
Answers to Tutorial No 2,
Semester 1, 2024/25

1. When your finger is placed 15 cm from one end of
a string which is 75 cm long, the string vibrates at
a frequency of 600 Hz. What is the fundamental
frequency of the string? If we increase the string’s
length by 20%, calculate the distance your finger
should be placed from the nearer end of the string to
make the string vibrate with a frequency of 800 Hz.
Answer: 15 cm is one-fifth of the string’s length of
75 cm, so the string is vibrating at its 5th harmonic
frequency. Hence this means that the fundamental
frequency of the string is equal to 600 Hz divided by
5 i.e. 120 Hz. On increasing the length of the string
by 20%, its length will be equal to 75 cm times 1.2
i.e. 90 cm. The fundamental frequency of the string
will then be given by 120 Hz times 75

90 i.e. 100 Hz.
When the string vibrates with a frequency of 800
Hz, it is vibrating at its 8th harmonic since 800 Hz
divided by 100 Hz is 8. Your finger should thus be
placed at a distance equal to one-eighth of 90 cm i.e.
11.25 cm from the nearer end.

2. A string 50 cm long is vibrating with 6 antinodes
between its two ends at a frequency of 1,440 Hz. If
a second string is vibrating at a frequency of 1,600
Hz with 8 antinodes between its two ends, what is
the length of the second string? A third string of
length 80 cm is vibrating at a frequency of 750 Hz.



What is the number of nodes which this third string
has between its two ends (not counting the nodes
at both ends)? (Assume that the three strings are
similar in all respects except for length.)
Answer: The first string has 6 antinodes so it is at
its 6th harmonic, and its fundamental frequency is
given by 1,440 Hz divided by 6 i.e. 240 Hz. Since the
second string has 8 antinodes, it must be at its 8th
harmonic, and hence its fundamental frequency is
equal to 1,600 Hz divided by 8 i.e. 200 Hz. Therefore
the length of the second string is given by 50 cm
times 240

200 i.e. 60 cm. Since the third string is 80 cm
long, its fundamental frequency is given by 240 Hz
times 50

80 i.e. 150 Hz. 750 Hz divided by 150 Hz is
equal to 5, so the third string must be vibrating at
its 5th harmonic. The third string thus must have
has 5 antinodes and 4 nodes between its two ends
(not counting the nodes at both ends).

3. Starting from a first musical note and then going up
by the interval of a Just seventh, we will arrive at
a second note. Starting again from the same first
note, and going up again this time by the interval
of a Pythagorean seventh, we will arrive at a third
note. Of these two notes i.e. the second and third
notes, which one has the higher frequency? Calcu-
late the ratio of the interval between these two notes.
If the frequency of the first note is 160 Hz, what
are the frequencies of the second and third notes?
Starting again from the same first note with a fre-
quency of 160 Hz, and going down instead of up by



the same two intervals i.e. the Just seventh and the
Pythagorean seventh, what would be the frequencies
of the second and third notes?
Answer: Since a Just seventh has the ratio of 15

8

which is equal to 1.875 and the ratio of a Pythagorean
seventh is 243

128 which is approximately equal to 1.8984,
the third note has a higher frequency than the sec-
ond note. If the frequency of the first note is 160 Hz,
the frequency of the second note is given by 160 Hz
times 15

8 i.e. 300 Hz, and the frequency of the third
note is given by 160 Hz times 243

128 i.e. 303.75 Hz. The
interval between these two notes has a ratio which
is given by 243

128 divided by 15
8 which is the same as

243
128 multiplied by 8

15 which is equal to 243
240 which can

be reduced to 81
80 . if we go down instead of up, the

frequency of the second note would now be given by
160 Hz divided by 15

8 which is the same as 160 Hz
times 8

15 i.e. approximately 85.333 Hz, and the fre-
quency of the third note would now be given by 160
Hz times 128

243 i.e. approximately 84.2798 Hz.

4. On a piano keyboard, the common pentatonic scale
often used in the folk songs of many musical cultures
can be found by playing only the black notes on the
keyboard in sequence. The term “pentatonic” which
means “five notes” is the name of this scale because
it consists of only five notes (not counting the note
one octave above the beginning of the scale). The
common pentatonic scale has the following sequence
of intervals: tone, tone, three semitones, tone, three
semitones, arriving at the final note exactly one oc-



tave or 12 semitones above the starting note. An-
other type of pentatonic scale is the Balinese game-
lan pentatonic scale which has a different sequence of
intervals: semitone, tone, 2 tones, semitone, 2 tones,
making up a total of 12 semitones. If we start from
the note E just above Middle C, what are the let-
ter names of the notes making up these two differ-
ent pentatonic scales? If we start instead from the
A just below Middle C, what are the names of the
notes making up these two pentatonic scales?
Answer: Starting from the note E, the next note
in the common pentatonic scale is a tone above i.e.
the note Fsharp/Gflat, and the next note is also a
tone above i.e. the note Gsharp/Aflat. Going up
three semitones brings us to the next note B, and
up another tone brings us to the note Csharp/Dflat,
and up another three semitones brings us back to
the note E one octave above the starting E. Starting
from the first E again, the next note in the Balinese
pentatonic scale one semitone up is F, and going up
by a tone gives us G, and 2 tones up gives us B.
Another semitone up gives us C and up by 2 tones
arrives at the E one octave above the starting E.
Starting from the note A instead of E, the common
pentatonic scale gives the notes A, B, Csharp/Dflat,
E, Fsharp/Gflat and A again. The Balinese penta-
tonic scale starting from A gives us A, Asharp/Bflat,
C, E, F and A again.

5. The strings of a viola are tuned in Just fifths as is
usual for a viola, and the viola’s A string is tuned to a



frequency of 440 Hz. A guitar’s six strings are tuned
relative to each other as is usual for a guitar, and its
A string is tuned to a frequency of 110 Hz. What
are the frequencies of the viola’s G string and its
D string and the ratio of the interval between these
two frequencies? What are the frequencies of the two
musical notes on the guitar which are equivalent to
these two notes on the viola, and what is the ratio
between these two notes on the guitar? Calculate
the ratio of the interval between the frequencies of
the guitar’s B3 note and the viola’s D4 note. (Take
the ratio of an Equal-tempered semitone to be equal
to 1.05946 for your calculations.)
Answer: Since the viola’s G string which is the
note G3 is two Just fifths (of which the ratio is 3

2)
below the viola’s A string, the G string’s frequency is
given by 440 Hz divided by 3

2 two times, which is the
same as multiplying 440 Hz by 4

9 i.e. approximately
195.556 Hz. Its D string which is the note D4 is one
Just fifth below 440 Hz so its frequency is given by
multiplying 440 Hz by 2

3 i.e. approximately 293.333
Hz. The ratio between the frequencies of the viola’s
G and D strings is a Just fifth or 3

2 or 1.5. Since
the semitones on the guitar are all Equal-tempered,
they have a ratio of approximately 1.05946. The gui-
tar’s A string is the note A2 with frequency 110 Hz,
and its A3 note’s frequency is double this i.e. 220
Hz. The guitar’s G3 note is two semitones below
its A3 note, and its frequency is thus equal to 220
Hz divided by 1.05946 two times, i.e. approximately
195.999 Hz. The guitar’s D4 note is 5 semitones



above its A3 note, so its frequency is approximately
equal to 220 Hz multiplied by 1.05946 five times i.e.
approximately 293.660 Hz. The ratio between the
guitar’s G3 note and its D4 note is thus given by
the ratio of seven Equal-tempered semitones i.e. ap-
proximately 1.4983. The guitar’s B3 note being two
semitones above A3 has a frequency given by 220 Hz
times 1.05946 twice i.e. approximately 246.940 Hz,
and the viola’s D string which is also its D4 note has
a frequency of approximately 293.333 Hz. Therefore
the ratio between these two notes is approximately
given by 293.333 Hz divided by 246.940 Hz i.e. ap-
proximately 1.1879.

6. The spectrum of a musical sound is represented by
a graph which has vertical lines on the x-axis repre-
senting the fundamental frequency and harmonics of
the sound. The positions of the lines on the horizon-
tal x-axis represent their frequencies and the lengths
of the lines represent the amplitudes of the harmon-
ics. A newly discovered ancient musical wind instru-
ment produces a note which has a spectrum showing
its fundamental frequency and all its harmonics up to
the 21st harmonic, and all harmonics (odd and even)
are present in this spectrum. The 8th line from the
left in this spectrum has the same frequency as the
9th line from the left in the spectrum of a square
wave. If the frequency of the 5th line in the spec-
trum of the square wave is 1,440 Hz, what are the
frequencies of the 4th and 15th lines from the left in
the spectrum of the musical instrument’s note?



Answer: Since the spectrum of a square wave only
contains odd harmonics, the 5th line from the left
in the square wave’s spectrum is its 9th harmonic,
which has a frequency of 1,440 Hz. Therefore the
fundamental frequency of the square wave is given
by 1,440 Hz divided by 9 i.e. 160 Hz. The 9th line
from the left in the square wave’s spectrum is its
17th harmonic, so its frequency is equal to 160 Hz
times 17 i.e. 2,720 Hz. The 8th line from the left in
the musical instrument’s note’s spectrum is its 8th
harmonic, so the fundamental frequency of its note
is equal to 2,720 Hz divided by 8 i.e. 340 Hz. Since
the 4th and 15th lines in the spectrum of the musi-
cal instrument’s note are its 4th and 15th harmonics
respectively, their frequencies are equal to 340 Hz
times 4 i.e. 1,360 Hz and 340 Hz times 15 i.e. 5,100
Hz respectively.

Scientific Inquiry discussion points

1. The Pythagorean scale, said to be first defined by the
Greek mathematician after whom it is named, was based
on the ratios of just two intervals -the octave (2/1) and
the fifth (3/2). Its simplicity of construction served as
the basis of the music of civilisations such as ancient
Greece and China. The Pythagorean scale’s drawback
was that the ratio of the third was complex (81/64)
and deemed unsatisfactory by many. As the interval of
the third became more important, proponents of the
Just scale, in which the ratio of the third was 5/4 in-
stead of 81/64, much preferred it to the Pythagorean
scale, as ratios with small numbers were considered by



the Greeks to be more beautiful than ratios with large
numbers. The proponents of the Pythagorean scale
of course disagreed strongly. Here we see the objec-
tive scientific inquiry of Pythagoras coming into conflict
with subjective aesthetic judgement. Can you think of
other examples in which subjective judgements come
into conflict with objective scientific inquiry?

There are many examples of objective scientific inquiry
coming into conflict with subjective perception. For
example, many ancient civilisations believed in a sys-
tem in which the sun revolved around the earth, as this
seems to be supported by our subjective observation of
the sun’s motion. However, more detailed study of the
sun’s motion showed this was untenable, and eventu-
ally astronomers could explain it’s actual motion only
by adopting the theory that the earth revolves around
the sun. A more recent example is the subjective belief
that some races are superior to other races, simply be-
cause of factors such as the colour of their skin or other
physical features. Modern understanding of genetics
has shown that there is no actual scientific objective
basis for the notion of racial superiority.


