomputer with a bus-
oriented structure would provide the greatest flexibility and economy. The

246 B.T.G Tan. T. H. Ong

most-well-known of these bus-oriented personal computer systems are the
Apple II family and the IBM PC family (and other computers compatible
with them). Microcomputer systems are generally organized around a
microprocessor chip which performs the function of a central processing
unit (CPU) as in a conventional mini or mainframe computer. The
microprocessor communicates with its memory and its input/output (1/0)
channels through a set of circuit lines known as a bus. In bus-oriented
computers, this bus is directly accessible to the user, thus simplifying the
connection of external devices. Ths bus is usually available in the form of
slots on the main circuit-board (or motherboard) into which smaller boards
carrying the interfaces to the external devices can be inserted. The additional
hardware for the audio delay system could thus be designed in the form of
one or more interface boards for insertion into the bus slots.

The microcomputer chosen for the system was the Apple IT. However, the
design principles apply to any other bus-oriented microcomputer such as the
IBM PC. Basically, any digital delay system requires an A/D converter to
convert the input audio signal to digital form, random-access memory
(RAM) to store the digital samples, and a D/A converter to convert the
delayed digital signals back to analog form. The whole process of inputting,
storing and outputting the digital samples is controlled by a microprocessor.
In our system, the microprocessor and RAM memory are supplied by the
Apple I1. The A/D and D/A converters are added to the system in the form
of an interface board which fits into a slot of the Apple II. In this way, the
additional costs to convert the Apple 1l into an audio delay system are much
lower than that of a stand-alone delay system. In addition, the Apple II's
microprocessor can exercise greater control over the process than is possible
for a stand-alone unit.

THE AUDIO INPUT/OUTPUT BOARDS

An interface board to input and output the audio analog signals was
designed and constructed for the Apple I1 bus. [t was decided to use at least
12-bit digitization as 8 bits would have yielded a signal-to-noise ratio of only
about 48 dB, which is too low for high quality audio applications. Sixteen
bits would have been ideal, since the resultant 96 dB S/N ratio would have
been equivalent to digital compact disc standards. However, at the time of
the experiment, 16-bit A/D converters were prohibitively expensive, while
12-bit A/D and D/A converters were easily available and reasonably priced.
The S/N ratio obtained with 12 bits, 72 dB, was also acceptable for all but the
most demanding audio applications.

The main chips on this audio input/output board were the ADS574 12-bit

A Microcomputer-Based Audio Digital Delay System 247

A/D converter and the ADS65 12-bit D/A converter, both from Analog
Devices.! These two chips are easily obtainable and are virtually industry
standards. Each of these chips was interfaced to the Apple II bus via a 6821
PIA (Peripheral Interface Adapter) chip. Each 6821 PIA occupies four
memory addresses in the Apple II’'s memory map, and greatly facilitates the
control of the AD574 and AD565. All communication with the AD574 and
ADS65 is done through the four addresses of the PIA.

The audio input/output board provides one audio input channel via the
AD3574 and one audio output channel via the AD565, which is adequate for
many audio applications. However, in applications such as multi-channel
sound reinforcement systems, several outputs with different time delays have

Apple Il
Bus
|r Analog input/output board 1|
| |
| Port - | Analog
6821 A 8 bits ; l Input
| PIA 3 AD574
I Port % :
8 -—
f ~ [
| i
| |
NS e P b
A a Low output
6821 £ ass
:b PIA 3 0985 el
= :
R, J
e ————— e
i Analog dual output board jl
| |
I Port - | Analog
6821 A 8 bits § %g' | output
- t1]
1 e 3 ADSES I iter| T
] |
l g = |
| |
: |
Port - 1 Analog
| 6821 A E é lﬁg: output
S |
PIA . 3 ADS85 fiter| |
| =T | !
e e e e -

Fig. 1. Block diagrams of the audio input/output board and audio dual output board.

248 B T.G Tan, T. H. Ong

to be provided for. Thus a second audio interface board was designed and
constructed to provide a further two audio output channels utilising two
ADS565 12-bit D/A converters. For this audio dual output board, each of the
two ADS65 chips was interfaced to the bus via a 6821 PIA chip in the same
way as the ADS565 on the other board. The block diagrams of these two
boards are given in Fig. 1.

The decision to employ 12-bit A/D conversion automatically imposed a
severe strain on the 8-bit 6502 microprocessor used in the Apple 11. The
memory of the Apple Il is organized into 65536 8-bit locations.? The 6502
can transfer 8-bit data to and from each memory location. Each memory
location in the Apple Il has a unique address, which itself is 16 bits long.
Thus there are a total of 65536 or 64 x 1024 addresses ranging from $0000
(where § denotes a hexadecimal number: 4 bits are equal to one hex digit) to
SFFFF or decimal 65 535.

The 12-bit samples produced by the AD574 will thus have to be stored in
two adjacent 8-bit locations in the Apple Il RAM. The 6502 processes 8 bits
at a time, so that the storage of one 12-bit sample requires two operations.
Similarly, the outputting of one 12-bit delayed sample through the AD565
will require two operations by the 6502. This will slow down the throughput
of the 12-bit samples through the memory, and thus greatly affect the
sampling rate which can be imposed on the audio signal. Hence another
method of processing the 12-bit samples was investigated.

16-BIT COPROCESSORS

Though the Apple 11 uses the 6502 as its main microprocessor, it is possible
to add other microprocessors in order to increase the processing speed of the
Apple II. In such a situation, the additional microprocessor co-exists with
the 6502 as a coprocessor. The 6502 is usually made to handle the
background I/O tasks, such as reading the keyboard and maintaining the
screen display, while the coprocessor gets on with the actual processing of
the data. There are several coprocessor boards available which interface to
the Apple 11 through the bus slots. In order to increase the processing speed
to obtain the required sampling frequency, two 16-bit coprocessor boards
were used separately, one employing the 6809 microprocessor, a hybrid
8/16-bit microprocessor, and the other employing the 68008, a powerful
16/32-bit microprocessor.

Actually, the criteria as to whether a microprocessor (MPU) is 8 or 16-bit
are not very clearly defined. It would appear that the ability to handle 16-
bit data would be the main criterion; however, even the 6502 can handle
16-bit data in a limited way. The 6809 can internally handle 16-bit data and

A Microcomputer-Based Audio Digital Delay System 249

has special 16-bit instructions, though like the 6502, it only has an 8-bit data
bus for data transfer to and from the outside world. The 68008 is a member
of the powerful 68000 microprocessor family, being able to handle 16- and
32-bit data internally, but also having an 8-bit data bus. While both the 6809
and 68008 coprocessor boards are somewhat handicapped by having to
interface with the slow Apple 1I 8-bit data bus, the superior processing
speeds of the 6809 and the 68008 as compared with the 6502 made their
utilisation for the digital time delay system worthwhile.

PROCESSING OF THE DIGITAL DELAY SAMPLES

As described above, the audio time delay is obtained by sending the audio
input into an A/D converter where it is sampled and converted into 12-bit
data. This stream of 12-bit data is channelled through the RAM and exits
through the D/A converter where it becomes the delayed audio signal. It
may therefore seem that the best way to perform this would be for the input
12-bit data to enter at a fixed input address in the memory, be shifted along
one pair of addresses each time a new sample came in, and eventually exit
further along at a fixed output address through the D/A converter. This is
exactly analogous to the closed-loop tape delay unit, where the audio signal
enters via the fixed record head and is carried along by the moving tape to
exit at the fixed playback head.

However, in the microcomputer system, an analogous approach would
require the shifting of all the 12-bit data between the A/D and D/A
converters each time a new sample was input. This is actually how charge-
coupled or bucket-brigade delay units perform; the analog voltages stored
on each device are actually shifted along as each new analog sample is input.
In the fully digital case, an analogous approach would require a shift
register. In a shift register, the registers are arranged sequentially and all the
data can easily be simultaneously shifted in one direction. (In actual fact, a
bank of shift registers is required, one for each bit of the digital data.)

This approach is cumbersome in the case of the microcomputer system.
The RAM in a microcomputer is not functionally like a shift register, and so
the microprocessor would have to be used to shift all the data between the
input and output addresses for each new input sample. The number of data
samples to be shifted might in practice be very large, since in one second
several thousand samples would have to be stored for a high quality audio
signal of several kHz. This would thus take up far too much processing time
and hence reduce the bandwidth of the delay system to unacceptably low
frequencies. Thus the approach adopted in the present experiment was to

250 B.T.G. Tan, T. H. Ong

keep the data in the RAM in fixed addresses and ‘shift’ the A/D and D/A
converters along the RAM addresses.

The best way to understand this approach is to use the tape delay again as
an analogy. In the normal method, the two tape heads are fixed while the
tape moves from the record to the playback head. The analogous situation
to this second approach would for the tape to be stationary and the two tape
heads to be rotating around the closed tape loop. The relative motion
between the tape heads and the tape is still maintained so that the record
head impresses a continuous stream of audio data on the tape, while the
playback head picks up the delayed signal previously recorded by the record
head, thus satisfying the condition of continuous input and output.

Though this method is less practical in the case of the tape loop, it is much
more feasible in the case of the microcomputer system. The audio samples
stay in the same addresses during the time that they are in the RAM, hence
avoiding the need to shift them. The A/D converter and D/A converter are
instead made to store and retrieve the audio samples from a continuously
changing sequence of addresses. Since this entails shifting only two
addresses (those of the two converters) instead of the large number of data
samples in between converters, the processing time is considerably reduced.

THE MEMORY LOOP

In the tape system, the audio signals are stored in a tape loop. The equivalent
of the tape loop in the microcomputer is a fixed portion of its memory. The
length of memory required will depend on the maximum delay length
required as well as the sampling rate. If an audio signal has a bandwidth of
8 kHz, the sampling rate should be at least 16 kHz. Thus for every second.
16 000 12-bit numbers (commonly called words) are stored. Since each 12-bit
word occupies two 8-bit addresses, 32 000 memory addresses are required.
For sound reinforcement work, 250 millisecond delays are sufficient, so that
only 8000 addresses are required.

An 8 K segment of memory (where K now stands for 1024 as is usual in
digital computers) might run, for example, from the address $6000 to
$7FFF. Though this is physically a linear segment, we have to effectively
make it behave like a loop. The A/D and D/A converters have to step
through the entire range of addresses of this memory segment. In order to
make the segment look like an endless loop to the A/D and D/A converters,
we have to reset the address for each converter, when it reaches the last
address of the segment at $7FFF, back to the first address at $6000. This can
easily be done by software. The segment then functionally becomes an
endless loop, as far as the converters are concerned.

A Microcomputer-Based Audio Digital Delay System 251

DELAY TIME

The actual delay time depends on two factors: the length of the memory
segment and the relative addresses of the memory locations accessed by the
A/D and D/A converters. As the audio samples are read into the memory by
the A/D converter, each new sample is stored in the memory two addresses
higher than the previous sample. For example, if the memory segment $6000
to $7FFF is used, let us consider a sample which is stored at $6000 and
$6001, since a 12-bit sample requires two 8-bit locations. The next sample
will be stored at $6002 and $6003 and so on. When the A/D converter
reaches $7FFE and $7FFF, the software will direct the A/D converter to go
back to $6000, thus making an endless loop and storing a new set of samples
in the memory.

It can be seen that when the A/D converter has stored an audio sample at

~

Each 12-bit
Start of | uple:
Blotk { e heisns
' t
1 1
Newest
sample {
Current from A
JL 'sncfmusle { }‘—conrcertéP
N
Oldest to D/A
-[— ,Q"';;|e { }——’conve/rter
i
é h 1 Input and output
! H + 0ddresses are
incremented by
for each new
nput sample
€nd of
block {

‘} Addresses
reset to
Start of
block

Fig. 2. How the memory block in RAM forms an endless loop.

252 B.T.G Tan. T. H. Ong

any pair of addresses A and A + 1, the address A + 2 and A + 3 will contain
the ‘oldest’ sample stored previously. Hence if the D/A converter extracts the
outgoing samples from A + 2 and A + 3, these samples would have been
delayed for the full length of time taken by the converters to go round the
whole loop. On the other hand, the sample at addresses A —2and A — 1 is
the most recent sample stored previously compared to that at A and A + |,
and if the D/A converter extracts this sample it will provide the shortest
possible delay time.

Thus, by varying the length of the memory loop, i.e. the length of the
memory block used for the loop, we can vary the maximum delay length that
can be obtained. For a fixed memory loop length, we can change the delay
time merely by changing the relative positions of the A/D and D/A
converters as they traverse around the memory loop. If we think of the A/D
converter as following the D/A converter, the more closely it follows, the
longer will be the delay time. For the maximum length, the A/D converter
should be just one address behind the D/A converter, while for the shortest
possible delay, their positions should be reversed. Figure 2 shows how the
memory block is arranged to form a loop, with the D/A converter retrieving
samples from the addresses just ahead of the A/D converter, thus giving the
longest possible delay time for the memory block.

THE DELAY ROUTINE

The assembly language program to generate the time delay is basically very
simple. We first consider a basic program for a single-output time delay. The
purpose of the program is to store the incoming A/D digital samples in the
memory block and retrieve the outgoing delayed samples from the block in
an ordered and increasing sequence of addresses. In the main part of the
program loop, one 12-bit sample is input from the A/D converter and then
stored in a certain pair of 8-bit locations in the block. A 12-bit sample is then
retrieved from another pair of 8-bit locations at an address which is at a fixed
offset from that of the incoming sample. Each of the two addresses is
incremented to point to the next pair of 8-bit locations in the block. When
the end pair of addresses of the block is reached by either the A/D or the D/A
converter, the addresses are reset to the start of the block.

Thus the time between the sampling of successive samples is determined
by the time spent in one loop, which should be made as short as possible. For
a 16kHz audio bandwidth, a sampling rate of a least 32 K samples per
second is necessary. If the 6502 were used to process the audio samples, the
sampling rate would be severely limited by its processing speed. This is due
not only to the 8-bit limitation of the 6502, but also to its inability to do

A Microcomputer-Based Audio Digital Delay System 253

indexed addressing over a range greater than 256 addresses. Indexed
addressing allows the microprocessor to efficiently increment addresses over
a memory block, such as is required in the time delay program. This indexed
addressing limitation imposes a severe constraint on the length of the
memory block which the 6502 can effectively handle, limiting it to 256
addresses.

A time-delay program for the 6502 using the present technique has been
previously reported.® The loop required 45 Apple II clock cycles and hence,
at the Apple II clock frequency of 1023 MHz, took 43-99 microseconds.
With this loop delay, the sampling rate was 2:273 x 10* samples per second,
giving an audio bandwidth of 11-37kHz. Though this is acceptable, the
block length of 256 addresses limits the longest possible delay time to 43-99
microseconds x 128 which equals 5:63 milliseconds. (The loop delay is
multiplied by 128 and not 256 because each 12-bit sample requires two
addresses.) This is quite inadequate for most audio work. Longer delays
would require longer blocks of memory and would result in much lower
bandwidths if the 6502 were used, as slower methods of incrementing the
addresses would have to be used.

THE 6809 MICROPROCESSOR

The 6809 microprocessor, being able to handle 16-bit data transfers more
easily, is better suited to processing the 12-bit audio samples. In addition, the
6809 has superior indexed addressing modes compared to the 6502 and is
not restricted to a 256-address block of memory for indexed addressing. A
time-delay program was written for a 6809 coprocessor board to take
advantage ofits features. The 6809 coprocessor board was manufactured by
Stellation Two, and is called ‘The Mill’.*

The 6809 MPU on the board is a true coprocessor in that it can run
simultaneously with the 6502. Both MPUs are regulated by the Apple 11
clock. The 6809 becomes active only when the coprocessor board is given an
explicit instruction to activate it. The 6502 can still function alongside the
6809, and actually executes its instructions during the clock cycles when the
6809 is idle. Hence it is possible to have the 6502 take care of some subsidiary
tasks while the 6809 performs the main task of inputting, storing and
outputting the delay samples. In addition, having the 6502 as a simultaneous
coprocessor allows us to use it to change the delay parameters while the 6809
processes the audio samples, so that delay times can be instantaneously
altered while the program is executing.

The time delay program for the 6809 utilises the audio input/output board
with the AD574 A/D converter and the AD565 D/A converter hence

254 B.T.G. Tan, T. H. Ong

providing for one input audio channel and one output audio channel. The
addresses of the two PIAs corresponding to the two analog chips depend on
the Apple II slot in which the board is plugged as follows:

PIA1 (AD574) $C0x0 — $CO0x3 or $C0x8 — $COxB
PIA2 (ADS565) $C0x4 — $COx7 or $COxC — $COXF

where x is a hexadecimal number equal to the slot number (0 to 7) plus 8. For
example, if the board is in slot 4, x would be equal to $C.

The memory block in which the audio samples are stored begins at $3000.
The address of the end of the block is not explicitly given in the program, but
1s itself stored in the addresses $00EE and $00EF. This makes it easier to
change the end address, and hence the block size, as desired. For the present
experiments, the end of the block was set at $6FFF, giving a block length of
$4000.

Figure 3 shows the flowchart of the program. First the PIAs have to be
‘initialized’ so that they are properly set up to work with the ADS74 and
AD3565. The X and Y index registers are used as input and output pointers
respectively to store and retrieve the digital samples. The input pointer
points to (i.e. contains the address of) the pair of locations which are to
receive the incoming 12-bit sample from the A/D converter. The output
pointer points to the locations from which the output samples are to be
retrieved by the D/A converter. The X and Y index registers could, for
example, be initialized to $3000 and $3002 respectively to give the maximum
possible delay time for the given block length. Shorter delay times can be
obtained either by increasing the difference between the X and Y index
registers, or by decreasing the block size which is defined by the end-of-block
address in the addresses $00EE and $00EF.

The digitized audio sample is then read in from the ADS574 via its
respective PIA. This sample is immediately stored in an address which is
pointed to by the input pointer. The input pointer is then incremented so
that it points to the next pair of locations, ready for the next input sample.
The delayed output audio sample is then retrieved from a pair of locations
pointed to by the output pointer and output through the ADS565 via its
respective PIA. The output pointer is also incremented so that it points to the
next audio sample to be output.

The storage of the input sample and the retrieval of the delayed sample
constitute the main body of the program loop. At the end of the loop, before
the program returns to the beginning of the loop to process the next set of
audio samples, it has to determine whether the end of the memory block has
been reached. For example, if the memory block extends from $3000 to
$6FFF, then the input and output pointers will each in due course exceed the
last address in the block. At this stage, each pointer has to be steered back to

A Microcomputer-Based Audio Digital Delay System 255

Initialize PlAs and
input and output pointers

r _______ ‘ ——————————— 1
' Load input sampl ' [B
l put sample GET ONE |
| from A/D converter INPUT |
I
: ¥ SAMPLE
| Store sampie in memory |
| and increment input pointer :
i
IR S J;
__________________ d
r A
|
: Retrieve output sample QUTPUT |
1 from memory and NE |
| increment output pointer 0 i
I T DELAYED T
1 SAMPLE | '
| Send out output sample |
| through D/A converter | J
| B
. -
Reset input and
output pointers]i

-

Fig. 3. Flowchart of single-output 6809 delay program.

the beginning of the block so that the block effectively forms an endless loop.
Hence at the end of each program loop, a test must be performed to
determine if each pointer has reached the end of the block. If it has, it is ‘reset’
to the beginning of the block.

There are two programming complications here which we will briefly
mention. When each pointer reaches the block end, the program needs a
little extra time to do the resetting. Now, this may cause the program loop to
be a little longer than usual. Hence we have to ensure that the loop durations
are precisely the same, whether the block end has been reached or not,
otherwise every time the end of a block is reached, there will be a slight
‘hiccup’ which will slightly distort the audio waveform. The second

256 BT G Tan, T. H. Ong

complication arises because the input and output pointers do not reach the
end of the block simultaneously. Thus each index register has to be tested
and reset separately, thus complicating the end-of-loop ‘housekeeping’. In
the actual machine language programs, all end-of-loop housekeeping
routines were optimised to take care of these problems.

CALCULATION OF TIME DELAY

The total time spent in one loop can be determined by adding up the time
taken up by each instruction in the loop. Each successive sample is delayed
with respect to the previous one by precisely the time spent in one loop. The
time delay is the time spent in one loop 7, multiplied by the offset in terms of
samples between the address into which the input samples are stored and the
address from which the delayed output samples are retrieved. To this must
be added the small time difference T, between the instruction loading the
input sample from AD574 and the instruction storing the output sample to
the AD565. Both T, and T, are shown in Fig. 3. Hence the total delay time T
is given by

T=(N«TR2+T, {1
where

T, is the time spent in one loop

T, is the time between the input and output instructions and

N is the offset between the addresses accessed by the ADS574 and the
ADS565.

In order to set up the correct parameters in the time-delay program for the
desired delay, the user would have to calculate N (which is shown in Fig. 2) as
defined in eqn (1) above. The value of N thus obtained gives the offset
between the address for the storage of the input samples and the retrieval of
the output samples. If, for example, the input address is initially defined as
$3000 and the memory block ends at $3FFF, then for N = 1024 or $400, the
output address should initially be set at $3C00. If we consider the block to be
an endless loop with $3FFF joined back to $3000 then we can see that $3C00
is $400 addresses behind $3000.

Note that N is obtained by starting from the AD574, going sequentially
backwards along the addresses in the memory block until the AD3635 is
reached, treating the block like an endless loop. The largest possible value
for N is the length of the memory block, obtained when the AD574 is
directly behind the ADS565, as in Fig. 2.

A Microcomputer-Based Audio Digital Delay System 257

For the 6809 program, the following values were obtained:

T, = 37 clock cycles or 3617 microseconds
T, = 28 clock cycles or 27-37 microseconds

Thus for a memory block which is 1024 addresses long, the longest possible
delay time is 37-065 milliseconds. Longer blocks will give proportionately
longer delays.

The lower limit of the sampling time depends on the speed with which the
A/D and D/A converters can operate, which is in effect determined by the
conversion speed of the A/D converter, since the D/A converter is much
faster. The AD574 A/D converter, which is a successive approximation A/D
converter, has a specified maximum conversion time of 35 microseconds.
Hence a loop time of less than 35 microseconds is not desirable, since a
complete A/D conversion in less than that time cannot be guaranteed. As it
happens, the loop time of 36-17 microseconds is just above this lower limit.

The audio bandwith which can be handled depends on the sampling
frequency which in turn depends on the time spent in one loop. For
7, = 36'17 microseconds, the sampling frequency is 27-64 thousand samples
per second, and hence the audio bandwidth is 3-82 kHz, which is quite
sufficient for many audio applications. The measured audio delay times and
bandwidths obtained experimentally were very close to the theoretical
figures.

MULTIPLE DELAY OUTPUTS

Using the audio dual output board which provided another two AD565
D/A converters, it was possible to provide another two audio outputs to give
three outputs, each with an independent delay time. Figure 5 shows a block
diagram of the three-output delay system using the 6809. With three audio
outputs and three independent delay times, the machine language program
had to be modified and expanded. The simplified flow-chart for the three-
output machine language program is shown in Fig. 4. The input and output
process blocks are essentially similar to those within dotted lines for the
single-output program in Fig. 3.

The additional instructions required to output the audio samples through
the additional two ADS565 D/A converters, compared with the earlier
program, result in a longer loop. In addition, the ‘housekeeping’ at the end of
each loop becomes more complex. This is due to the fact that we now have
four addresses to increment and reset when the block end is reached, instead
of two as before. In addition, the ‘housekeeping’ for each address has to
ensure that the program loops which reach the block end are of the same

258

B.T.G Tan, T. H. Ong

Start

Initialize P1As and pointers for
input and outputs 1, 2 and 3

»i

INPUT ONE SAMPLE
FROM AUDIO INPUT

'

QUTPUT ONE DELAYED SAMPLE
TO AUDIT OUTPUT 1

End of
memory block for
output 2?

Yes Reset pointer for

output 2

]

QUTPUT ONE DELAYED SAMPLE
TO AUDIO QUTPUT 2

End of
memory block for
output 3?

Yes

Reset pointer for
output 3

OUTPUT ONE DELAYED SAMPLE
TO AUDIO QUTPUT 3

End of
memory block for
output 17

Reset pointers for
input and output 1

Fig. 4. Flowchart of threc-output 6809 program.

A Microcomputer-Based Audio Digital Delay System 259

Apple I
Bus
Audio
o .
Analog input
@ input/output
board Audio
output 1
Audio
Analog ’ output 2
:> dual output
board Audio
’ output 3

6809 | miLL

-
I
[y]

Fig. 5. Block diagram of three-output 6809 delay system.

duration as the regular loops, by using dummy instructions whenever
necessary to equalise all loop durations.

The writing of the program for three outputs was greatly facilitated by the
fact that the 6809 not only has two index registers, but also has two similar
registers, the U and S registers meant to be stack pointers but which can also
be used as extra output pointers for the two extra outputs. However, the
longer and more complex program loop results in a loop duration nearly
three times that for the single-output program. Consequently, the sampling
rate falls drastically and the audio bandwidth is only slightly more than one-
third of the one-output case i.e. only 522 kHz as compared to 13-82kHz.

260 B.T.G Tan, T. H Ong

TABLE 1
Parameters for the Three Different Programs, 6809 Processor

Program T, T, Bandwidth Time delay

(microseconds) (kH:) {(milliseconds)
1 output 27-37 3617 13-82 148-2
2 outputs 50-83 65-49 7-63 2683

3 outputs 80-16 95-80 522 3924

This low bandwidth is of practical value only in situations where speech-
quality audio is sufficient.

For comparison purposes, a machine language program was written
giving only two audio outputs. The program was similar in principle to the
three-output program but used only two of the three ADS565 D/A
converters. In consequence, the delay loop time was intermediate between
the one-output and three-output cases, and hence the audio bandwidth was
7-63 kHz, midway between the other two cases.

Table 1 shows the bandwidths attained and the longest delay times
possible for a memory block of length $1000(or decimal 4096) for each of the
three different programs. As the program loop length T, gets longer, the
sampling rate and the bandwidth go down. However, the delay obtained for
a fixed number of loops goes up proportionately.

The 6809 coprocessor is activated by the 6502 to run the 6809 machine
language programs through a special control register on the 6809
coprocessor board. For the single-output program, the duration of the
desired time delay is determined by the block length. Hence the end-of-block
address must be calculated beforehand and stored in the addresses SOOEE
and $O00EF.

CONTROL OF THE DELAY TIME

With this microprocessor-controlled delay time system, precise control of
the time delay duration is easily achieved through software, making remote
control of the delay time possible. This is done by changing the time spent in
the memory by a digitized sample before it is retrieved and output to the D/A
converter. If we consider, for example, the single-output 6809 delay
program, this length of time depends on the following two factors:

1. The offset between the input and output addresses.
2. The length and hence the end address of the memory block.

A Microcomputer-Based Audio Digital Delay System 261

In the program, the initial input address is set at $3000 and the initial
output address at $3002, so that the maximum delay is obtained for a given
memory block length. Once the initial addresses are set, the offset between
them is maintained as long as they remain in the program loop. To change
the delay time by changing the offset, a different value could be substituted
for the initial output address.

The second method is to change the length of the memory block. In this
particular program, the end address can be changed by changing the
contents of the two addresses SOOEE and $O0EF which store the 16-bit end-
of-block address. A short routine can be written in 6502 machine code so
that the 6502 changes the contents of these two addresses as desired. The
6502 facilitates this real-time change in the end-of-block address and hence
of the time delay since it is running simultaneously as a coprocessor to the
6809. This capability was successfully verified experimentally. A program
was also written in BASIC to provide a user-friendly environment by which
the delay times could be changed easily and automatically by simply
entering the required times.

Some commercial stand-alone units do allow this dynamic control of the
delay time, usually via some analog parameter of limited precision such as
resistance or voltage. Using the 6809 program, precise control of the time
delay in accordance with some rapidly changing real-time parameter is also
possible. This could lead to interesting psycho-acoustic experiments on
phenomena such as the Haas effect which were not possible before. Sound
reinforcement systems which changed their delay times dynamically in
response to changing acoustic conditions and sound intensities would also
be possible.

THE 68008 MPU BOARDS

The longer loop delay times obtained for the 6809 three-output program
resulted in a considerably lower audio bandwidth which could be handled by
the system. Thus it was decided to speed up the time delay program by using
two different 68008 coprocessor boards for the Apple II. Both these boards
are available from Stellation Two, the same company which markets the
6809 Mill coprocessor board. These two boards are the McMill board and
the Q-68 board.

The 68008 MPU is designed to run at a much higher clock speed than the
6809 or 6502. Thus in both the McMill and Q-68 boards, the 68008 is driven
from the 7-16 MHz clock signal available from the Apple Il bus, and not the
normal 1-023 MHz Apple II clock. Whenever the 68008 in both boards has
to access the Apple 11 bus, it is slowed down considerably to the clock rate

262 B.T.G. Tan. T. H. Ong

which the bus can handle. The major difference between the McMill and
Q-68 boards is that the McMill does not have any on-board RAM, while the
Q-68 can carry up to 8 K bytes of RAM on-board.

This distinction is quite important when the speed of processing is
considered. The advantage of faster processing which the 68008 offers may
be nullified if it has constantly to access the Apple II's memory. This is due to
the fact that transactions done via the Apple II bus have to operate at the
Apple II's regular clock speed, and thus will slow down the 68008
considerably. Hence the McMill, in spite of its much more powerful MPU
has no speed advantage over the 6809 if it has to constantly refer to the
Apple I memory. Its superior power is really utilised only in its own internal
operations.

A 68008 time delay program for a single audio output was written for the
McMuill. This program is similar to the single-output program for the 6809.
It was not possible to calculate the precise time taken for one loop because
the clock speeds of the instructions which access the Apple I bus were not
clearly specified in the McMill manual. However, the loop time was
experimentally determined by observing the total time taken for the loop to
execute a large number of times, and then dividing the observed time by the
number of loops performed. This gave an experimental value of 94-44
microseconds for the loop time, from which the expected audio bandwidth
was calculated to be 529 kHz

This performance is much worse than that for the 6809 program because
the 68008 has constantly to access the Apple IT bus. Even if the 68008
program does not explicitly refer to Apple 1I memory addresses. it has to
access the Apple II memory simply because the 68008 program itself is
stored in that memory. Before each instruction can be executed by the 68008.
it has to be fetched by the 68008 from the Apple II memory and brought into
the 68008 to be decoded and executed.

THE Q-68 68008 DELAY PROGRAM

Like the McMill, the Q-68 has a 68008 on-board which can run
simultaneously with the Apple 1I's 6502.> However, the Q-68, unlike the
McMill, is capable of carrying up to 8K bytes of RAM on-board. A time
delay program was written in 68008 machine language for the Q-68 to
provide a single delayed output. The flowchart of the program is similar to
that of the single-output delay program for the 6809. Unlike the program for
the McMill, the memory block for the delay program was defined to be on-
board the Q-68 itself. As only 2K RAM was available on-board the Q-68
used, the memory block could not be longer than 2 K. However, the program

A Microcomputer-Based Audio Digital Delay System 263

could be modified easily for the maximum 8 K which the Q-68 is capable of
holding.

The 68008 program, when loaded from the Apple II disk drive, is initially
placed in the Apple II memory. It would be quite possible for the 68008
program to be run while it is in the Apple Il memory, but as in the case of the
McMill board, this would negate the advantage of putting the memory
block for the delayed samples in the Q-68’s on-board memory, since the
68008 would still have constantly to access the Apple II bus to fetch the
program instructions. Hence the program is initially placed in two segments
of Apple II RAM starting at addresses $1000 and $2000. The segment at
$2000 is the delay program proper; the short segment at $1000 has the

Apple i
Bus
Audio
Analog ‘ input
<:>| input /output
board Audio
‘ output 1
Audio
‘ Analog output 2
—.._l_l>1 dual output
board Audio
output 3

|
|
1 Q68 32K 2K
| Coprocessor | Rom RAM
L board

o e (2

Fig. 6. Block diagram of three-output 68008 delay system.

264 B.T.G. Tan, T. H. Ong

function of moving the main segment at $2000 to the Q-68 memory. Thus
when the 68008 begins executing the program from Apple I RAM, it
encounters the portion at $1000 first, moves the segment at $2000 to the
Q-68’s on-board memory, and then begins executing the main delay
program from the on-board memory.

The on-board 2 K RAM occupies the addresses from $18000 to $187FF.
The 68008 program itself is moved into the RAM to begin at $18000. The
memory block is defined to begin at $18180. The end-of-block is initially
stored in the Apple I RAM at $1800, but is then moved into the 68008 D3
register. The end-of-block address is defined as the last address on board, i.¢.
$187FF, so that the length of the block is $67F or decima}l 1663.

The computation of the delay time was slightly complicated by the fact
that the clock cycle of the 68008 would be slowed down whenever it accessed
the Apple 11 bus. This bus access was still necessary in order to input audio
samples from the AD574 and output delayed audio samples to the AD565.
When the 68008 is not accessing the bus, it runs at a clock speed of 7-16 MHz,
giving a clock period of about 0-14 microseconds. From information about
the 68008 instruction cycles in the 68008 manual, it was deduced that of the
16 clock cycles taken up in accessing the bus, four were at the Apple 11 bus
frequency of 1-023 MHz.

To provide a comparison with the 6809, delay programs were also written
for two and three audio outputs. Figure 6 shows the block diagram of the
three-output delay system using the 68008. The flowchart for the three-
output program is functionally identical to that for the three-output 6809
program. The corresponding values of 7, and T, as previously defined were
calculated for all three 68008 programs, and the audio bandwidths obtained
from these values. As Table 2 shows, the improvement is most marked for
the two and three-output cases, where the bandwidth i1s almost doubled.

TABLE 2
Parameters for the Three Different Programs, 68008 Processor
Program T, T, Bandwidth — Time delay
(microseconds) (kH:z) (milliseconds)
I output 1341 3492 1429 1430
2 outputs 27-37 37-43 1336 1532

3 outputs 41-34 51-39 973 2105

CONTROL OF THE 68008 DELAY TIME

For the 68008 program, unlike the 6809 program, the delay time cannot be
directly altered by the 6502 while the 68008 program is running. This is due

A Microcomputer-Based Audio Digital Delay System 265

to the fact that when the 68008 program is running, the end-of-block address
is in the on-board memory which is not directly accessible to the 6502. Thus
in order to change the delay time, the new delay value (e.g. the new end-of-
block address) will have to be first loaded into the Apple II memory, and
then transferred to the on-board RAM so that the corresponding pointers in
the 68008 program are altered. The 68008 will itself have to do this transfer,
since the 6502 cannot do it, as it has no access to the on-board memory.

One way of doing this is to initiate an interrupt on the 68008, so that the
delay program will be briefly stopped to enable the 68008 to transfer the new
address to the on-board memory. When the 68008 resumes the time delay
program, it will be with the new block length and hence the new time delay
duration. This method of changing the time delay was verified experiment-
ally and found to be feasible. As for the 6809, the time delay can thus be
dynamically varied under software control or by external parameters. It
would be even more desirable for the 6502 to access the on-board memory
directly, which is possible but would require major alterations to the
circuitry of the Q-68.

CONCLUSIONS

It has been demonstrated that the dynamic control of delay time duration is
possible, using an inexpensive Apple II microcomputer and simple
additional hardware together with coprocessors such as the 6809 and 68008.
In addition to providing an inexpensive method of creating digital audio
time delays for owners of such microcomputer systems, it opens up many
possibilities for audio research and applications in which the time delay can
be dynamically and continuously changed by remote control or under
software control, or even under the real-time control of dynamically varying
external parameters. We believe that the system we have described could be
of use to many workers in audio applications and research.

REFERENCES

1. Analog Devices data acquisition databook 1984, vol. 1: integrated circuits. Analog
Devices, Norwood, MA, USA, 1984.

2. Apple I Reference Manual. Apple Computers, Cupertino, CA, USA.

3. Tan, B. T. G. & Tay, L. P, 12-bit digital audio time delay using the 6809.
Microprocessors and Microsystems, 10 (1986) S00-5.

4. The Mill—principles of operation. (Manual for 6809 coprocessor board).
Stellation Two Inc., Oakview, CA, USA, 1981.

266 B. T G Tan, T. H. Ong

5. QPAK-68 System Reference Manual. Stellation Two Inc., Oakview, CA, USA.
1983.

6. MC68008 Advance Information. Motorola Semiconductors, Austin, TX, USA.
1985.

APPENDIX: THE 6809 AND 68008 COPROCESSOR BOARDS
The MILL 6809 coprocessor board

The Mill is a coprocessor board which plugs into one of the Apple 11 slots
and provides a 6809 microprocessor which can run simultaneously with the
Apple II's 6502. The 6809 is controlled by a special control register on the
Mill itself.* This control register has 8 bits, each of which controls a
particular function of the 6809. The 8 bits of the control register are
allocated 8 addresses in the Apple’s memory map from SLOT +0 to
SLOT + 7, where SLOT is the base address of the slot in which the Mill 1s
inserted. Fach of these addresses will access one bit of the control register.
For example, the base address of slot 4 i1s $COBO.

The activating of the 6809 is controlled via bit 1 of the Mill's control
register. If bit 1 is set to a “1’, the 6809 will be activated, while if bit 1 is cleared
to ‘0, the 6809 will be halted. Bit 1 can be set or cleared by writing either a *I’
or ‘0" respectively into the most significant bit of the address SLOT + .
Hence the 6809 can be started or stopped by writing a suitable value into the
address SLOT + 1.

The Q-68 68008 coprocessor board

The Q-68 is a plug-in 68008 coprocessor board for the Apple II which has
on-board RAM and ROM in addition to the 68008. The 68008 is actually
capable of addressing up to 1048 576 (i.e. 1024 x 1024 or 1 M) addresses.”
This total can be divided into 16 ‘pages’ of 64 K addresses each. In the Q-68,
the lowest 64 K addresses are devoted to the entire memory map of the
Apple 11, and the next 64 K addresses are devoted to memory carried on the
Q-68 board itself. The other 14 pages are available for off-board expansion.
and the Q-68 board carries an external connector for this purpose. The | M
address memory space means that the memory addresses are 20 bits long
and have to be expressed as five hex digits i.e. from $00000 to SFFFFF. The
on-board memory comprises a 8 K ROM which can be expanded to 32K
and 2 K RAM which can be expanded to 8 K.

For the lowest 64 K with which the Q-68 addresses the Apple 11 memory,
the 68008 views the RAM, I/O and ROM in the Apple 11 differently from the
6502. The 6502 places the Apple RAM in the lowest 48 K addresses from

A Microcomputer-Based Audio Digital Delay System 267

$0000 to $BFFF, has the I/O in the 4 K from $C000 to $CFFF and leaves the
top 12 K from $D000 to SFFFF for ROM or for extra RAM. These Apple 11
addresses are altered by an address ‘translation’ so that the 68008 sees them
at different addresses. The translation involves a ‘swop’ between two 1 K
blocks of addresses as seen by the Q-68. The 1 K block addressed as $0000 to
$O3FF by the Apple I1is addressed as $0800 to SOBFF by the Q-68 while the
1 K block addressed as $0800 to SOBFF by the Apple I1is addressed as $0000
to $O3FF by the Q-68. The address translation is performed by hardware on
board the Q-68.

The 68008 on the Q-68 can be controlled by three software switches on the
board each of which has a separate address and function as follows:

$COn0 Turn 68008 off
$COn1 Turn 68008 on
$COn3 Cause Level 7 interrupt

where n is the number of the slot the Q-68 is inserted into plus 8. The Level 7
interrupt is able to stop the current program the 68008 is executing and make
it execute another program (the interrupt routine). When the interrupt
routine is completed, the 68008 resumes execution of the program which was
interrupted.

Each time one of the above addresses is accessed, the corresponding
function will be activated. Before the 68008 is turned on, the starting
addresses of the machine language program to be executed should be stored
as a 32-bit number in the four addresses from $00004 to $00007. The stack
pointer also has to be stored as another 32-bit number in $00000 to $00003.
The stack pointer is needed to define a section of memory called the ‘stack’
which is used by the 68808 in executing its instructions.

Time taken by the 68008 to access the Apple II bus

The following assumptions were made in the computation of the time taken
to execute instructions which accessed the Apple I1 bus:

1. When one 12-bit audio data sample is moved from one address to
another, two complete memory read cycles are required to fetch the
data and two complete memory write cycles are required to store the
data since the bus only handles 8 data bits in each single memory read
or write cycle.

2. Both memory read and write cycles are assumed, as given in the
Motorola 68008 manual,® to take four clock cycles.

3. From the 68008 read/write timing diagrams given in the 68008
manual, each 8-bit read or write cycle puts the 8-bit data on the bus for

268 B.T.G Tan, T. H. Ong

two of the four clock cycles. Thus two of the four clock cycles are
assumed to be at 7-16 MHz, while the other two during which the bus
1s accessed are assumed to be at 1-023 MHz, the Apple II’s clock
frequency.

Thus, for example, when the 68008 retrieves one 12-bit sample from its on-
board RAM and sends it out to the ADS565, the following sequence occurs:

1st read cycle (4 clock cycles): 8 bits retrieved from RAM
Ist write cycle (4 clock cycles): 8 bits sent to ADS65
2nd read cycle (4 clock cycles): 4 bits retrieved from RAM
2nd write cycle (4 clock cycles): 4 bits sent to AD565

Of the 16 clock cycles, the 8 clock cycles in the read cycles are at 7:16 MHz
since the bus is not involved. For the write cycles, two out of the four clock
cycles are at 1-023 MHz as the data has to go on the bus to reach the AD565.
Thus four out of the 16 clock cycles are assumed to be at 1023 MHz and the
time taken for the instruction is accordingly calculated. The time taken for
an input operation when an audio sample is input from the AD574 and
stored in the on-board RAM is similarly calculated.

