
 1

CZ1106 Problem Solving and Computation II

Programming Lab 3

 Computer Game by Direct Screen I/O Technique

15 Feb 2007

1. Direct Screen I/O

A PC's display consists of two parts: the monitor and the video controller graphic card
(adapter). The graphic card serves as an interface between the monitor and the
computer. Communication between the adapter and the computer is done in a special
section of memory (called display memory), which is physically located on the
adapter board and can be accessed both by the microprocessor and by the display
screen.

The microprocessor can insert (write) values into this memory (video buffer) and read
them out just as it can with ordinary random-access memory (RAM). The display
hardware continuously takes value from this video buffer and places the
corresponding character on the screen.

The default mode of character display consists of 25 lines and each line contains 80
columns. Altogether 2000 characters may be displayed on a monitor. Each of these
characters is associated with a particular address in the display memory. Two bytes in
the memory are used for each character: one to hold the extended ASCII character
code, a value from 0 to 255 (0 to ff in hex), and one to hold the attribute. Thus 4000
bytes of memory are needed to represent the 2000 characters on the screen. The
memory used to store the 2000 characters and their attributes starts at B8000(16).

Each 16-bit word in the video buffer corresponds to a single character. The first byte
(8 bits) of the word is the ASCII code for the character displayed, the second byte
tells the adapter what color the character is and is known as the attribute byte. In 25 x
80 text mode a whole screen of characters is stored in 2 x 25 x 80 = 4000 bytes.

 2

ASCII CODE

Attribute

ASCII CODE

Attribute

.

.

.

.

.

Attribute

Physical Byte Offset

0000

0001

0BF

0A0

F9F

F9E ASCII CODE

B8000

B8001

B80BF

B80A0

B8F9E

B8F9F

(T)

(A)

(Y)

row 1

row 2

row 80

TA

Monitor Display

Y

Total number of characters on a monitor
= 25 rows * 80 cols
= 2000 characters.

Each character requires 2 bytes to store
the content of the character and its
attribute.

So, total number of bytes required
= 2000 * 2
= 4000 bytes.

13F

140

B813F

B8140

Mapping Video Memory to Monitor Display

 3

2. Addressing the Video Buffer

The offset byte-address from the BEGINNING of the video buffer (starting address
of display memory) is calculated as follows:

The character "T" is at row 1, column 1 (refer to previous diagram):
 offset = 0
 (offset refers to the distance from a reference point).

The next character "A" is at row 1, column 2 (refer to previous
diagram):

 This is the next position and must have a offset of 2,
 since each character requires 2 bytes for ASCII code
 and attribute.

 Character "Y" is at row 25, column 80 which is 24
 rows and 79 columns away from character "T"

(refer to previous diagram):
 Since there are 80 characters on a line, "Y" has a
 offset of 2*(24*80+79) = 3998(10) = F9E(16).

In general the offset can be calculated in terms of row number and column number
(take note that the row and column numbers start from 1 in my notation, in some
text books they start from 0) according to :

Video Buffer Byte Offset = 2 * ((row-1)*80 + (column-1))

Example :

Compute the offset and the physical address that store the character R on the
following screen. Also, what are the offset and the physical address that store the
attribute of character R?

Solution :

 ASCII byte :

Offset = 2 * ((17-1) * 80 + (56-1))
 = 2670(10)

 = A6E(16)

 Physical Address = 8000(16) +
 A6E(16)
 = B8A6E(16)

1 2 3

1
2
3
.
.
.

17

.

.
25

R

56 ... 80

 4

Attribute byte :

 Offset = the next byte of character
 = A6E(16) + 1(16)
 = A6F(16)

 Physical Address = B8A6F(16)

3. The Attribute Byte

The attribute byte in color text mode controls the characteristics (blink, foreground
color and background color) of each character displayed. Bit patterns represent the
display characteristics as follows::

BLI R G B I R G B

7 6 5 4 3 2 1 0

Blinking
Bit

Background
Color

Intensity Foreground
Color

Bit 7 : selects blinking (1) or not blinking (0).
Bits 6 - 4 : control the color of the background behind the character.
Bit 3 : selects high intensity (1) or low intensity (0).
Bits 2 - 0 : control the foreground color, i.e., color of the character itself.

The letters R, G and B denote bit positions for Red, Green and Blue respectively.
Note that 000 is black and 111 is white. The following is the corresponding color
table for foreground colors :

Bits 2 - 0 Bit 3 = 0 Bit 3 = 1

000
001
010
011
100
101
110
111

Black
Blue
Green
Cyan
Red
Magenta
Brown
White (light grey)

Grey
Light Blue
Light Green
Light Cyan
Light Red
Light Magenta
Yellow
High Intensity White

 5

Example

A program used to fill the screen with small rectangle of Green background and Light
Magenta foreground, and characters in the rectangle blinking.

1 20 60 80

1

8

18

25

Background : Green
Foreground : Light
 Magenta
Blinking : Yes

New attribute setting :

1 0 1 0 1 0 11

Blinking
Bit

Blink

Background

Green

Foreground

Magenta

Light Magenta

High
Intensity

 = AD(16)

What we have to do now is to set the attribute bytes of the memory addresses
corresponding to the rectangle to 10101101(2) and that's all.

Do not touch those memory addresses which do not belong to the rectangle, and do
not touch the ASCII bytes.

But we have yet to know how to use pointers to do it.

Pointers

� Pointer address we have learned so far is stored in a 16-bit word, so it can only

address from 0(16) to FFFF(16). That is, the addresses (I called it house number
in CP1311) where the pointer is pointing can be 0(16), 1(16), 2(16), 3(16),

69(16), 296B(16),76DA(16), up to FFFF(16).

 6

The base address of our video buffer is too far away. B8000(16) is beyond the

addressing space of 16 bits. We therefore use a far pointer (or long pointer) to solve
this problem.

far Pointer

A far pointer contains 32-bit address capacity. It consists of 2 parts: segment value
stored in high 16 bits, and offset value stored in low 16 bits.

� 1 segment contains 16 bytes (or 10(16) bytes).

� The actual address where a far pointer is pointing to is computed by

 Actual Address = Segment * 16(10) + Offset
 = (high 16 bits) * 10(16) + (low 16 bits)

OffsetSegment value

31 16 15 0

Low 16 bitsHigh 16 bits

 A far Pointer

Example:

 char far *base;

 base = (char far *) 0xB8000000L; /* 0x means base 16, L means long integer (32 bits) */

31 16 15 0

(16)

B 8 0 0 0 0 0 0

Segment Offset

The address where base is pointing is

 B800(16) * 10(16) + 0(16) = B8000(16).

Base is a 32-bit far pointer, but the content where base is pointing is a character, i.e.,
a 8-bit byte.

 7

Now we are ready to study the program !!!

Program

/* AC2-8.C */

void main ()
{
 char far *base;
 int row, column;
 char new_attribute;

 base = (char far *)0xB8000000L;
 new_attribute = 0xAD ;

 for (row = 8; row <= 18; row ++)
 for (column = 20; column <=60; column ++)
 (base + 2((row-1)*80+column-1) +1) = new_attribute;
}

1 20 60 80

1

8

18

25

Background : Green
Foreground : Light
 Magenta
Blinking : Yes

 8

Write a program to scan over all the character displayed on the monitor screen and
blinks the letters E, A, S, Y.

Program

/* AC2-9.c */

include <conio.h>
include <stdio.h>

void main ()
{
 char far *base;
 int row, column;

 base = (char far *)0xB8000000L;

 for (row = 1; row <= 25; row ++)
 for (column = 1; column <=80; column ++)
 /* check character byte */
 if ((*(base + 2*((row-1)*80+column-1)) == 'E') ||
 (*(base + 2*((row-1)*80+column-1)) == 'A') ||
 (*(base + 2*((row-1)*80+column-1)) == 'S') ||
 (*(base + 2*((row-1)*80+column-1)) == 'Y'))

 (base + 2((row-1)*80+column-1) +1) |= 0x80;
 /* set attribute byte */
}

 Attribute byte :
 ???????? (existing value)
 | 10000000 (80(16))
 1??????? (new attribute)

 background and foreground remain
 unchanged, but blink bit is set.

 9

Assignment

Part-I

The moving bugs seen in pacman games can be animated by the erase-and-paint
technique. Write a C program to move four bugs on the screen simultaneously.

 ☺
 ☺

 [10, 30]

 ☺
 ☺

 [20, 10]

Coordinates show the respective initial position in
[row, column] format. Arrows indicate the respective
direction of movement. When a bug hits the boundary of
the screen, it will continue its movement from the
opposite end (wrapped around visual effect).

Your tasks are organized as follows:

(i) Write a generic draw function to be used by other functions. The function

header is as follows.

 void draw (int row, int col, char ch, char attr)

This function is to display the character ch with the attribute attr on the row-th
row and col-th column of the screen.

(ii) Write a function to draw a bug. The function header is as follows.

 void draw_bug (int row, int col)

This function will call the draw function in (i) to display a bug, represented by
the ASCII code 0x02, at row-th row and col-th column. The attribute of the
ASCII byte is as follows:
• no blink
• background : black
• foreground : cyan

(iii) Write a function to erase a bug. The function header is as follows.

 void erase_bug (int row, int col)

This function is similar to the draw_bug function in (ii), except that it paints a
black space to erase the bug.

[5, 70]

[15, 50]

 10

(iv) Write the main function that uses the draw_bug and erase_bug functions to
animate four bugs moving on the screen. The initial positions for the bugs are
given in the diagram, and an array may be used to store the coordinates. The
following algorithm may be used:

 call draw_bug 4 times to draw 4 bugs on their initial positions;

 while the keyboard is not pressed
 {

 repeat 4 times (one time for each bug)
 {
 call erase_bug using the current position;
 advance the bug’s position;
 if the bug hits the boundary, adjust the position to
 the other end;
 call draw_bug using the new position;
 }

 }

Part II

(Part II is to be handled in. Please send in a printed copy and a soft copy)

Why some super-programmers choose to earn a living by writing computer game
programs and not any other things else? There are two reasons. First, writing game
programs is always interesting as we all like to play game. Second, the monetary
reward is amazingly attractive and the demand is never end. Perhaps the second one is
the actual reason. Yes, we are going to write a computer game program now. I hope
this practical will serve as a starter for you to earn that big money in your future
career.

As a beginner, we will write a simple arcade game: the Pin Ball. First, copy my
executable file p3.exe from the web and play the pin ball for 5 minutes (not more than
5 minutes as you have to hand in your program).

Let us do some serious work now. To animate a pin ball on the computer screen, the
simple technique is to draw the ball, erase it and draw it again in a position slightly
further away. Doing this rapidly and continually fools the eyes into seeing a moving
ball. There are three walls and one pad to bounce the ball and the game is over if the
ball miss the pad.

 11

 row 1

 column 1 column 79
 column 2 column 80

 pad_length = 15

 left_bd=2 row 25 right_bd=79

The following steps may be followed totally, partially or none at all depending on
individuals. I believe that most of you are capable to organize your program
efficiently, and therefore I won’t be surprised to see some algorithms even better than
what I have here.

 1. Generic Draw Function

First, we shall write a generic draw function to be used by other functions. The header
goes as follows.

void draw (int row, int col, char ch, char attr)

Its task is to display the character ch with the attribute attr on the row-th row and col-
th column of the screen.

2. Boundary and Interior

Next, we are ready to draw the three walls, consisting of the first row, first two
columns and the last two columns, and draw the interior. As for the walls, you can use
the draw function to display the vertical rectangles (ASCII code = 219) on the screen.
For the interior you can use spaces. Need not follow my color. Choose your own
favorite variations. You can include these tasks in a function of the following header.

void draw_bound_and_interior()

 12

3. Drawing and Erasing Ball

Now, write two generic functions to draw a ball and erase a ball respectively. The
function headers are as follows.

void draw_ball(int row, int col)
void erase_ball(int row, int col)

The first function will call the draw function to display a ball, represented by a ‘o’
character of your favorite attribute at row-th row and col-th column. The second
function is similar, but use the space and the interior’s attribute to erase the ‘o’
character.

4. Drawing and Erasing Pad

Write two generic functions again to draw a pad and erase a pad respectively. The
function headers are as follows.

void draw_pad(int left)
void erase_pad(int left)

The input parameter left refers to the column number of the left end of the moving
pad. Row number is fixed at 25. The task of the first function is to call the draw
function to draw 15 colored spaces starting from the left-th column on the last row of
the screen. The second function does the same thing, but the color of the spaces is
changed to that of interior.

5. Moving Ball

The ball moves diagonally. Passing parameters by references is used in the following
function so that the contents of the row and column numbers can be updated.

void move_ball (int *row, int *col)

First, the static increments δrow and δcol are initialized to +1 to indicate that the ball
moves downward and to the right. When the boundary conditions are met, the sign of
the increment will need to be changed and a “pop” sound will be created to simulate
the hit. The erase_ball and draw_ball functions are used. The “pop” sound can be
created by these library routines.

include <dos.h>

sound (frequency);
delay (milliseconds);
nosound();

 Suggested values are: frequency = 400, milliseconds = 15.

 13

The following logic may be used in this function.

erase existing ball;
add δrow to the contents of row number;
add δcol to the contents of column number;

if the ball is at the top row or bottom row
{
 change the sign of δrow;
 add δrow to the contents of row number;
 create “pop” sound;
}

if the ball is at left wall or right wall
{
 change the sign of δcol;
 add δcol to the contents of column number;
 create “pop” sound;
}

draw a ball at new position;

Why δrow and δcol have to be static ?

6. The Main Algorithm

The main algorithm is universal in most computer game programs. It is basically an
infinite loop and exits on some event occurrence. In our pin ball game the main
function starts by drawing the three walls, a pad at the center and a ball at left top
corner. A speed regulator, suggested value is 4 (never less than 2 unless you are super
alert), is used to control the ball speed. The program will have to detect if the user
presses the left or the right arrow key to move the pad. Two sliding distances are
used. The first one (slide1) must be one step, while the second one (slide2) can be
wider (say 3 steps). The keyboard scan codes (KSC) for the arrow keys are as follows.

 Keystroke
 KSC 0, 77 0, 75

Use the kbhit function to check if a key stroke is pressed. E.g.,

if (kbhit())
{

}

The following descriptions contain the main logic.

draw walls and interior;
draw ball;
draw pad;

 14

make noise;

Infinite loop
{
 delay(10 miniseconds);

 if (flag==regulator)
 {
 if ball is one row above pad
 {
 if ball is not on top of pad (check column number)
 {
 make noise;
 game over and exit straight away;
 }
 }
 move the ball;
 set flag to 0;
 }
 else
 increment flag by 1;
if a key is pressed
 {
 get the keyboard scan code;

 if scan code is for a space
 abort the game and exit;
 else
 if scan code is 0
 {
 get next scan code
 if scan code is for a left arrow
 {
 if (left corner pad position > left_bd+1)
 {
 erase the existing pad;
 if (left corner pad position > left_bd+slide2)
 update left corner pad position to the left by slide2;
 else
 update left corner pad position to the left by slide1;
 draw a new pad;
 }
 else
 make “pop” sound;
 }
 else
 if scan code is for a right arrow
 {
 if (left corner pad position < right_bd- pad_length)
 {
 erase existing pad;

 15

 if (left corner pad position < right_bd- pad_length - slide2)
 update left corner pad position to the right by slide2;
 else
 update left corner pad position to the right by slide1;
 draw a new pad;
 }
 else
 make “pop” sound;
 }
 } /* if scan code is 0 */

 } /* if a key is pressed */
 } /* infinite loop */
}

Can you explain why slide1 must be 1 step ?

You may pair up with another student to do this practical exercise. Hand in only one
copy of listing and diskette but write two names on both print-out and diskette label.
Name the source file as game.c.

Optional:

Later you may like to improve your game program further, such as displaying some
instructions and the name of the game creator (your big name) on the first screen,
keeping the highest score history and the player’s name in a file and display them
before game starts, giving the player an option to adjust the ball speed, displaying
“GAME OVER”, etc. Let your friends and your family members play the game.

There are many other games which can be evolved from the pin ball. You may want
to write the ping pong game (2 pads opposite), the squash game (1 pad center and 1
pad below), or even with 4 pads on a square. All these new games require only
minimal modifications to the existing program and you are encouraged to hand in
these games to replace the pin ball, and for bonus of course.

I hope this assignment has fired up your desire to become a computer game creator.
All the best.

Use debugger!!

