Answers to Tutorial No 3,
Semester 1, 2024/25

1. A string which is vibrating with a frequency of 1,800

Hz has 9 antinodes between its two ends. A second
string which has 6 nodes between its two ends (not
counting the nodes at either end) is vibrating at a
frequency of 1,050 Hz and is 60 cm long. Calculate
the length of the first string which is vibrating with
9 antinodes. If a third string which is 80 c¢m long is
vibrating at a frequency of 675 Hz, how many nodes
would this third string have between its two ends
(not counting the nodes at either end)? (Assume
that the three strings are similar in all respects ex-
cept length.)

Answer: Since the first string has 9 antinodes it
must be at its 9th harmonic and hence its funda-
mental frequency is equal to 1,800 Hz divided by 9
i.e. 200 Hz. The second string is vibrating with 6
nodes so it must have 7 antinodes and is vibrating
at its 7th harmonic, so its fundamental frequency is
given by 1,050 Hz divided by 7 i.e. 150 Hz. There-
fore the length of the first string is given by 60 cm

150

times 555 i.e. 45 cm. The third string is 80 c¢m long

so its fundamental frequency is equal to 150 Hz times

% i.e. 112.5 Hz. Since the third string is vibrating

at a frequency of 675 Hz, it must be vibrating at its
6th harmonic as 675 Hz divided by 112.5 Hz is equal

to 6. Hence the third string must have 6 antinodes



and 5 nodes between its two ends (not counting the
nodes at either end).

. A kayak (small boat) is paddling along the surface of
the sea in the same direction and the same speed as
the water waves on the surface of the sea. The total
length of the kayak is exactly equal to 5 complete
wavelengths of the sea waves which are moving with
a speed of 1 metre per second with a frequency of
1.25 Hz. What is the length of the kayak? The
frequency of the waves then increases to 1.5 Hz and
the speed of the waves increases to 1.5 metre per
second. Calculate the number of wavelengths of the
waves which would exactly equal the length of the
kayak when this happens.

Answer: Since the sea waves have a wavelength
equal to 1 metre per second divided by 1.25 Hz i.e.
0.8 metres, the length of the kayak is equal to 0.8
metres times 5 i.e. 4 metres. When the frequency
of the waves increases to 1.5 Hz and the speed of
the waves increases to 1.5 metres per second, the
wavelength of the waves is then equal to 1.5 metres
per second divided by 1.5 Hz i.e. 1 metre. The
number of wavelengths which would exactly equal
the length of the kayak is hence given by 4 metres
divided by 1 metre i.e. 4 wavelengths.

. A string which has a fundamental frequency of 180
Hz is vibrating with 5 antinodes between its two
ends, and its frequency is the same as that of a closed
pipe of length p cm which is vibrating with 4 nodes
between its two ends (not counting the node at one



end). Calculate the fundamental frequency of the
closed pipe. When the closed pipe vibrates with 6
nodes between its two ends (not counting the node
at one end), its frequency is the same as that of an
open pipe vibrating with 4 antinodes between its two
ends (not counting the antinodes at both ends). Cal-
culate the length of the open pipe.

Answer: Since the string is vibrating with 5 antin-
odes it is at its bth harmonic, and its frequency of
vibration is equal to 180 Hz times 5 i.e. 900 Hz. The
closed pipe has 4 nodes so it must be at its 9th har-
monic and its fundamental frequency is equal to 900
Hz divided by 9 i.e. 100 Hz. When the closed pipe
has 6 nodes, it will be at its 13th harmonic and its
frequency of vibration will be equal to 100 Hz times
13 i.e. 1,300 Hz. The open pipe has 4 antinodes, so
it will have 5 nodes and will be at its 5th harmonic
and its fundamental frequency is given by 1,300 Hz
divided by 5 i.e. 260 Hz. An open pipe which has
the same length p cm as the closed pipe would have
a fundamental frequency double that of the closed
pipe i.e. 200 Hz. Therefore the open pipe which
has a fundamental frequency of 260 Hz must have a

200 : . 10p

length given by p cm times g i.e. 33 cm.

. A string which is vibrating with 5 nodes (not count-
ing the nodes at both ends) is 30 cm long. The note
produced by this string combines with a note from
a closed pipe which has a fundamental frequency of
120 Hz to produce beats of 12 Hz. The closed pipe
is vibrating with 3 nodes between its two ends (not



counting the node at one end). When the string is
then slightly shortened, the beat frequency increases
(without passing through 0 Hz). What is the funda-
mental frequency of the string? If the string is then
shortened from 30 cm to 28.4 cm, and assuming that
the beats are still produced by the same harmonics of
the string and the closed pipe as before, calculate the
new beat frequency. If the length of the closed pipe
is increased to 120% of its original length, calculate
what the beat frequency would then be, assuming
that the string is still 32.7 cm long.

Answer: The closed pipe has 3 nodes, so it is at
its 7th harmonic, and its frequency is hence equal to
120 Hz times 7 i.e. 840 Hz. On shortening the string
slightly its frequency increases. If the beat frequency
increases, the frequency of the string must have been
higher than that of the closed pipe, and since the
beat frequency is 12 Hz, the frequency of the string
is equal to 840 Hz plus 12 Hz i.e. 852 Hz. Since the
string has 5 nodes and 6 antinodes it must be at its
6th harmonic and its fundamental frequency is given
by 852 Hz divided by 6 i.e. 142 Hz. Since the short-
ened string has a length of 28.4 c¢m, its fundamental
frequency would be equal to 142 Hz times 2:% i.e.
150 Hz. The string’s 6th harmonic would then be
150 Hz times 6 i.e. 900 Hz and the beat frequency
would then change to 900 Hz minus 840 Hz i.e. 60
Hz. When the length of the closed pipe is increased
to 120% of its original length, its fundamental fre-

1

quency would change to 120 Hz times {5 i.e. 100



Hz. Its 7th harmonic would then be equal to 100 Hz
times 7 i.e. 700 Hz, and the beat frequency would
change to 900 Hz minus 700 Hz i.e. 200 Hz.

. An electronic tuner which is producing a musical
note with a frequency of 220 Hz is used by a ’cellist
in tuning her ’cello’s A string. When the note from
the A string combines with the note from the tuner,
beats of 6 Hz are heard. When the ’cellist gradu-
ally tightens the A string of the ’cello, the beat fre-
quency gradually decreases (without passing through
0 Hz) to 4 Hz. What was the frequency of the note
produced by the ’cello’s A string when the beat fre-
quency was equal to 6 Hz? To make the frequency
of the A string come as close as possible to 220 Hz,
what should the ’cellist do? If the beat frequency
had increased to 7 Hz instead of decreasing when
the string was tightened, what would the A string’s
frequency have been when the beat frequency was 6
Hz?

Answer: Since the beat frequency was 6 Hz, the
frequency of the A string’s note was either 220 Hz
minus 6 Hz i.e. 214 Hz, or 220 Hz plus 6 Hz i.e.
226 Hz. When the ’cello’s A string was tightened,
its frequency would have increased, and since the
beat frequency then decreased to 4 Hz, this meant
that the frequency of the A string’s note must have
moved closer to 220 Hz, so the A string’s frequency
must have been lower than 220 Hz when the beat fre-
quency was 6 Hz i.e. the A string’s frequency must
have been equal to 214 Hz. To bring the frequency of



the A string closer to 220 Hz, the ’cellist should in-
crease its frequency further by continuing to tighten
the A string so that the beat frequency further de-
creases. When the beat frequency reaches zero, the
frequency of the A string must then be equal to 220
Hz. If the beat frequency had decreased to 7 Hz on
tightening the A string, the frequency of the ’cello’s
note must have been higher than 220 Hz i.e. it must
have been 226 Hz when the beat frequency was 6 Hz.

Scientific Inquiry discussion points

The Equal-tempered scale is obtained by dividing an
octave into twelve equal steps. This gives us a scale
with twelve notes, which has become the basis of most
of Western music, whether classical, popular, folk, rock
or any other genre of music. The democratic equality of
these twelve notes enables music to modulate into any
of the twelve available keys with ease, using just twelve
notes in one octave. This greatly simplifies the design
of musical instruments and how they are played. But
this is not a “perfect” system in mathematical terms,
as the important interval of the fifth is not exactly 3/2
as in the Just and Pythagorean scales, but deviates by
ever so slightly an amount which is not apparent to
most listeners. Are there other examples in science and
technology where imperfections are an important part
of the basis of an actual working system?

While we may consider mathematical and physical per-
fection to be most desirable, in the real world most
things and processes deviate from mathematical perfec-



tion. One crucial example is in the DNA of our genetic
code. The reproduction of DNA as it replicates in the
multiplication of living cells is not perfect, in that errors
may occur in the replication due to natural events such
as the alteration of the DNA code by natural radiation
or cosmic rays. This may seem undesirable and it does
lead to undesirable effects sometimes, but this same
process makes evolution possible, as the errors in repli-
cation allow changes in the make-up of livings things,
which may then make an organism less or more suited to
the changing environment. Hence the progress brought
about by evolution depends on these imperfections in
replication.



