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Postprocessing Method for Suppressing Musical
Noise Generated by Spectral Subtraction

Zenton Goh, Kah-Chye Tan, and B. T. G. Tan

Abstract—In this correspondence, we investigate whether musical noise,
which often exists in speech enhanced using spectral subtraction, can
be suppressed. Via exploiting some specific characteristics of human
speech, we propose a method that can effectively suppress musical
noise without noticeable effect on speech intelligibility. Performance
assessments confirm that our method is effective.

Index Terms—Musical noise, spectral subtraction, speech enhancement.

I. INTRODUCTION

In many practical situations, speech has to be recorded in the pres-
ence of undesirable background noise. As noise often degrades the
quality/intelligibility of recorded speech, it is beneficial to carry out
noise suppression. In the literature, a variety of speech enhancement
methods capable of suppressing noise has been proposed. Spectral
subtraction [1], [2] is among the traditional methods that have been
extensively studied.

Spectral subtraction is popular because it can suppress noise
effectively, even in some real-life scenarios. In addition, the un-
derlying concept is relatively straightforward, and this leads to
simplicity in implementation. (There is a commercial product that
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employs spectral subtraction.) However, spectral subtraction tends
to introduce a specific disturbance, commonly referred to asmusical
noise. Contrary to its name, musical noise is not necessarily pleasing,
and can be annoying. In fact, the unacceptability of musical noise has
motivated invention of enhancement methods based on considerations
different from those of spectral subtraction. Some of such methods,
for example those proposed by Lim and Oppenheim [3], and Ephraim
and Malah [4], are very promising and have received considerable
research attention.

Here, we investigate whether musical noise introduced by spectral
subtraction can be suppressed without noticeable effect on speech
intelligibility. In this connection, it is worthwhile mentioning the
relevant methods proposed by Boll [2] and Whipple [5]. Basically,
both methods are developed based on the assumption that the spectral
components of musical noise usually appear as isolated peaks in the
spectrogram of enhanced speech. However, in practice, musical noise
manifests itself as not only isolated peaks, but also “short ridges”
in the spectrogram, and therefore will not be effectively suppressed
by these methods. Although it is possible to suppress those “short
ridges” by modifying some parameters associated with the methods,
the intelligibility of speech would usually have to be compromised.

In this work, we first identify the trade-offs among suppression
of unwanted noise, generation of musical noise, and preservation
of the intelligibility of desired speech. Subsequently, we propose a
postprocessing method capable of suppressing musical noise effec-
tively without noticeable effect on speech intelligibility, via exploiting
some specific characteristics of human speech. Finally, we sub-
ject our method to tests with speech sentences obtained from the
TIMIT speech data base [6], to which we add white Gaussian noise
and computer-fan noise (separately) amounting to various values
of signal-to-noise ratios (SNR’s). Performance assessments based
on spectrogram plots, objective measures, and informal subjective
listening tests show consistently good results.

II. PRELIMINARY DISCUSSION AND MOTIVATION

Since the first step to our method will be spectral subtraction,
we shall present a brief discussion on spectral subtraction. We shall
adopt an additive noise model

y[n] = s[n] + d[n] (1)

where y[n], s[n] and d[n] denote discrete-time samples of noisy
speech, clean speech, and noise, respectively. Subjecting the samples
to sampled short-time Fourier transform (SSTFT), we obtain

Yr[k] = Sr[k] +Dr[k] (2)

whereYr[k], Sr[k], andDr[k] denote, respectively, the SSTFT’s of
y[n], s[n], and d[n] for Framer.

The most general version of spectral subtraction is known asgen-
eralized spectral subtraction(GSS). GSS first obtains the magnitudes
of the SSTFT of the enhanced speechjŜr[k]j’s, which we shall refer
hereafter asspectral magnitudes, and the phasesarg(Ŝr[k])’s with
the following recipe:

jŜr[k]j =

(jYr[k]j
� � �jD̂r[k]j

�)1=�; if jYr[k]j� > �jD̂r[k]j
�

0; otherwise
(3)

arg(Ŝr[k]) = arg(Yr[k]) (4)

where� and � are positive constants, andjD̂r[k]j is an estimate
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Fig. 1. (a) Spectrogram of the (clean) speech sentence “before you go out,” (b) spectrogram of the speech corrupted by white Gaussian noise, (c) spectrogram
of the enhanced speech obtained using GSS with a moderate�, (d) spectrogram of the enhanced speech obtained using GSS with a large�, and (e)
spectrogram of the enhanced speech obtained using our method.

of jDr[k]j. Usually, jD̂r[k]j is obtained by averaging thosejYr[k]j’s
that contain only noise. WithjŜr[k]j and arg(Ŝr[k]), the enhanced

speech can be obtained via inverse discrete Fourier transform and the
standard overlap-add processing.
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The parameter� has some effect on speech intelligibility, whereas
� controls the amount of noise suppression. For example, when� is
set to two, the enhanced speech often appears to be more intelligible
than that obtained with an� equals to 1 or 0.5 (see [1]). However,
musical noise seems to be relatively more annoying for the case where
� = 2. In general, the value of� should be just large enough to
attenuate the unwanted noise. While using a very large� could fully
attenuate the unwanted noise and suppress musical noise generated
in the spectral subtraction process, this leads to weakening of speech
content, which in turn reduces the intelligibility.

Before we begin the discussion of our method, it is beneficial
to examine the spectrograms (graphical plots of spectral magni-
tudes) of typical clean speech, noisy speech, and enhanced speech.
Fig. 1(a) shows the spectrogram of an 8 kHz (clean) speech signal.
The horizontal axis of the spectrogram denotes time, vertical axis
frequency, and the spectral magnitude is shown with gray shade
(darker shade indicates larger value). Observe that a large portion of
the spectrogram is practically blank (i.e., unshaded) and the speech
energy is concentrated in a few isolated regions. In the figure, the
voiced portion of speech is characterized by dark parallel “stripes”
whereas unvoiced portion is characterized by gray patches. Notice
that some parallel stripes are horizontal while some are slanting up
or down, indicating a change in the pitch of the speech signal.

When white Gaussian noise amounting to an SNR of 10 dB is
added to the clean speech, the blank region of the spectrogram
as shown in Fig. 1(a) becomes shaded, and some of the stripes
corresponding to voiced speech disappear [see Fig. 1(b)]. With an
appropriate spectral subtraction, we obtain an enhanced speech with
spectrogram as shown in Fig. 1(c). Spectral subtraction has sup-
pressed the noise greatly, and consequently Fig. 1(c) resembles
Fig. 1(a) much more than Fig. 1(b) does. However, noise suppression
is achieved at a price—many isolated short stripes which correspond
to musical noise are generated in the process.

Musical noise can be easily eliminated viaoversubtraction(i.e.,
GSS using a larger�), but this will be at the expense of speech
intelligibility. Indeed, in Fig. 1(d) which shows the spectrogram of
the enhanced speech obtained using GSS with a large�, we observe a
significant reduction of the unwanted short stripes. At the same time,
some stripes observed in Fig. 1(c) (the spectrogram of the enhanced
speech with a smaller�), corresponding to the desired speech content,
are eliminated. [Fig. 1(e) will be referred to in Section IV.]

In short, it is possible to suppress unwanted noise effectively with
GSS. However, the speech quality is compromised (because of the
annoying musical noise) and/or the speech intelligibility decreases.
Consequently, it is a challenge to suppress unwanted noise effectively
while maintaining reasonably high speech quality and intelligibility.

III. OUR METHOD

Our strategy is to first obtain the spectral magnitudes (and hence
the spectrogram) of the enhanced speech via the GSS recipe, using
appropriate� and� such that the enhanced speech is of reasonably
high intelligibility but with resulting appreciable musical noise. The
next step involves suppressing the short stripes in the spectrogram that
correspond to musical noise, without noticeable effect on the speech
content. The final step requires computation of enhanced speech via
inverse discrete Fourier transform and overlap-add processing, with
the use of the spectral magnitudes obtainable from the processed
spectrogram and the spectral phases of the noisy speech.

The effectiveness of our method depends greatly on the ability to
identify which regions of the spectrogram correspond to the desired
speech signal and which regions correspond to musical noise, and the
processings to be carried out over these regions. Therefore, we shall

Fig. 2. Six blades over 7� 7 spectrogram points. The point of concern
coincides with (0, 0), the centroids of the blades.

Fig. 3. Histogram of var(BBB
min

).

focus on our classification (identification) approach and our specific
treatment to the various regions of the spectrogram.

A. Classification

We shall determine which regions in the spectrogram are very
likely to correspond to speech, and which regions correspond to either
musical noise or speech (of low energy). For convenience, we shall
refer to the regions very likely to be speech as Region 1, and the
other as Region 2.

1) Stage 1: We shall exploit the fact that musical noise can
be effectively reduced via oversubtraction [see Fig. 1(d) and the
accompanying discussion in Section II]. Indeed, we propose first
computing the spectrogram of the enhanced speech based on GSS
with a large�. We then include those spectrogram points(r; k)’s
that have spectral magnitudes greater than zero in Region 1:

(r; k) 2 Region 1 if jYr[k]j
�

� �jD̂r[k]j
�

> 0: (5)

Clearly, those spectral components of speech that are strong enough
will be retained.

2) Stage 2: The fact that oversubtraction leads to decrease in
speech intelligibility implies that some spectral components corre-
sponding to speech are attenuated in the oversubtraction process. It
is therefore sensible to assume that there would be some additional
spectrogram points that can be classified under Region 1. However,
the spectral values associated with these points are low, and usually
comparable to those of musical noise, meaning that any form of
classification based on “energy” discrimination would be difficult.
This then motivates the development of the following method which
exploits specific characteristics of speech.

First define bladesBBBi’s, for i = 1; � � � ; p, with different
orientations over the point of concern [i.e., (0,0)], in the way shown
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(a) (b)

Fig. 4. (a) Five “left” blades and (b) five “right” blades.

in Fig. 2. The grid points ofBBB1; � � � ; BBB6 as shown in Fig. 2 are
f(�3; 3); (�2; 2); (�1; 1); (0; 0); (1; �1); (2; �2); (3; �3)g,
f(�3; 1); (�2; 1); (�1; 0); (0; 0); (1; 0); (2; �1); (3; �1)g;f(�3;

0); (�2; 0); (�1; 0); (0; 0); (1; 0); (2; 0); (3; 0)g, f(�3; �1); (�2;

�1); (�1; 0); (0; 0); (1; 0); (2; 1); (3; 1)g, f(�3; �3); (�2; �2);

(�1; �1); (0; 0); (1; 1); (2; 2); (3; 3)g, and f(0; �3); (0; �2);

(0; �1); (0; 0); (0; 1); (0; 2); (0; 3)g, respectively. The width of
each blade should be thin enough so that the grid points being
intersected form a straight line. Of course for some orientations, the
width of the blade has to be somewhat larger so as to intersect a
significant number of points, and the points intersected are not strictly
in one straight line (seeBBB2 andBBB4 of Fig. 2). In addition, the length
of each blade should be longer than those of most short stripes,
which correspond to musical noise, but shorter than the lengths of
those stripes and large patches respectively corresponding to voiced
and unvoiced speech.

To determine whether a spectrogram point belongs to Region 1, we
compute var(BBBi), the variance of the values of the spectrogram points
which the blade intersects, for each bladeBBBi wherei = 1; � � � ; p:

var(BBBi) =

(r; k)2BBB

f20 log10(jŜr[k]j + 1)g2

jBBBij

�
(r; k)2BBB

20 log10(jŜr[k]j + 1)

jBBBij

2

: (6)

We then identifyBBBmin, the blade with variance being the minimum
among var(BBBi) for i = 1; � � � ; p:

BBBmin = argmin
BBB

[var(BBBi)]: (7)

The variance associated withBBBmin, which will be denoted as
var(BBBmin), would offer an indication as to whether the point
concerned belongs to Region 1. Indeed, for a point belonging to
those parallel stripes associated with voiced speech,BBBmin will most
likely be of the same orientation as the stripes, and var(BBBmin)

will be quite small due to homogeneity in the spectral magnitude
values. For a point within patches associated with unvoiced speech,
all the variances will be reasonably low, especially var(BBBmin). On
the other hand, the variances for a point which belongs to short
stripes corresponding to musical noise will all be considerably high,
because the blade length is longer than the stripe length, andBBBmin

intersects some points outside the stripes, in addition to those inside.

Consequently, it is justifiable to assume that a spectrogram point
(r; k) belongs to Region 1 if var(BBBmin) is considerably small:

(r; k) 2 Region 1 if var(BBBmin) < � (8)

where� is an appropriately chosen threshold. In fact, the histogram
of var(BBBmin)’s (such as that shown in Fig. 3) will often exhibit two
peaks, of which one occurs at a large var(BBBmin) and the other small
var(BBBmin). Analysis of the peaks confirms that the former correlates
well with musical noise and the latter with speech signal. Therefore
we recommend setting the threshold� to be one around the valley
between the two peaks.

Additional considerations were given to the points at the
boundaries of stripes/patches associated with speech. In fact, for
such a boundary point, almost every one of the blades will have
one part which protrudes out of the stripe/patch of concern,
leading to large var(BBBmin). To tackle this problem, we employ
additional “left” and “right” blades as shown in Fig. 4 (the
additional blades have lengths and orientation angles identical
to the original ones shown in Fig. 2). For example,BBB7 =

f(�6; 6); (�5; 5); (�4; 4); (�3; 3); (�2; 2); (�1; 1); (0; 0)g and
BBB13 = f(0; 0); (1; 0); (2; 1); (3; 1); (4; 2); (5; 2); (6; 3)g [note
that the point of concern is at (0,0)]. Now for any one point of
concern, one has to simply obtainBBBmin and var(BBBmin) for the
original, the left and the right blades, in exactly the way discussed in
the previous paragraphs. There will thus be a single lowestBBBmin for
the three types of blades. The spectrogram points for the blade with
this BBBmin are most likely to be part of a stripe or patch associated
with speech. On the other hand, for a point of concern on a short
stripe associated with musical noise, the value of var(BBBmin) will
remain high, as the lengths of the original, left and right blades are
all longer than that of the stripe.

Remark: With the classification carried out in Stage 2, that in
Stage 1 seems redundant. While this is generally true, Stage 1 is
crucial when there exist sudden bursts of speech utterances which
give rise to intense stripes with rapidly increasing spectral values. For
these bursts, var(BBBmin) will be high and the point concerned can be
confirmed to fall under Region 1 only with the energy discrimination
approach that Stage 1 adopts.

B. Processing Treatment

Region 1: After the speech/musical-noise classification process,
the spectrogram is divided into two regions, namely Region 1 and
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(a) (b)

Fig. 5. Graphs of ILSD measurements versus SNR for (a) WGN and (b) computer fan noise.

Region 2. For those points in Region 1, we suggest leaving the
spectral values untouched. For those points in Region 2, the following
processing will be carried out.

Region 2: Region 2 comprises points that are associated with
either musical noise or speech (of low energy). The criterion for
processing should be that the spectral values of the points corre-
sponding to musical noise are considerably attenuated, while those
corresponding to speech are at most slightly altered. With this in
mind, we propose replacing the spectral value of the point concerned
by the median of the values of those spectrogram points whichBBBmin

intersects, if the median value is not larger than the current spectral
value

jŜr[k]j = median
(r ; k )2BBB

(jŜr [k
0
]j)

if median
(r ; k )2BBB

(jŜr [k
0
]j) < jŜr[k]j: (9)

Of course, over a spectrogram point corresponding to speech, any
form of processing will likely to change the spectral value, and simply
leaving the value untouched as we have suggested for Region 1 is
probably a safer approach. However, the difficulty here is that we
are unsure whether the point corresponds to either speech or musical
noise. Fortunately,BBBmin would be likely to coincide/overlap with
the stripes/patches associated with speech. Consequently, the median
value will not be too different from the spectral value of the point
concerned due to the uniformity of points within such stripes. On
the other hand, over a short stripe associated with musical noise, the
median will take a spectral value considerably smaller than that of
the point itself, since many points that the blade intersects will fall
outside the stripe and will thus have much lower values.

C. The Complete Enhancement Procedure

Now we shall present the complete enhancement procedure we
propose. Given a noisy speech signal, it is first buffered into over-
lapping frames with a frame size of 32 ms and an overlap of 24 ms.
Each frame is then multiplied by a Hanning window and transformed
to the frequency domain via a fast Fourier transform (FFT). Next,
spectral subtraction based on (3) is employed, with� = 2 and
� = 1:8, for obtaining the SSTFT magnitudes of the enhanced
speech. Subsequently, every SSTFT magnitude point is subject to
classification: it will be classified to be in Region 1 (region very likely

to be speech) or Region 2 (those not in Region 1) according to (5) with
� = 2 and� = 16, and also (8) with� = 200. Note that all 16 blades
BBB1; � � � ; BBB16 as shown in Figs. 2 and 4 are used in the computation
of BBBmin as given by (7), which will in turn be used for classification
via the recipe specified by (8). For points classified under Region 1,
we leave them untouched. For points classified under Region 2, we
recompute the SSTFT magnitude via (9). Finally, by combining the
SSTFT magnitudes so obtained with the SSTFT phases obtained via
(4) as well as applying inverse FFT, standard overlap-add, we get the
desired postprocessed enhanced speech.

IV. PERFORMANCE ASSESSMENT

We shall now assess the performance of our method. We used pho-
netically balanced speech sentences taken from the TIMIT Acoustic-
Phonetic Speech Database [6] provided by the National Institute
of Standards and Technology (NIST). Two male and two female
sentences were chosen and down-sampled from 16 to 8 kHz. Also,
2 types of noise, namely computer-generated white Gaussian noise
(WGN) and real computer-fan noise, amounting to various values of
SNR (�5, 0, 5, and 10 dB) were considered.

For performance assessment, we relied on not only spectrogram
plots, but also on objective measures such as segmental SNR
(SEGSNR) and inverted linear spectral distance (ILSD) [7], and
informal subjective listening tests. ILSD was employed because it
has reasonably high correlation with diagnostic acceptability measure
[7], a widely adoptedsubjectivemeasure for overall speech quality
and intelligibility. (Interested readers may refer to [7] for more details
about SEGSNR and ILSD.) Note that the ILSD measure takes value
between 0% and 100%, with 100% (0%) being best (worst) in overall
quality and intelligibility. Note also that we removed silent intervals
in the speech signals before computing SEGSNR since the silent
intervals could drastically affect the value of SEGSNR.

We first evaluated the performance through a visual inspection
of the spectrograms. The evaluation was carried out on the speech
sentence “before you go out” corrupted by white Gaussian noise
(WGN). Now recall that Fig. 1(c) is the spectrogram of the enhanced
speech obtained using GSS with a moderate�, which exhibits a
few isolated short stripes corresponding to musical noise. Subjecting
the spectrogram to our postprocessing method, we obtained the
spectrogram shown in Fig. 1(e). A comparison of the two spectro-
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(a) (b)

Fig. 6. Same as Fig. 5 except that SEGSNR instead of ILSD is used.

grams shows that most unwanted short stripes are eliminated while
the parallel stripes and large patches corresponding to voiced and
unvoiced speech respectively remains practically untouched. Fig. 1(d)
shows the spectrogram of the enhanced speech obtained using GSS
with a large�. The value of� is indeed large since some stripes
associated with speech in Fig. 1(a) (the spectrogram of the clean
speech) have disappeared. Unfortunately, even with such a large�,
some musical noise still survives. On the other hand, it is encouraging
to see that with our method, not only can the musical noise be
almost completely removed, but also that the speech content is better
preserved [see Fig. 1(e)]. Indeed, some musical noise observed in
Fig. 1(d) is absent in Fig. 1(e), while some stripes corresponding to
voiced speech are retained in Fig. 1(e) but not in Fig. 1(d) (see the
relevant labels on both figures).

Next we compute the objective measures ILSD and SEGSNR with
the use of all the four sentences mentioned. Figs. 5 and 6 shows
ILSD and SEGSNR, respectively, for noisy speech, enhanced speech
obtained using GSS with a moderate�, as well as enhanced speech
obtained using GSS with the same� and our method in cascade.
Clearly, our method offers significant improvements consistently in
the presence of both WGN and computer-fan noise at various SNR’s.

We also performed informal subjective listening tests on the four
speech sentences. It was clear that the enhanced speech obtained
using GSS with our method was much more pleasant than that with
GSS alone (in the sense that musical noise could hardly be heard).
Moreover, it was found that the intelligibility of the former was
comparable to, if not higher than, the latter.

V. CONCLUSION

We have developed a postprocessing method for suppressing
musical noise generated by spectral subtraction. Visual evaluation
based on spectrograms, objective assessment based on ILSD and
SEGSNR, and informal subjective listening tests all indicated that
our method is reasonably effective.

Our method involves two crucial steps, speech/musical-noise clas-
sification and processing of spectral values with incorporation of the
classification results. For classification, we carry out oversubtraction
as the first stage to single out those regions clearly corresponding
to speech. Then we adopt the multiblade approach to effect a finer
classification, with the objective of identifying speech components
that are of comparable energies to musical noise. On processing,
we propose leaving the spectral values untouched for those regions
classified to be speech. For other regions, we propose a treatment
based on median filtering, which has a tendency to suppress musical
noise while altering the speech content only slightly.

For further work, we propose to explore the use of our method for
removing unwanted noise inevitably generated in other enhancement

process. Indeed, although our method was applied only in conjunction
with spectral subtraction, it may be appropriate to employ our method
to suppress the enhancement noise associated with other methods such
as Wiener filtering [4], signal subspace decomposition and filtering
[8], etc. This issue will be addressed in our future work.
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