

1

CZ1106 Problem Solving and Computation II

Programming Lab 5

Discrete Event Simulation and Linked List

29 March 2007

In this assignment we are going to do discrete event simulation with the use of linked
list taught in class. First, why do we write a simulation program to study the behavior
of a phenomenon? A simulation study must have a purpose. For example, simulation
can be performed to check and to optimize the design of seaport facilities and airport
run-ways before their construction, thus avoid costly design errors. Other purposes
include analysis, performance evaluation, tests of sensitivity, cost effectiveness,
forecasting, safety, man-in-the-loop training, teaching, decision making, etc. How
about the simulation of TOTO, and the 4D lotteries which you might have attempted?
The simulation result will tell you that it does not gain to gamble.

In this assignment we are going to study the behaviour of the queue in front of a
service counter. Queue is common everywhere, such as the ATM machines in Yusof
Ishak House, the check out counter in Science Library, the queue you join in Science
canteen when you take your lunch, etc. If you are frustrated when standing in a queue,
this assignment will give you some insight of the queue behaviour and I hope this will
make you less frustrated when you have understood the queue mechanism!! Here it is.

A queuing system is described by its calling population, the nature of the arrivals and
services, the system capacity, and the queuing discipline. A simple queuing system
can be modeled as follows:

 Calling Arrival Queue Server Departure
 Population

In this system the calling population is infinite. That is, if a unit (this unit can be also
called customer) leaves the calling population and joins the waiting line or enters
service, there is no change in the arrival rate of other units that may need service. In
this system, arrivals for service occur one at a time in a random fashion and once they
join the waiting line they are eventually served. In addition, service times are of some
random length according to a probability distribution which does not change over
time. Also, the system capacity may be unlimited or limited. The system capacity
includes the unit in service plus those waiting in line. Finally, callers are served in the
order of their arrival (often called FIFO, for first in, first out) by one or more servers.
In this assignment we assume that the queue capacity is unlimited, and the number of
servers is 1.

Arrivals are modeled by the distributions of the time between arrivals called inter-
arrival time. Service time, which is also a random number, refers to the time needed to
serve a customer at the counter. If the overall effective arrival rate is greater than the

2

overall service rate, the waiting line will grow without bound. These queues are
termed as explosive queues - I hope you have not experienced it.

Prior to introducing several simulations of queuing systems, it is necessary to
understand the concepts of state of the system, events, and clock time. The state of
the system is the number of units in the system. The status of the server can be busy
or idle. An event is a set of circumstances that cause an instantaneous change in the
state of the system.

In a single-queue system there are only two possible events that can affect the state of
the system. The two events are the entry of a unit into the system (the arrival event),
and the completion of service on a unit (the departure event). The queuing system
includes the server, the unit being served (which is the customer standing in front of
the server – this customer is not standing in the queue), and the unit(s) in the queue (if
any are waiting).

Arrival Event. Arrival event occurs when a unit enters the system. The unit may find
the server either idle or busy. Therefore, the arrived customer will be served, or it will
enter the queue as shown in the following flow chart.

The arrived unit follows the course of action shown in the following table.

 Queue status
 Not empty Empty

Server Busy Enter queue Enter queue
status Idle Impossible Enter service

If the server is busy, the unit enters the queue. If the server is idle and the queue is
empty, the unit will be served by the server. It is impossible for the server to be idle
and the queue to be not empty at the same time.

Departure Event. If a service has just been completed, the simulation proceeds in the
manner shown in the following flow chart. Note that the server has only two possible
conditions either busy or idle.

Arrival
event

Unit receives
 service

Server
busy?

Unit enters queue

No Yes

3

After the completion of a service the server may become idle, or remain busy with the
next unit. The relationship of these two outcomes to the status of the queue is shown
in the following table.

 Queue status
 Not empty Empty

Server Busy Impossible
outcomes Idle Impossible

If the queue is not empty upon a service completion, another unit will be served by
the server and its status will remain as busy. If the queue is empty, the server will be
idle after a service is completed. It is impossible for the server to become busy if the
queue is empty when a service is completed. Similarly, it is impossible for the server
to be idle after a service is completed when the queue is not empty.

Now, how can the arrival event and department event occur in a simulated time?
Simulations of queuing systems generally require the maintenance of an event list for
determining what happens next. The event list, which is also called calendar, indicates
the times at which the different types of events occur for each unit in the queuing
system. The times are kept on a "clock", which marks the occurrences of events in
time. In simulation, the events usually occur at random. The randomness imitates real
life to portray uncertainty. For example, it is not known with certainty when the next
customer will arrive the loan counter in Science Library (inter-arrival time), or how
long the bank teller will take to complete a transaction (service time). This event list is
implemented by linked list in this assignment.

We shall now go through a series of hand simulation before embarking on writing the
program. The examples that follow show how the inter-arrival time and service time
are generated. For simplicity, we assume that the times between arrivals were
generated by rolling a die six times and recording the value facing up. This will
imitate the uniform distribution as the dice is unbiased. The following table contains a
set of six inter-arrival times generated in this manner.

Departure
event

Begin server
idle time

Another
unit waiting

?

Remove the
waiting unit

from the queue

Begin service
the unit

No Yes

4

 Inter-arrival Arrival
Customer Time Time on Clock

1 2 2
2 1 3
3 4 7
4 1 8
5 2 10
6 6 16

These six inter-arrival times are used to compute the arrival times of six customers at
the queuing system. The system clock time starts with 0. The first customer arrives at
clock time 2. This starts the clock in operation. The second customer arrives one time
unit later, at a clock time of 3. The third customer arrives four time units later, at a
clock time of 7; and so on.

The second time of interest is the service time. The following table contains service
times generated at random from a distribution of service times.

 Service
Customer Time

1 2
2 1
3 3
4 2
5 1
6 4

The only possible service times here are one, two, three, and four time units for
examples. Assuming that all four values are equally likely to occur, these values could
have been generated by placing the numbers one through four on chips and drawing
the chips from a hat with replacement.

Now, the inter-arrival times and service times must be meshed to simulate the single-
queue system. As shown in table below, the first customer arrives at clock time 2, and
immediately begins service with a duration of 2 minutes. Service is completed at
clock time 4. The second customer arrives at clock time 3 and will have to be placed
in the queue because the server has not completed the service for the previous unit.
Once the service for the previous unit (1st arrival) is completed at clock time 4, the
service will start for the second unit and will finish at clock time 5.

 Arrival Time Service Service Time Service
Customer Time Begins Time Ends
Number (Clock) (Clock) (Duration) (Clock)

1 2 2 2 4
2 3 4 1 5
3 7 7 3 10
4 8 10 2 12
5 10 12 1 13
6 16 16 4 20

5

The chronological ordering of these events are as follows:

 Customer Clock
Event Type Number Time

Arrival 1 2
Arrival 2 3

Departure 1 4
Departure 2 5

Arrival 3 7
Arrival 4 8

Departure 3 10
Arrival 5 10

Departure 4 12
Departure 5 13

Arrival 6 16
Departure 6 10

The simulation algorithm is rather systematic and iterative as shown in the following
algorithm:

 // initialization
set clock to 0;
set server to idle;
set queue length to 0;
schedule the first arrival event in the event list;
schedule a End_Of_Simulation Event in linked list;

// iteration
repeat
 select the next event with the smallest occurrence time
 from the outstanding events;
 update the system state in the time interval
 [clock, next event time];
 advance clock to the next event occurrence time;
 execute the next event according to its event type;
until clock > duration_of_simulation;

You observe that the increment of the simulation clock is discrete. In each iteration in
the algorithm these 4 steps are executed:
• select the event of least time;
• update the system state
• advance clock time
• execute event

The advancement of discrete clock time is shown below:

 A1 A2 D1 D2 A3 A4 D3/A5 …..

 Clock: 0 2 3 4 5 7 8 10 …. Duration of
 Time Simulation

Legend: A: Arrival D: Departure : Causal effect

6

The algorithm for executing an arrival event is as follows:

increment the total number of arrivals by 1;
schedule the next arrival event in the linked list;
if server is idle
 {
 set server to busy;

schedule a departure event for this
 arrival in the linked list;

 }
else
 {
 increment queue length by 1;

increment the total number of waiters;
 }

The algorithm for executing a departure event is as follows:

increment the total number of departures by 1;
if queue length is 0
 set server to idle;
else
 {
 decrement queue length by 1;

schedule the next departure event in
 the linked list;

 }

Assignment

Now we are ready to write the program to simulate the checkout counter in a grocery
store. Assume the store has only one checkout counter. Customers arrive at this
counter at random from 1 to 8 minutes apart. The cashier requires 1.5 to 3 minutes to
serve each customer at the counter. Both the inter-arrival and service time are
uniformly distributed. The cashier complained that her workload was too high and
asked the boss to add one more checkout counter. On 5 occasions where she
complained, there were at least 4 persons standing in the queue waiting for her
service. The cashier used these evidences to put pressure on the boss to do something
or she would submit a compliant to the union as she claimed the situation had affected
her mental state. As the operating cost for the 2 parallel checkout counters will be
doubled, you are now engaged to analyze the situation. We are interested in the
average queue length, average queue time, wait probability and the server (cashier)
utilization. If the store operates from 9 am to 10 pm, how many customers are served
by the cashier for each day? Print on the screen these answers:

Duration of Simulation : 1000000.00 hours
Total no. of Arrival events executed: ??
Total no. of Departure events executed: ??
Ave Queue Length: ??
Ave Queue Time: ??
Wait Probability: ??
Server Utilization:
Average number of customers served for each day (13 hours): ??

Write a report to advise the boss what to do based on your simulation results.

7

You can start from this program:

// server.c to compute
// average queue length, average queue time, wait probability
// and server utilization of a service counter.

// This program makes use of linked list in the
// simulation event management.

#define IDLE 0
#define BUSY 1
#define ARRIVAL 2
#define DEPARTURE 3
#define END_OF_SIMULATION 4

#define working_hr 13.0
#define duration_of_simulation 1000000.0
#define seed 107

include <math.h>
include <stdio.h>
include <conio.h>

struct node
{
 double key;
 int event;
 struct node * link;
};

double service_time()
{
 return ((double)rand()/32767)*1.5 + 1.5;
}

double inter_arrival_time()
{

}

void insert (.....)
{
 /* insert a node with event time and event type to the link list in
 accending order
 ..
 ..
 */
}

void remove_head()
{
 /* remove the first node of linked list and free the space;
 ..
 ..
 */
}

main ()
{
 int server_status;
 long total_arrivals, total_departures;
 long total_waiters, queue_length;

8

 double total_idle_time, total_wait_time;

 double clock,time_of_next_arr, time_of_next_dep,
 time_of_close_shop, event_time;

 int event;

 long last_que_len;
 double ave_que_len, ave_que_time, wait_probability, utilization;

 struct node *new_node, *current;

 clrscr();

// initilialzation

..
..

 srand (seed);

// insert first arrival event, and end of simulation event
// to linked list in ascending order

 do
 {
 // step 1: remove first node as the event

 // setp 2: record progress
 if (server_status == IDLE)
 total_idle_time += (event_time-clock);
 else
 total_wait_time += (queue_length*(event_time-clock));

 // step 3: advance clock to this event time
 // ..

 // step 4: execute the event accordingly
 switch (event)
 {
 case ARRIVAL:
 ..
 ..
 break;

 case DEPARTURE:
 ..
 ..
 break;
 case END_OF_SIMULATION: ; // do nothing
 }// case
 }
 while (clock < duration_of_simulation);

 ave_que_len = total_wait_time/duration_of_simulation;
 ave_que_time = total_wait_time/(double)total_arrivals;
 wait_probability = (double)total_waiters / (double)total_arrivals;
 utilization = (duration_of_simulation - total_idle_time) /

duration_of_simulation;

 printf ("\nSimulation simulation_duration : %.2lf ", duration_of_simulation);
 printf ("\nTotal Arrivals: %ld", total_arrivals);
 printf ("\nTotal Departures: %ld", total_departures);

9

 printf ("\nAve Queue Length: %lf",ave_que_len);
 printf ("\nAve Queue Time: %lf", ave_que_time);
 printf ("\nWait Probability: %lf", wait_probability);
 printf ("\nServer Utilization: %lf", utilization);

 printf ("\nAve number of customer served for each day: %lf ",
 ((double) total_departures/duration_of_simulation)*working_hr*60);

 return 0;
}

Hand in your printed program and report on the next
Wednesday in LT.

Send me your program in email attachment on the next
Wednesday before 10am to scitaysc@nus.edu.sg.

