
Answers to Tutorial No 2,
Semester 2, 2024/25

1. You place your finger 18 cm from one end of a vibrat-
ing string which is 72 cm long and the string vibrates
at a frequency of 540 Hz. Calculate the fundamen-
tal frequency of the string. If the string’s length is
increased by 25%, what is the distance your finger
should be placed from the nearer end of the string so
that the string will vibrate with a frequency of 648
Hz?
Answer: Since 18 cm is one-quarter of the string’s
length of 72 cm, the string must be vibrating at its
4th harmonic frequency. Therefore the fundamental
frequency of the string is given by 540 Hz divided
by 4 i.e. 135 Hz. When the length of the string is
increased by 25%, its length will be equal to 72 cm
times 1.25 i.e. 90 cm. The fundamental frequency of
the string will then be equal to 135 Hz times 72

90 i.e.
108 Hz. Since 648 Hz divided by 108 Hz is 6, when
the string vibrates with a frequency of 648 Hz, it is
vibrating at its 6th harmonic. Therefore your finger
should be placed at a distance equal to one-sixth of
90 cm i.e. 15 cm from the nearer end.

2. A string 80 cm long vibrates at a frequency of 1,200
Hz with 8 antinodes between its two ends. A sec-
ond string vibrates at a frequency of 1,500 Hz with 5
antinodes between its two ends. What is the length
of the second string? If a third string of length 60



cm vibrates at a frequency of 800 Hz, what is the
number of nodes which this third string has between
its two ends (not counting the nodes at both ends)?
(Assume that the three strings are similar in all re-
spects except for length.)
Answer: Since the first string has 8 antinodes it is
at its 8th harmonic, and its fundamental frequency
is equal to 1,200 Hz divided by 8 i.e. 150 Hz. The
second string has 5 antinodes so it must be at its 5th
harmonic, and its fundamental frequency is equal to
1,500 Hz divided by 5 i.e. 300 Hz. The length of
the second string is hence given by 80 cm times 150

300

i.e. 40 cm. The third string is 60 cm long, so its
fundamental frequency is given by 150 Hz times 80

60

i.e. 200 Hz. 800 Hz divided by 200 Hz is equal to 4,
so the third string must be vibrating at its 4th har-
monic and thus must have 4 antinodes and 3 nodes
between its two ends (not counting the nodes at both
ends).

3. We start from a first musical note and then go up
by the interval of a Just sixth to arrive at a sec-
ond note. We start again from the same first note
and go up again, but this time by the interval of a
Pythagorean sixth to arrive at a third note. Which
of these two notes i.e. the second and third notes,
has the higher frequency, and what is the ratio of the
interval between these two notes? If the frequency
of the first note is 150 Hz, calculate the frequencies
of the second and third notes. If we go down instead
of up from 150 Hz by the same two intervals i.e. the



Just sixth and the Pythagorean sixth, calculate the
frequencies of the second and third notes.
Answer: A Just sixth has the ratio of 5

3 which
is approximately equal to 1.666 and the ratio of a
Pythagorean sixth is 27

16 which is equal to 1.6875, so
the third note has a higher frequency than the sec-
ond note. If the frequency of the first note is 150 Hz,
the frequency of the second note is given by 150 Hz
times 5

3 i.e. 250 Hz, and the frequency of the third
note is equal to 150 Hz times 27

16 i.e. 253.125 Hz. The
interval between these two notes has a ratio equal to
27
16 divided by 5

3 which is the same as 27
16 multiplied by

3
5 i.e. 81

80 . Going down instead of up, the frequency
of the second note would now be equal to 150 Hz
divided by 5

3 which is the same as 150 Hz times 3
5 i.e.

90 Hz, and the frequency of the third note would
now be equal to 150 Hz times 16

27 i.e. approximately
88.889 Hz.

4. The common pentatonic scale on a piano keyboard
often used in the folk songs of many musical cul-
tures can be found by playing only the black notes
on the keyboard in sequence. This scale is called
“pentatonic” which means “five notes” because it
consists of only five notes (not counting the note
one octave above the beginning of the scale). The
common pentatonic scale has the following sequence
of intervals: tone, tone, three semitones, tone, three
semitones, arriving at the final note exactly one oc-
tave or 12 semitones above the starting note. An-
other type of pentatonic scale is the Balinese game-



lan pentatonic scale which has a different sequence of
intervals: semitone, tone, 2 tones, semitone, 2 tones,
making up a total of 12 semitones. Starting from the
note D just above Middle C, give the letter names of
the notes making up these two different pentatonic
scales. Starting instead from the G just below Mid-
dle C, give the names of the notes making up these
two pentatonic scales.
Answer: Starting from the note D, the next note in
the common pentatonic scale is a tone above i.e. the
note E, and the next note is also a tone above i.e. the
note Fsharp/Gflat. Going up three semitones brings
us to the next note A, and up another tone brings
us to the note B. Up another three semitones brings
us back to the note D one octave above the starting
D. If we start from the first D again, the next note
in the Balinese pentatonic scale one semitone up is
Dsharp/Eflat, and going up by a tone gives us F. 2
tones up gives us A and another semitone up gives
us Asharp/Bflat and up by 2 tones arrives at the D
one octave above the starting D. Starting from the
note G instead of D, the common pentatonic scale
gives the notes G, A, B, D, E and G again. The Ba-
linese pentatonic scale starting from G gives us G,
Gsharp/Aflat, Asharp/Bflat, D, Dsharp/Eflat and G
again.

5. The strings of a viola are tuned in Just fifths as is
usual for a viola, and the viola’s A string is tuned to a
frequency of 440 Hz. A guitar’s six strings are tuned
relative to each other as is usual for a guitar, and its



A string is tuned to a frequency of 110 Hz. What
are the frequencies of the viola’s G string and its
D string and the ratio of the interval between these
two frequencies? What are the frequencies of the two
musical notes on the guitar which are equivalent to
these two notes on the viola, and what is the ratio
between these two notes on the guitar? Calculate
the ratio of the interval between the frequencies of
the guitar’s B3 note and the viola’s D4 note. (Take
the ratio of an Equal-tempered semitone to be equal
to 1.05946 for your calculations.)
Answer: Since the viola’s G string which is the
note G3 is two Just fifths (of which the ratio is 3

2)
below the viola’s A string, the G string’s frequency is
given by 440 Hz divided by 3

2 two times, which is the
same as multiplying 440 Hz by 4

9 i.e. approximately
195.556 Hz. Its D string which is the note D4 is one
Just fifth below 440 Hz so its frequency is given by
multiplying 440 Hz by 2

3 i.e. approximately 293.333
Hz. The ratio between the frequencies of the viola’s
G and D strings is a Just fifth or 3

2 or 1.5. Since
the semitones on the guitar are all Equal-tempered,
they have a ratio of approximately 1.05946. The gui-
tar’s A string is the note A2 with frequency 110 Hz,
and its A3 note’s frequency is double this i.e. 220
Hz. The guitar’s G3 note is two semitones below
its A3 note, and its frequency is thus equal to 220
Hz divided by 1.05946 two times, i.e. approximately
195.999 Hz. The guitar’s D4 note is 5 semitones
above its A3 note, so its frequency is approximately
equal to 220 Hz multiplied by 1.05946 five times i.e.



approximately 293.660 Hz. The ratio between the
guitar’s G3 note and its D4 note is thus given by
the ratio of seven Equal-tempered semitones i.e. ap-
proximately 1.4983. The guitar’s B3 note being two
semitones above A3 has a frequency given by 220 Hz
times 1.05946 twice i.e. approximately 246.940 Hz,
and the viola’s D string which is also its D4 note has
a frequency of approximately 293.333 Hz. Therefore
the ratio between these two notes is approximately
given by 293.333 Hz divided by 246.940 Hz i.e. ap-
proximately 1.1879.

6. The frequency spectrum of a musical note is repre-
sented by a graph with vertical lines along the x-axis.
The positions of the lines on the x-axis represent
the frequencies of the harmonics and the lengths of
the lines represent the amplitudes of the harmon-
ics. A musical wind instrument recently unearthed
by archeologists is made to play a note which has a
spectrum showing its fundamental frequency and all
its harmonics up to the 21st harmonic. All harmon-
ics (odd and even) are present in this spectrum. The
8th line from the left in this spectrum has the same
frequency as the 7th line from the left in the spec-
trum of a square wave. If the frequency of the 4th
line in the spectrum of the square wave is 1,400 Hz,
calculate the frequencies of the 9th and 12th lines
from the left in the spectrum of the musical instru-
ment’s note.
Answer: The spectrum of a square wave only con-
tains odd harmonics, so the 4th line from the left



in its spectrum is its 7th harmonic which has a fre-
quency of 1,400 Hz. The fundamental frequency of
the square wave is thus given by 1,400 Hz divided
by 7 i.e. 200 Hz. The 7th line from the left in the
square wave’s spectrum is its 13th harmonic, so its
frequency is equal to 200 Hz times 13 i.e. 2,600 Hz.
Since the 8th line from the left in the musical in-
strument’s note’s spectrum is its 8th harmonic, the
fundamental frequency of its note is given by 2,600
Hz divided by 8 i.e. 325 Hz. The 9th and 12th lines
in the spectrum of the musical instrument’s note are
its 9th and 12th harmonics respectively, so their fre-
quencies are given by 325 Hz times 9 i.e. 2,925 Hz
and 325 Hz times 12 i.e. 3,900 Hz respectively.

Scientific Inquiry discussion points

1. The Pythagorean scale, said to be first defined by the
Greek mathematician after whom it is named, was based
on the ratios of just two intervals -the octave (2/1) and
the fifth (3/2). Its simplicity of construction served as
the basis of the music of civilisations such as ancient
Greece and China. The Pythagorean scale’s drawback
was that the ratio of the third was complex (81/64)
and deemed unsatisfactory by many. As the interval of
the third became more important, proponents of the
Just scale, in which the ratio of the third was 5/4 in-
stead of 81/64, much preferred it to the Pythagorean
scale, as ratios with small numbers were considered by
the Greeks to be more beautiful than ratios with large
numbers. The proponents of the Pythagorean scale
of course disagreed strongly. Here we see the objec-



tive scientific inquiry of Pythagoras coming into conflict
with subjective aesthetic judgement. Can you think of
other examples in which subjective judgements come
into conflict with objective scientific inquiry?

There are many examples of objective scientific inquiry
coming into conflict with subjective perception. For
example, many ancient civilisations believed in a sys-
tem in which the sun revolved around the earth, as this
seems to be supported by our subjective observation of
the sun’s motion. However, more detailed study of the
sun’s motion showed this was untenable, and eventu-
ally astronomers could explain it’s actual motion only
by adopting the theory that the earth revolves around
the sun. A more recent example is the subjective belief
that some races are superior to other races, simply be-
cause of factors such as the colour of their skin or other
physical features. Modern understanding of genetics
has shown that there is no actual scientific objective
basis for the notion of racial superiority.


