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Synthesis of Dynamic Musical Sound Samples*
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A qualitative analysis of the performance of a genetic annealing algorithm (GAA) is
presented. The GAA is applied in thedouble frequency modulationDFM parameter optimiza-
tion problem. It is shown that the GAA can optimize the solution to the global minimum
by plotting the solution spaces of one DFM equation for all samples. Dynamic musical
sounds were synthesized using the DFM synthesis technique. A recycling process is also
proposed to improve the efficiency of the GAA process. The resulting dynamic sounds
synthesized by the DFM are presented and compared with those of real samples.

0 INTRODUCTION essential if the process is to be speeded up. Acombinato-
rial optimization technique, the genetic annealing algo-

A variant of the frequency modulation_(FM)technique rithm (GAA), has been proposed in [2] and has been
, called double frequency modulation (DFM) [1] tech- shown to be more effective than the classical genetic

nique has been shown to be able to generate more com- algorithm for DFM parameter optimization for steady-
plex spectral envelopes than FM. One carrier of the state musical sounds. It will be shown that the GAA
DFM equation is given by is able to optimize the DFM parameters to the global

minimum of the solution spaces for all steady-state
x(t) = A(t) sin[Il(t) sin (tit + lz(t) sin (t2t] (1) sound samples in this paper.

However, to create convincing dynamic musical
where A(t) is the time-varying amplitude, Il(t) and 12(0 sounds, the harmonics of the sounds must vary over
are the time-varying indices, and (ti and 002are the cor- time. In this paper we show that the GAA can effectively
responding modulating angular frequencies of the estimate the DFM parameters quickly enough for practi-
DFM carrier, cal determination of the time-varying harmonic structure

The behavior of the DFM equation is summarized in of real musical sounds. We also propose a recycling
Fig. 1. Fig. l(a) shows the variation of spectra in the process for the GAA to improve the efficiency of the
frequency domain when index I l is varied whereas Fig. optimization process.
l(b) shows the variation with index 12, both keeping the

modulation frequencies fl and f2 fixed at 440 and 880 I THE OPTIMIZATION PROCESS
Hz. As shown in the plots, each harmonic oscillates in
its own manner, independent of the other harmonics, as The data flow diagram for the optimization process is
one index increases and the other is kept constant. We given in Fig. 2. The two-dimensional array created from
also note that as the value of either of the indices in- the sampling process is used as input to the optimization
creases, the frequency of oscillation as well as the num- algorithm. The algorithm used for dynamic or time-

bet of frequency harmonics increases, varying DFM parameter optimization is the genetic an-
Due to the complexity of the DFM equation, param- healing algorithm (GAA) [2], a special combination of

eter estimation by the usual trial and error method isa the simulated annealing algorithm and the genetic
very tedious process. Computer optimization is therefore algorithm.

The simulated annealing algorithm and the genetic
algorithm are both well-known algorithms in optimiza-

* Manuscript received 1998 March 14; revised 1999 Febru- tion theory and have been explained in depth by many
ary2.

** Currently with the Centre for Signal Processing, Nany authors. We will just briefly state the principles for the
ang Technological University, Republic of Singapore. two algorithms here.
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cooling of the system, and the whole process repeats
1.1 Simulated Annealing Algorithm and Its using the next initial state. The advantage of this algo-
Performance rithm is its ability to explore nearby regions of space to

The simulated annealing algorithm is analogous to the reach the minima of the solution spaces. In the process
annealing process in solid-state physics. This algorithm it is able to climb over small hills to reach nearby min-
was.first proposed and applied by Kirkpatrick et al. [3] ima. But this kind of hill climbing search strategy often
in combinatorial optimization problems. The simulated leads to solutions being trapped in regions of the solution

annealing process for a combinatorial optimization prob- space that have minima that are far from the optimal
leto starts with an initial set of parameters at a predefined solution and eventually ending up at a local minimum.
"temperature." This set of parameters is perturbed to a This search strategy thus only works well in a solution
random neighboring state. If the fitness of this neigh- landscape like that shown in Fig. 3, as described in [4],
boring state is better than the initial state, it will be which has low hills over which the algorithm can climb

treated as the next initial state for the next perturbation, easily to seek the global minimum. Fig. 4 is not a good
On the other hand, if the neighboring state is less fit than solution landscape for the simulated annealing algorithm
the initial one, it will only be accepted with a probability since there are many minima enclosed by many tall barri-
characterized by the Boltzmann distribution. Several ers, which the algorithm is unable to overcome. The
random neighbors are generated until near "thermal simulated annealing algorithm, however, will success-
equilibrium" is reached. Thermal equilibrium is said to fully reach the local minimum of the region where it
be reached when there is no further decrease in the fitness first started. Hence a very good initial state is required
value of the current state on further perturbations. The for the simulated annealing algorithm to work in a land-
predefined "temperature" is then decreased representing scape shown in Fig. 4, but this is often not the case.
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Fig. 1. Variation of spectrum. (a) With DFM indexl when index2 = 3.0. (b) With DFM index2 when indexl = 3.0.
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the population. This often results in loss of diversity,
1.2 Genetic Algorithm and Its Performance thus making the crossover process less effective. Genetic

The genetic algorithm, first proposed by Holland [5], drift in the population might also result since a poten-
is based on the natural method by which genes combine tially good schema might be eliminated from the popula-
and propagate in'living organisms. A simple genetic tion [6]. Moreover, due to the random nature of the
algorithm consists of four main processes, namely, the crossover process, there is a high probability that the
recruitment, selection, crossover, and mutation processes, resultant offspring is far away from the parents. Hence,

The recruitment process randomly generates several upon reaching a nearby region in which the global mini-
sets of allowed values for the parameters of the problem mum resides, the classical genetic algorithm may not be
to be optimized, with each set representing an individ- able to converge tO that global minimum as proximity
ual, which will be encoded into bit strings. The collec- in the solution landscape does not confer additional ad-
tion of individuals makes up an initial population. Each vantages of being in the next generation, as is the case
individual is then subjected to a fitness test. The selec- for simulated annealing. Hence the genetic algorithm
tion process selects the above average individuals and might not be able to reach the global minimum in the
retains them in the population. The crossover process solution landscape shown in Fig. 3.
mates all the above average individuals present in the The GAA, a combination of the genetic and the simu-
population to generate offspring that will make up the lated annealing algorithms, has been proposed by Tan
next generation by combining characteristics of the par- and Lim [2] and was proven more effective than the
ents. In this way, above average sets of values will be classical genetic algorithm for DFM synthesis [1] param-
inherited by the offspring. Occasional mutation is done eter optimization for steady-state musical sounds. This
on some offspring to simulate mutation of sites in the paper will provide a more detailed qualitative explana-
bit string (or chromosome), tion of the behavior of the GAA by considering a general

The advantage of this algorithm is its ability to explore solution landscape.
the whole region of the solution space to find a region To show that the GAA is able to optimize to the global
in which the global minimum resides. Hence it can work minimum for our combinatorial problem, the DFM pa-
better than the simulated annealing algorithm in a solu- rameter optimization problem, the solution spaces of one
tion space whose landscape is as shown in Fig. 4. This DFM carrier for all our samples are plotted for compari-
is due to the fact that the genetic algorithm starts with son in Section 1.5. The next section explains how the
a population that is well distributed over the whole solu- GAA is superior to both the classical genetic algorithm
tion space and has a high probability of being in or near and the simulated annealing optimization algorithm.
the valley in which the global minimum lies. Moreover,
since the valleys in Fig. 4 are very steep, if an initial 1.3 Theory of the Genetic Annealing Algorithm
state is in the current valley, it will be very close to the The GAA is a genetic algorithm with a crossover pro-
global minimum. The selection process ensures that the cess, which performs a simulated annealing-like pro-
fitter individuals should have a higher chance of ap- cedure.

pearing in the population of the next generation after As the genetic algorithm often results in premature
crossover. However, after several generations, the cur- convergence of the solution due to loss of diversity and
rent best individual, which might not be the best global simulated annealing may end up in nonglobally optimal
solution, often multiples to a stage whereby it dominates local minima due to the solution being constrained to

only a local region of the solution space, a combination

Genetic Annealing 1

Algorithm with

Recycling(Figure13) Fig. 3. Good solution space for simulated annealing algorithm.
i

PaPrt2mie:e_s1 _1

Audio Output l

Fig. 2. GAA optimization process. Fig. 4. Bad solution space for simulated annealing algorithm.
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of the two algorithms, which we call the GAA, is able done through crossing the fittest individual with several
to combine the advantages of each algorithm. The GAA fit individuals, in the process generating new' offspring.
consists of a recruitment process followed by a selection Unlike the normal crossover process, only those indi-

process and ends with an anneal_cross process. This viduals better than the direct parents are retained in the
anneal_cross process is so named because it performs a population. Those that are less fit than the parents will be
simulated annealing procedure while doing the normal retained only with a probability given by the Boltzmann
crossovers. The details of the methodology have been distribution. This is to enable small barriers to be Over-
described in [2]. We will explain how the algorithm is 'come to seek another region with a more optimum mini-
able to work well on complex solution landscapes, mum. This follows the procedure in simulated annealing.

While the simulated annealing algorithm is efficient The nature of our crossover process (Fig. 6) shows

in solution spaces with landscapes of the type shown in that the Offspring may be either near to or far from its
Fig. 3 and the genetic algorithm works in solution spaces direct parents. For the example shown, the values of the
with landscapes shown in Fig. 4, the GAA is effective two parents (stringl and string2) are 6.053 and 2.138.
in both landscapes or a combination of the landscapes, These two values yield a possible range of values, as
as shown in Fig. 5.

The original GAA starts with a recruitment process, fi

followedby a selectionprocess, and ends with an Jt J_q_

anneal_cross process as described in [2]. In the recruit- Below [_Ef_ ._-f_-'-_--[-_fLment process, initial random individuals are generated Average

which are spread out rather evenly in the entire solution Abov_ _J i_b_ IF ' t/_/ _q_a_j'_
space. As in the genetic algorithm, the fitter individuals Average
are selectedfor reproductionin the nextgenerationin E
the selection process. From the fitter individuals, the BestSolution,l

best is selected and the anneal_cross process is per- Fig. 5. Example solution space for genetic annealing
formed on it. This simulated annealing-like process is algorithm.

Binary Strings Decimal

!Bitnumber !_1,.I,31,21I,,I,ol91811.1_1.14113121,1oValue
Parents:

String1 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 6.053
String2 0 0 0 0 1 0 0 0 0 1 0 1 1 0 10I 2.138
Offsprings obtained:
after Crossing 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 0 6.052
atBitO 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 - 2.139

after Crossing 0 0 0 1 0 1 1 1 1 0 1 0 0 1 1 0 6,054
atBitl 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 1 2.137

after Crossing 0 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0 6.05
at Bit2 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 2.141

after Crossing 0 0 0 1 0 1 1 1 1 0 1 0 1 0 1 0 6.058
atBit3 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 2.133

after Crossing 0 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 6.074
atBit4 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 2,117

after Crossing 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 0 6,042
at Bit5 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 2.149

after Crossing 0 0 0 1 0 1 1 1 1 1 0 1 1 0 1 0 6.106
at Bit6 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 2.085

after Crossing 0 0 0 i o 1 1 1 0 1 0 1 1 0 1 0 5.978
orbit7 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 2.213

after Crossing 0 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 5.722
at Bit8 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 2.469

after Crossing 0 0 0 1 0 1 0 0 0 1 0 1 1 0 1 0 5,21
atBit9 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 2,981

after Crossing 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 4.186
at BitlO 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 4.005

after Crossing 0 0 0 1 t 0 0 0 0 1 0 1 1 0 1 0 6.234
at Bit11 0 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 1.957

lafterCrossing 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 2,138
at Bit12 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 6.053

after Crossing 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 01 2.138
at Bit13 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 6.053

after Crossing 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 2,138
at Bit14 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 6.053

after Crossing 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 2.138
at Bit15 0 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 6,053

Fig. 6. Results of crossover of binary bit strings..
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shown in Fig. 6. Crossing at bit 4 will yield offspring solutions and in the process is also able to help them
of 6.074 and 2.117 while crossing at bit 5, for example, climb over small barriers, so as to reach the local mini-
yields 6.042 and 2.149, respectively, which are very mum of each of the regions. Since the annealcross
close to their parents and thus remain in the local region, process functions by a normal crossover process, it is
We note that the offspring may thus position themselves also able to explore other further regions of space for
on either side of their parents. This process therefore is other possible solutions.

equivalent to "small perturbation" in simulated anneal- It should be noted that the selection process to select
lng. For other values of the crossover bit, such as 8, 9, the above average solutions for further exploitation is
or 10, the offspring have values quite different from only done once in GAA. In this way, the possibility of

the parents. For example, the crossover bit at 10 yields loss of diversity will not result since the population will
offspring of 4.186 and 4.005, which are both far from always contain both the currently very fit individuals as
the parents and most probably lying in other valleys, well as the less fit ones. In fact, all the selected individu-

The former case therefore descends the local valleys als will be given a chance to improve to their maximum
for better solutions of the simulated annealing kind, potentials since none will be eliminated in a GAA pro-
whereas the latter case explores other regions of the cess. The problem of genetic drift is thus eliminated.
solution space for possible superior solutions as for the In general, all individuals will seek to attain their own
genetic algorithm. Both processes therefore contribute local minima in parallel. That is, as shown in Fig. 5, D
to finding a better solution. In parallel to this, the other attains its local minimum at H whereas C attains its local

offspring generated directly by the randomly chosen minimum at G, A attains its local minimum at E, and
partners also perform either exploitation of the local B seeks the best solution after crossing a barrier, all
region or exploration of remote regions in which a better in parallel. However, offspring which are in different
solutionmay lie. valleys from their parents, but fitter, will be retained

Hence for every crossover process, the chances are and thus enable new and superior regions not occupied
that either two valleys are descended, two new regions by the original set of selected individuals to be explored.
are explored, or one valley is descended and one new Hence with the GAA, there is a high probability of
region explored. No matter which case occurs, it is likely obtaining a solution at the global minimum.
to contribute to an improved solution in a manner supe-
rior to either the genetic algorithm or the simulated an- 1.4 Implementation of the GAA in DFM
healing algorithm alone. Optimization

An example solution space is plotted in Fig. 5. This The GAA was implemented using the C language pro-
// solution space has multiple deep valleys and high hills, gramming. The pseudo code is shown in Fig. 7. The

and within each there are further smaller hills and val- GAA consists of three major processes, namely, the
leys. This complex solution space is a combination of recruitment process, the selection process, and the
Figs. 3 and 4. Take, for example, the small dots shown, anneal_cross process.

which are individuals in the solution space generated as Recruitment Process. The recruitment process starts
the initial population. The best individual thus far is with the generation of new random individuals to create
state A. This individual is crossed with several above the initial population. It uses the uniform random hum-
average individuals to generate offspring. In cases when ber generator to generate the two indices of the DFM
its offspring are neighboring, state A will try to exploit parameters and the two numbers representing the bar-
its own valley and finally approaches point E (the local monic numbers of the two modulating frequencies. For
minimum). At the same time, its other partners, say, C our application, the values of the initial index range
and D, will also be perturbed and be shifted to their between zero and the MaxIndex, a control parameter
neighboring states, say, G and H, respectively, their defined by the user which is normally set to be about
fitness calculated and-compared with A. In cases where 10, for our case. On the other hand, the frequencies can
the offspring are much further from the parents and in take a value of any of the harmonic frequencies of the
different valleys, the fitness of these new offspring is sample. Using the set of generated random parameters,
also calculated to find possible valleys containing a bet- the fitness value of each individual is calculated by tak-
ter solution. The Boltzmann distribution will allow state lng the total of the squares of the normalized differences

B to cross also the small barrier to the left and proceed between the harmonic amplitudes of the synthesized and
to state F, which is fitter than the optimum state E first the sample spectra. The lower this value, the fitter the
generated by state A. At this point, the fittest solution individual will be.

chosen for the next anneal_cross process will be state Selection Process. The selection process we employ
F. This current best state F will then undergo a simulated is the simple binary-tournament-selection [7] technique.
annealing-like process by generating its neighboring All selections are based on the fitness value of each

states and finally reaching the best solution, I, which is individual. Hence after the selection process above aver-
the global minimum, age individuals will show up in the next generation.

The random selection process has thus enabled the Anneal Cross Process. This is the process that deter-
whole solution space to be explored for a set of above mines the performance of the algorithm. The process
average solutions. The annealcross process on the other starts with choosing the best individual, based on its
hand helps exploit the nearby states of the set of better fitness value, as one of the parents. This best individual
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· is then allowed to undergo several crossover processes with a random number generated from the uniform ran-
with each of the other randomly selected individuals dom number generator. If this random number is less

from the current population. The number of individuals than the Boltzmann probability calculated, the offspring
selected for mating is defined to be proportional to the would be accepted or else discarded.
number of harmonics in the sample. The number of
crossovers with the Kth individual selected is given by 1.5 Results

P'K/H*0.2, where P is the population size and H is the We have used the genetic annealing algorithm and the

total number of harmonics in the sample. The initial genetic algorithm to optimize the DFM parameters for
fitness temperature is defined to be equal to a value equal synthesizing samples of violin, saxophone, piano, oboe,
to about 10% of the total harmonic amplitudes of the and trumpet sounds at the pitch of A4. The samples were
sample spectrum, obtained from McGill University master sample CDs,

Each mating process performs a parameter crossover and the source information is given in Table 1.

on either indexl, index2, modulating frequency 1, or To show that our GAA optimizes to the best param-

modulating frequency 2 between the two parents. After eters, the one-carrier DFM solution space for randomly
each crossover process, the fitness of each of the two selected time segments of each sample was plotted (see

offspring is evaluated and compared with their direct Figs. 8-12), varying only the indices while keeping fl
parents. If the fitness is improved, it will replace its and f2 fixed at 440 and 880 Hz, respectively. The z axis
direct parent in the current population. Otherwise it will
replace the parent with an acceptance probability charac- Table 1. Sample sources from McGill University master CD.
terized by the Boltzmann distribution,

Instrument Figure Volume Track Index

oldfit\ Violin 8 I 1 16/ Saxophone _ 9 3 16 09
P(Boltzmann) = exp k fitness Temp] ' Piano l0 3 3 16

Oboe 11 11 81 11

This acceptance probability is computed and compared Trumpet 12 8 57 02

Begin

Get SampleO;

RecruitO;

Select();
DO

Anneal Crosso);

WHILE (Bestfitness is not satisfactory or

Time's Up);
End

Anneal Cross()

ParentA = ChooseBcst0

FitnessTemperature = 0:'1
FOR K = I TO No Of Harmonics DO

Choose tile Kth Partner

ParentB = ChoosePartner0
FitnessTemperature = FitnessTemperature * 0.9
FOR Tk = I TO (Npop * K/No Of Harmonics * 0.2) DO

Generate Tk Ofl_pring

Crossbits(Random Bit Number)

If Fitness(OffspringA) is better than Fitness(ParentA)

Update(ParentA <= OffspringA)

Elself RandomNum(1) < Boltz Prob(Fitness(OffspringA)

BackUpBest(ParentA)

Update(ParentA <= OffspringA)

If Fitness(OffspringB) is better than Fitness(ParentB)
·Update(ParentB <= OffspringB)

Elself RandomNum(l ) < Boltz_Prob(Fitness(Offs pringB)
Update(ParentB <= OffspringB)

END FOR
END FOR

· : Fig. 7. Genetic annealing algorithm pseudo code.
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gives the fitness of the corresponding DFM equation on found were 0.557 and 0.533 for the parameters found
a logarithmic scale whereas the x and y axes correspond by the GA and the GAA, respectively. The GAA optimi-
to indices 11and 12 with steps of 0.05. The global mini- zation was again found to be more effective compared
mum of the fitness value was determined and compared to the GA for this spectrum.
with the optimum minimum obtained by the GAA. It

was found that for all our samples, despite the irregular 1,5.3 The Piano
and unpredictable terrain in the solution spaces as Solution Space. The solution space for the spectrum
shown, the optimized DFM indices generated from the of the piano at 2125 ms is shown in Fig. 10. With fl
GAA matched almost exactly the global minima of each and f2 fixed at 440 and 880 Hz, respectively, the mini-
solution space. For comparison, the classical genetic mum fitness of the graph occurs at I l = 0.65 and 12
algorithm (GA) was also used for the optimization of = 0.40.
the DFM parameters, and the best indices found using Performance of the GAA. Using the classical GA
the GA are tabulated in Table 2 together with the global for one DFM carrier, the best indices found were I I =
minima found by the GAA for the solution spaces. It 1.03 and 12 = 0.53. Using the GAA, the optimized
was found that the classical GA is unable to optimize parameters were found to be Il = 0.60 and 12 = 0.39.
the global minimum of the solution spaces for most of From Table 2, the fitness values were, respectively,
our samples. The GAA was always found to be able to 0.050 and 0.011 for the parameters found by the GA
optimize the DFM parameters to a better fitness than the and the GAA. The GAA was also found to optimize the
GA, which was very close to the actual global minimum. DFM parameters for this spectrum closer to the global
The results for each instrumental sound are given in minimum compared to using the GA.
Sections 1.5.1 - 1.5.5.

1.5.4 The Oboe

1.5.1 The Violin Solution Space. The solution space for the spectrum
Solution Space. The solution space for the spectrum of the oboe at 1500 ms is shown in Fig. 11. With fl and

of the violin at 250 ms is shown in Fig. 8. With ft and f2 fixed at 440 and 880 Hz, respectively, the minimum
f2 fixed at 440 and 880 Hz, respectively, the minimum of the graph occurs at I l = 3.50 and 12 = 1.50.
fitness of 0.270 occurs at Il = 1.45 and 12 --_ 0.65. Performance of the GAA. Using the classical GA

Performance of the GAA. Using the classical GA for one DFM carrier, the best indices found were Il =
for one DFM carrier, the best indices found were I l = 3.47 and 12 = 1.41. Using the GAA, the optimized
0.88 and 12 = 0.46 at a fitness value of 0.306. Using
the GAA, the optimized parameters were found to be
I 1 = 1.46 and 12 = 0.66 at a fitness value of 0.260,
which is at the global minimum. Hence the GAA was
found to be much more effective in optimizing the DFM
parameters for this spectrum to the global minimum
compared to the GA.

1.00E+04-

1.5.2 The Saxophone loDE+D3
Solution Space. The solution space for the spectrum

of the saxophone at 125 ms is shown in Fig. 9. With fl ].00[+02 '--3.65

and f2 fixed at 440 and 880 Hz, respectively, the mini- _ 100E+o] 3.20
2.75

mum fitness occtirs at Il = 4.95 and 12 = 1.35 with a _ ]OOE+00-

value of 0.530. _.0OE-0]- _.85

Performance of the GAA. Using the classical GA ]00E-02 ]40
for one DFM carrier, the best indices found were I 1 =

5.01 and 12 = 1.45. Using the GAA, the optimized ].0ov03-,_ :o.5o
parameters were found to be I I = 4.98 and 12 = 1.37, o o _ _ o
which is very close to the global minimum, comparing t,dox] '_
with 4.95 and 1.35, respectively. The fitness values Fig. 8. Solution space for violin at 250 ms.

Table 2. Comparison of best indices found from solution space with best indices found from GAA and GA.*

Minimum of
SolutionSpace GAA GA

Acoustic Instrument I l 12 Fitness It 12 Fitness I1 12

Violinat 250ms 1.45 0.65 0.260 1.46 0.66 0.306 0.88 0.46
Saxophoneat 125ms 4.95 1'.35 0.533 4.99 1.37 0.557 5.01 1.45
Pianoat 2125ms 0.65 0.40 0.011 0.60 0.39 0.050 1.03 0.53
Oboeat 1500ms 3.50 1.50 0.406 3.40 1.54 0.457 3.57 1.34
Trumpetat 2000ms 3.05 1.40 0.312 3.07 1.38 0.331 2.22 1.82

* One operator of DFM is used, varying indices, keeping frequencies fixed atf_ = 440 Hz and f2 = 880 Hz.
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parameters were found to bel_ = 3.39 andl_, = 1.47. occurring atl_ = 3.05 andl 2 = 1.40, the other at /1 =
Comparing with 3.50 and 1.50, respectively, we found 2.25 and 12 = 1.80. Among these two minima, the
that both the GAA and the GA could optimize the DFM former gives a lower (that is, better) fitness value of

parameters for this spectrum rather close to the global 0.312. Hence we may say that the global minimum is
minimum. From Table 2, the solution optimized by the at 11 = 3.05 and 12 = 1.40.

GAA has a fitness of 0.406 whereas that by the GA has Performance of the GAA. Using the classical GA
a fitness value of 0.457, which indicates that the solution for optimizing one DFM carrier, the best indices found

found by the GAA is a better one. were I_ = 2.22 and 12 = 1.82. Using the GAA, the
optimized parameters were found to be I1 = 3.07 and

1.5.5 Trumpet 12 = 1.38. The fitness values found were 0.331 and
Solution Space. The solution space, with fl and f2 0. 312 for the parameters found by the GA and the GAA,

at 440 and 880 Hz, respectively, for the spectrum of the respectively. We found that the GA converges to its
trumpet at 2000 ms is shown in Fig. 12(a). Viewing the solution prematurely before the global minimum is

solution space of the trumpet from the sides yields Fig. reached. This confirms that the GAA is capable of opti-
12(b) and (c). By careful observation of these solution mizing the solution to the global minimum for this
spaces we found that there exist two major minima, one spectrum.

..... J
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Fig. 9. Solution space for saxophone at 125 ms.

1.00E+03- I

1.00E+02-

1,DOE+01 -

1,00E+O0-

c

1,00E-01- ? 4,45
3.93

1 00E-02
2.80

1.OOE_3 Index2
t,70

1.00E _]4- _- 1.15

_m_,_ /06o
od ,..:o _ o ,.oo

Fig. 10. Solution space for piano at 2125 ms.

346 J. Audio Eng. Soc., Vol. 47, No. 5, 1999 May



PAPERS DYNAMICMUSICALSOUNDSAMPLES

-1.00E +02

1.DOE+01

1.00E +00
4.55

4.05
1.00E-01

3.55

3.05 ·1.00E-02
2.55

2.05: -1.00E-03
Index1

1.55

1.05

0.55

Fig. 11. Solutionspace for oboe at 1500ms.

1.OOE+O2m

1.00E+01- _

1.00E+00-
1.00E +02

-1.OOE+O1

1.00E-01

Index1 2.3C c
-1.00E_)1

1.8_ 1.00E-O2-

x_ - 1.00E-02

_ c:; c5 -- Indox2 Indox2

(a) (c)

lOOE+02

1.OOE+01-

1.00E+O0

tOOE-O1- --

Index2
1.00E-03 0.05

_o o _o o _o o uo o u_ u0 o uo o _ _o o L0 uo o _o o Lo o _o o Lo Lo o Lo

_ _: _ _ _: ._ 4 8 r._ _d 4 cd _ c'4 c-,i c-i c4 c-i c4 c,,i _ _: Z _: z --: d 6 d d d d d
Index1

(b)

Fig. 12. Solution spaces at 2000 ms. (a) Trumpet. (b) Trumpet viewed from indexl axis. (c) Trumpet viewed from index2 axis.

O. Audio Eng. Soc., Vol. 47, No. 5, 1999 May 347



LIMANDTAN PAPERS

2 DISCUSSION 3 SYNTHESIS OF DYNAMIC MUSICAL SOUNDS

In the previous sections we reviewed the GAA to ex- Since for most musical notes, except at the attack and
plain how it is more effective in seeking the global mini- decay portions, the sound varies rather continuously, the
mum in the solution spaces for the DFM parameteropti- optimized DFM parameters for two spectra of adjacent
mization than both the simple genetic algorithm and the time frames will not vary too abruptly. For efficiency,
simulated annealing algorithm used separately. While we propose a recycling process just before the com-
the genetic algorithm works on the assumption that good mencement of the calculation for the next time frame of
schemas are derived only from good parents, the GAA the musical sound. This process is included as part of
assumes that each and every individual has some good the recruitment process to ensure that the best solution
schemas and has the potential to contribute to the best obtained in the previous time frame appears as an indi-
solution. Thus once they are selected by a preliminary vidual in the initial population for the next. In other
selection process, none of them is eliminated throughout words, the recycling process helps to create a near opti-
the GAA. Most individuals, while helping the best to mized initial state for further optimization if the spec-
improve further, undergo similar training processes by trum does not vary much compared to that of the previ-
several interactions (or crossovers) with the best individ- ous time frame. This saves greatly on the time to reach
ual. In the process, all individuals have an equal chance the most optimized state since the algorithm does not
to contribute to the best individual in the next generation have to start from scratch again with an initial random
since no further selection or elimination will take place, population at every time frame of the musical sample.
In this way no loss of diversity will Occur as the popula- This is especially important for the GAA as simulated
tion will contain individuals with diverse characteristics, annealing is the basis of its anneal-cross process. This
Our results show that the algorithm is able of optimizing process will perform very much more effectively if the
the global minima, as expected, for all our samples, initial state is near optimized. Even if the spectrum of

Three-dimensional solution spaces of selected time the next time frame differs greatly from that of the previ-
segments of all our samples were plotted. The solution ous time frame, the recycling process will not signifi-
spaces for one DFM carrier for all our samples resemble cantly degrade the performance of the algorithm. In this
that shown in Fig. 5, which is a combination of the case, the recycled best individual from the previous time
landscapes shown in Figs. 3 and 4. As shown in the frame will act as one ofthe randomly generated individu-
results, all the GAA-optimized DFM parameters matched als in the next recruitment process, and thus the whole
the global minima of the solution spaces of the respective GAA process will still perform efficiently.
samples while the classical genetic algorithm usually The modified GAA with the recycling process for dy-
converges before the global minimum is reached for namic DFM optimization is clearly shown in Fig. 13.
most of our samples (as shown in Table 2). This further The whole process starts with the input of the frequency
confirms that the GAA is superior to the genetic algo- spectrum of the zeroth time frame of the real sample.
rithm in converging solutions to the global minima in This obviously does not require the recycling process
complex and irregular solution landscapes. We therefore and enters the GAA process directly for optimization of
believe that the GAA can be used to solve many other the DFM parameters using an initial random population
combinatorial optimization problems with efficiency sample. The optimized DFM parameters that are output
andaccuracy, fromthe GAAprocessare storedin an outputfile.The

f GetSpectpamof ']

l Zeroth time frame J

I GetNextTime I I GAA I

FrameSpectrum _ Process 4

Istim;_ Recycle lProcess

l OptimizationCompleted 1

Fig. 13. Incorporating recycling process in GAA optimization.
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frequency spectrum of the next time frame is then ob-
tained and checked whether it is null, that is, the end 3.1 Results

of the real musical sound sample has been reached, The results of optimization for the time-varying har-
which will terminate the process. Otherwise it will monies of the samples are presented in the following
undergo the recycling process. The recycling process sections. It was found that for all our samples, the time-
will capture the best set of parameters from the previous varying harmonics could be synthesized to an acceptable
time frame and send it to the next recruitment process degree of accuracy with the synthesized tones that re-
so that the previous best individual can be made one of semble the sound of the real instruments, using only two
the individuals in the next time frame. This whole pro- DFM carriers. Note that a fitness value will be found
cess is repeated for all time frames before the whole for every time frame. To compare the results of one
optimization is completed. As will be expected, as the instrument with another, an average fitness is calculated
time frame number increases, the number of generations by taking the mean of the sum of fitness values for all
required to reach the optimized solution will decrease, time frames (typically 150 frames) for each instrument
especially for the sustain portion of a musical sound, tone. All the fitness values given in this section are the
The complete flow diagrams of our optimization process average fitness for that instrument (Fig. 15 and Table 3).
are given in Figs. 13 and 14.

3.1.1 The Violin

I RecruitmentProcess I The spectmm for the real violin sample is plotted inFig. 16(a). As shown in the graph, the attack lasts for
about 750 ms and sustains with a continually vibrating
tone for 2500 ms. The resultant synthesized spectrum is

SelectionProcess ') shown in Fig. lO(b). The relative amplitudes of the result-
( ant harmonics characterize those of the violin very closely

with a fitness of 0.0260. For comparison, the fitness ob-
tained using the classical GA with the recycling process
was 0.0537, which was higher than that obtained by the

I Anneal_Cross Process 14 GAA.
3./.2 The Saxophone

The spectrum for the real saxophone sample is plotted
in Fig. 17(a). Using the GAA the fitness obtained is

No 0.0149, which is lower than that obtained by the classi-

Table 3. Comparison of fitness values obtained from
GAA and GA.

OptimizationMethod GAA GA

Violin 0.0260 0.0537
Terminateand Saxophone 0.0149 0.0210
OutputBest Piano 0.0234 0.0320

Solution Oboe 0.0283 0.0616
Trumpet 0.0139 0.0148

Fig. 14, Simple GAA process.

0.07 l

0.06

0.O4

[]GAA
,_0.03- [] GA

Violin Saxophone Piano Oboe Trumpet

Instruments

Fig. 15. Plot of fitness values obtained from GAA and GA. Lower fitness indicates better fit.
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cai GA, namely, 0.0210. The relative amplitudes of the the oboe with a fitness of 0.0283. The entire synthesized
resultant harmonics and the envelopes optimized by the spectrum of the oboe is shown in Fig. 19(b). It is found
GAA in general characterize those of the saxophone, that the synthesized one closely resembles that of the
The entire synthesized spectrum for the synthesized sax- real oboe. Using the classical GA, the fitness obtained
ophone is shown in Fig. 17(b). is 0.0616, which is less optimum.

3.1.3 The Piano 3.1.5 The Trumpet

The spectrum for the real piano sample is plotted in The spectrum for the real trumpet sample is plotted
Fig. 18(a). The relative amplitudes of the resultant har- in Fig. 20(a). Using the GAA the fitness found is 0.0139,

monics characterize those of the piano very closely'with which is again more optimum compared with the fitness
a fitness of 0.0234. The resultant synthesized spectrum of 0.0148 obtained by the classical GA, and the spectrum
is shown in Fig. 18(b). The fitness obtained using the of the synthesized trumpet by the former is shown in
classical GA is found to be 0.0320, which is less opti- Fig. 20(b). The relative amplitudes of the resultant har-

mum than that obtained from the GAA. monics in general characterize those of the trumpet.

3.1.4 The Oboe 4 CONCLUSIONS
The spectrum for the real oboe sample is plotted in

Fig. 19(a). Using the GAA the relative amplitudes of From the results we have shown that the GAA is

the resultant harmonics in general characterize those of effective in optimizing the DFM parameters for continu-
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Fig. 16. Spectrum plots. (a) Sample violin at 440 Hz. (b) Synthesized violin at 440 Hz. Average fitness = 0.0260.
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