
 1

CZ1106 Problem Solving and Computation II

Module Credit: 4

Duration: Semester 2 - January to April 2007.

Exam Date: 26-Apr-2007 (Morning).

Lecture: Every Wednesday, 12nn to 2pm, LT22.

Tutorial and Lab: TBD at S13-04-13 (CSD Lab),
 alternate week basis. PC will be used.

Lecturer: Dr Tay Seng Chuan
 Senior Lecturer, Department of Physics
 Head, IT Unit, Dean’s Office

 SM2/SM3 Programme Coordinator, Dean’s Office
 Assistant Hall Master, Temasek Hall

E-mail: scitaysc@nus.edu.sg

Office: S16-02 – Dean’s Office at Level 2

Appointment: All are welcome and I advise you to
 pre-arrange the time and place due to
 my other commitments. Just give a call or
 email in advance.

Telephone: 65168752

URL: http://www.physics.nus.edu.sg/~phytaysc

 2

1. Objective

This is the continuation of CZ1102. So my job is to teach
you how to solve scientific problems and to perform
computation based on your foundation in programming
language. In these 14 weeks, I will first teach you more
advance programming topics such as command-line
argument, pointers, bit manipulation, dynamic memory
allocation, and binary files, followed by data structures
and its used on numerical and non-numerical
algorithms.

2. What you will achieve at the end of the Course

You will be able to embark on solving computational
problems for the rest of your NUS candidature, and in your
research and working careers.

3. Course Conduct

 Lab Assignments (30%), Term Test (30%) – closed
book, and Final Examination (40%) – closed book.

 Students are expected to work on the tutorial
question and lab practical questions before
attending the classes. Source files are to be
downloaded in your thumb drive or diskette at least
2 days before attending your lesson. Bring them to
your lab classes – you cannot trust that the
network is always working during your lab session.

 Students should access to course website at least
once a week.

 3

4. References

I write lecturenotes for compulsory reading. The
following contains a list of references:

1. C for Scientists and Engineers, Richard

Johnsonbaugh, Martin Kalin, Prentice Hall, ISBN 0-
13-320334-4. (40 copies have been ordered in
Co-op – behind LT27)

2. Advanced C, Peter D. Hipson, SAM Publishing,

ISBN 0-672-30168-7.

3. C – An Introduction with Advanced Applications,

Prentic Hall, ISBN 0-13-480781-2.

5. Software

Turbo-C will be used. Both CSD labs at S13-04 are
installed with Turbo-C. Lab will also be open from 6pm
to 9pm starting from 3rd week.

 4

Chapter 1

Passing Arguments to main Function

from Command Line

1. Introduction

 As you have learnt in your first programming
course, you have seen that a C program starts and
ends with the function main.

 Just likes any function, the main function can also

accept arguments.

 All functions in C, including main, have exactly the
same structure :
- a name and an optional argument list.
- at least one block of executable code (which

may be empty)
- may optionally return a value.

 Program execution starts from the function main.

 To make our programs more flexible, we will learn

the method to pass arguments to main function
from command line.

 5

Consider a program used to encode a text file:

 If a character is capital letter, encode it as follows :

Actual
Character A B C D E F G H I J K L MN O PQRS TUVWXY Z

Encoded
Character K L MN O P Q R S T U V WX Y Z ABCDE FGH I J

If a character is small letter, encode it as follows :

Actual
Character a b c d e f g h i j k l mn o p q r s t u v w x y z

Encoded
Character z y x w v u t s r q p o n m l k j i h g f e d c b a

 Other characters remain unchanged. Store the ciphered text

(encoded data) in a file.

 Also, write another program to read the ciphered text and decipher

it. Display the plain text on the screen.

We want to make use of this program to encode a text file
named monkey.inf, and store the ciphered text in donkey.inf.
Here's the test-run result.

Input File (monkey.inf)

When I call my worker to do something for me, I also give him
some stuff so that he can do the job.
If I ask you to compute the area of a circle, I will have to
give you the radius.

Output File (donkey.ouf)

Gsvm S xzoo nb dlipvi gl wl hlnvgsrmt uli nv, S zohl trev srn
hlnv hgfuu hl gszg sv xzm wl gsv qly.
Su S zhp blf gl xlnkfgv gsv zivz lu z xrixov, S droo szev gl
trev blf gsv izwrfh.

 6

Program

/* AC1-1.C */

#include<stdio.h>

main()
{
 FILE *indata,*outdata;
 char this1;

 indata=fopen("monkey.inf","r");
 outdata=fopen("donkey.ouf","w");

 while (fscanf(indata,"%c",&this1)==1)
 {
 if (this1>='A' && this1<='Z')
 fprintf(outdata,"%c", (this1 - 2*'A'+'K')%26+ 'A') ;
 else
 if (this1>='a' && this1<='z') fprintf(outdata,"%c",'z'-(this1-'a'));
 else
 fprintf(outdata,"%c",this1);
 }

 fclose(indata);
 fclose(outdata);

 return 0;
}

 7

What is the Concern (not really a problem)

 Program is not flexible; the input and output filename.ext
are all hard-coded.

 Suppose you have 100 messages (stored in 100
separate files) to be encoded before transmission, then
you will have to edit and re-compile your program 100
times. By that time most probably your messages are
already out-dated !!!!

Solution !!!

 Make the input and output filename.ext as
variables.

 When you run the program from the
command line, also pass in the input and
output files.

 8

argc : number of arguments
argv : an array of string pointers to character string

In the subsequent discussion, filename refers to the
descriptor of a file, e.g., a:\\monkey.inf or monkey.inf).

Program (flexible version, encode.c)

/* AC1-2.C */

#include<stdio.h>

main(int argc, char *argv[])
{
 FILE *indata,*outdata;
 char this1;

 indata=fopen(argv[1],"r");
 outdata=fopen(argv[2],"w");

 while (fscanf(indata,"%c",&this1)==1)
 {
 if (this1>='A' && this1<='Z')
 fprintf(outdata,"%c", (this1-2*'A'+'K')%26+'A');
 else
 if (this1>='a' && this1<='z')
 fprintf(outdata,"%c",'z'-(this1-'a'));
 else
 fprintf(outdata,"%c",this1);
 }

 fclose (indata);
 fclose (outdata);

 return 0;
}

 9

How to use this program ?

. Edit and compile the program to generate the object

code.

. Run the object code to generate the executable code. If
the source file is named encode.c, the default executable
code will be saved in encode.exe, but you can change
the name if it is desired.

. Suppose the executable file is named encode.exe. At the
prompt sign, use this command to encode a plain file:

c:\> encode monkey.inf donkey.ouf

which means that we run the encode program
using monkey.inf (plain text) as an input file, and
store the output in donkey.ouf (ciphered text).

If an agent has 100 text files (secret0.inf, secret1.inf, ... ,
secret99.inf) to be encoded, he can simply use the following
instructions with the encode.exe :

encode secret0.inf send0.ouf
encode secret1.inf send1.ouf
encode secret2.inf send2.ouf

. .

. .
 encode secret99.inf send99.ouf

No recompilation !!!! You cannot afford to
compile your program when it is urgent.

So we have addressed the concern.

 10

2. The Command-Line Interface

. In this course we are interested in argc and argv.

. Others arguments may be passed as well but we will
not discuss them in this course.

. argc is an int and contains the number of arguments
found.

. argv is an array of string pointers to these
arguments.

. The format of a command line instruction is as follows :

 progname arg1 arg2 ... argn

- progname is the filename of the executable
code.

- arg1 through argn are optional arguments.

- Command-line argument is deemed to be a non-
white-space character string.

- Consecutive arguments are separated by
multiple spaces and/or horizontal tabs.

- Arguments are always considered to be
character strings. (e.g., the integer argument
12345 is interpreted as string "12345").

 11

Example :

 [0] [1] [2]

 C:\> encode monkey.inf donkey.ouf

 argc = 3 (number of command-line

 arguments)
 argv[0] → "encode\0"

 argv[1] → "monkey.inf\0"

 argv[2] → "donkey.ouf\0"

- Take note that argv[0] to argv[2] are pointers
to string characters.

- ‘\0’ is a string terminator and is automatically
appended to the end.

- → means "it is pointing to ...".

- ‘\0’ is one character by itself.

Example :

 c:\>encode secret7.inf send7.ouf

 argc = 3
 argv[0] → "encode\0"
 argv[1] → "secret7.inf\0"
 argv[2] → "send7.ouf\0"

 12

A command-line text processor

textpro infile.inf outfile.ouf /spacing=2 /lm=1 /rm=80

 argc = 6
 argv[0] → "textpro\0"
 argv[1] → "infile.inf\0"
 argv[2] → "outfile.ouf\0"
 argv[3] → "/spacing=2\0"
 argv[4] → "/lm=1\0"
 argv[5] → "/rm=80\0"

The advantage of this approach is that the same raw
document file can be formatted quite differently just by
running textpro with different combinations of command-line
arguments. The raw (source) file need not be changed!!

Sales Talk!! Anyway, there are serious
uses of command-line arguments.

Now we study the flexible version of encode.c again.

 13

C:\> encode monkey.inf donkey.ouf

Program (flexible version)

/* AC1-2.C */

#include<stdio.h>

main(int argc, char *argv[])
{
 FILE *indata,*outdata;
 char this1;

 indata=fopen(argv[1],"r");
 outdata=fopen(argv[2],"w");

 while (fscanf(indata,"%c",&this1)==1)
 {
 if (this1>='A' && this1<='Z')
 fprintf(outdata,"%c", (this1-2*'A'+'K')%26+'A');
 else
 if (this1>='a' && this1<='z')
 fprintf(outdata,"%c",'z'-(this1-'a'));
 else
 fprintf(outdata,"%c",this1);
 }

 fclose(indata);
 fclose(outdata);

 return 0;
}

 encode.c

In this example I have not made use of argc, I will show
you the use of argc in another program.

 14

3. A Case Study

The next programe convert a number in base 10 to its
equivalent in base b where is not greater than 8 (for the
ease of explanation. You can modify the program to any
base value.).

For examples :

 Command Line Response
 convert 30 /base=4 134
 convert 35 /base=2 100011
 convert -13 /base=4 -31
 convert 65 /base=7 122
 convert 169 /base=9 Base should be less than 9!
 convert 13 Wrong Format! Use this instruction :

convert dd...d /base=d

Let’s do it manually first.

30(10) = ______ (4)

 15

 c:\> convert 30 /base=4

Program

/* AC1-3.C */

#include<stdio.h>
#include<stdlib.h>
#include<string.h>

#define SIZE 10

main(int argc, char *argv[])
{
 int digit, base, remainder, i;
 char symbol[SIZE];

 if (argc!=3)
 {
 printf("Wrong Format! Use this instruction:\n");
 printf("convert dd...d /base=d\n");
 exit(1);
 }

 if (strlen(argv[2]) != 7)
 {
 printf("Base Format Error!\n");
 exit(1);
 }

 if (*(argv[2]+6) > '8')
 {
 printf("Base should be less than 9!\n");
 exit(1);
 }

 16

 base = *(argv[2]+6)-'0';
 digit = atoi(argv[1]);
 printf("\t\t");
 if (digit<0)
 {
 putchar('-');
 digit = -digit;
 }

 i=0;
 do
 {
 remainder = digit%base;
 symbol[i] = remainder + '0';
 i++;
 digit = digit/base;
 } while(digit>0);

 do
 {
 i--;
 putchar(symbol[i]);
 } while(i!=0);
 putchar('\n');

 return 0;
}

 17

Screen Output

C:\> convert 30 /base=4
 132

C:\> convert 35 /base=2
 100011

C:\> convert -13 /base=4
 -31

C:\> convert 100 /base=5
 400

C:\> convert 65 /base=7
 122

C:\> convert 169 /base=9
Base should be less than 9!

C:\> convert 13
Wrong Format! Use this instruction :
convert dd...d /base=d

 18

Chapter 2

Bit Operations

1. Decimal System

 Example : N = 15210.

 - Subscript "10" means base 10.

- Each character is a digit with a
 corresponding weight.

 N = 1 x 102 + 5 x 101 + 2 x 100 = 15210

2. Binary System

 Computers are built from devices which behave like
switches having only two possible states (and not
ten possible states), i.e. OFF or ON, which may be
represented as either 0 or l. Thus computers use
the binary system (base 2) to represent numbers.

 Weights are powers of two instead of powers of
ten.

 Example :

 N = 1102

 = 1 x 22 + 1 x 21 + 0 x 20

 = 4 + 2 + 0

 = 610

 19

Decimal Sum

 carry digits: 11

137
+ 69

206

Binary Sum

 Addition Rules:

02 + 02 = 02 , 12 + 02 = 02 + 12 = 12, and 12 + 12 = 102

 Binary Addition:

 carry digits: 1

1110
 + 1001

10111

Subtraction in base 2 involves borrowing twos :
(Actually, we borrow one, but its weight is 2)

 22

 carry digits: -1-1

100
 - 11

001

 20

Data Representation used in Computer

 Computers use the binary system to represent numbers
internally.

 Binary digits are also called BITs. Bits may exist in the
computer as electrical voltages, for example +5 Volts
might be used to represent a binary 1, and -5 Volts may
be used to represent a binary 0. Alternatively they may
exist as charge on capacitors, a charged capacitor
representing a binary 1, and an uncharged capacitor
representing a binary 0.

 Bits are stored in groups of 8, called Byte.

 Word varies from one computer to the others. In this
course, we assume that 1 word = 2 bytes.

 By our convention the computer uses the leftmost binary
digit to determine the sign (+ or -) of a number: the
number being positive if the leftmost bit is zero and
negative if the leftmost bit is a one.

 Suppose our computer uses 8 bits (i.e., 1 byte) to
represent integers. In this course, the 8 bits are
numbered 0 through 7 from right to left in our
convention! Bit number 7 is the Most Significant Bit
(MSB) and bit number 0 is the Least Significant Bit (LSB).

MSB LSB
7 6 5 4 3 2 1 0
0 1 0 0 1 1 0 1

To remember, think of the amount of money you
have : $1239 where 9 is the least significant number
(only $9), and 1 is most significant number ($1000!!)

 21

The number represented here is positive (because bit-7
is 0), and has the value:

MSB LSB

7 6 5 4 3 2 1 0
0 1 0 0 1 1 0 1

1 x 26 + 1 x 23 + 1 x 22 + 1 x 20

= 64 + 8 + 4 + 1
= 7710

 The biggest positive integer that may be represented
using 8-bit two's complement notation is +12710
(011111112).

 What is the most negative number represented by this
notation ? We will see.

 22

How to represent -7710 as a binary byte?

 We use two's complement notation for -ve numbers.

 First, take the binary representation of 77 and toggle all
the 1s to 0s, and all the 0s to 1s to obtain the one's
complement notation.

 So,

+7710 = 010011012

 becomes,

 101100102 (after toggling all bits)

Next, add 1 to the one's complement notation to obtain
the two's complement notation.

 Now, the number becomes

MSB LSB
7 6 5 4 3 2 1 0
1 0 1 1 0 0 1 1

 So,

 -7710 = 101100112 in two's complement notation.

 23

How does computer calculate +77 + (-77) ?

carry digits 11111111

 01001101 (+77)
+ 10110011 (-77)
 100000000

Binary digit is carried over into position number 8, but it
doesn't matter because we only use 8 bits (bits 0 to 7) !!!

Decimal Value of a Two's Complement Notations

For a two's complement 8-bit integer, the decimal value can
be computed as follows :

 N = (number represented by bits 0 to 6) - (bit 7 x 128)

In general, for a n-bit integer,

 N = [number represented by bits 0 to (n-2)] - [bit (n-l) x 2n-1]

MSB LSB
n-1 n-2 3 2 1 0
1 0 1 1 0 0 1 1

 101100112 = 1 x 25 + 1 x 24 + 1 x 21 + 1 x 20 - 1 x 27

 = 3210 + 1610 + 210 + 110 - 12810

 = 5110 - 12810

 = -7710

So, the most negative number we can represent is -128,
i.e., 100000002 for a 8-bit integer .

 24

Unsigned Integer

If we assumed that numbers were always positive, we could
use the MSB to represent value and

our biggest number would be 111111112 = 25510,

the smallest value is 000000002 = 0, and

the number is called an unsigned integer because the
MSB is no longer used as a sign bit. Now the MSB carries
a weight for unsigned integer.

By default, integer is signed, unless stated otherwise.

 25

Overflow Problems in Arithmetic

Assume 8-bit integer:

 carry digits: 111

 01110000 (11210)
+ 00110000 (+4810)
 10100000

sign bit is set !!!

 According to our two's complement notation,
the result is negative !!

Why and what is the cause ???

Another way to run into trouble is to add together two
negative numbers whose sum is less than -12810 .

For instance (-11110) + (-3910) :

 carry digits: 1 1 1

 10010001 (-11110)
+ 11011001 (- 3910)

 01101010

 sign bit is not set

 The result is positive !!!

CARRY bit and OVERFLOW bit are use to monitor
addition.

 26

 The carry bit acts as bit number 8 and catches any carry
over from bit number 7.

 In the last example, after the computer had performed the
addition the carry bit would be set (1). If there is no carry
out from bit 7 the carry bit will be clear (0).

 The overflow bit is there to tell the computer when an
addition has gone wrong i.e., when the result cannot fit in
the byte it overflows.

The following two digits are used to set the overflow bit :
(i) the carry digit (C7) from bit 7 (sign bit) to the carry bit
(ii) the carry digit (C6) from bit 6 to bit 7

C7 C6 Overflow Bit
0 0 0
0 1 1
1 0 1
1 1 0

The relation is known as Exclusive-OR (XOR), meaning
"one and only one". The overflow bit is the XOR of C6 and
C7. If the overflow bit is set after an addition, the sum
cannot be represented by only 8 bits.

To understand, consider the 2-bit two’s complement
notations with small numbers: 00 (0), 01 (1), 10 (-2), 11 (-1).

Carry Bit: 0 0 0 1 1 0 0 0

 0 0 0 1 1 0 1 1
 0 1 0 1 1 1 1 1
 0 1 1 0 1 1 1 0

 27

Consider 8 bits:

Example for case 1 :

6410 + 3210 = 9610 (no overflow)

01000000 (64)
+ 00100000 (32)

01100000 (+96)

10

10

10

C7 = 0

C6 = 0

Example for case 2 :

6410 + 6410 = 12810 > 12710 (overflow)

01000000 (64)
+ 01000000 (64)

10000000 (128)

10

10

10

C7 = 0

C6 = 1

 sign bit is set

 28

Example for case 3 :

(-6410) + (-6510) = -12910 < -12810 (overflow)

11000000 (- 64)
+ 10111111 (- 65)

 01111111 (- 129)

10

10

10

C7 = 1

C6 = 0

sign bit is not set

Example for case 4 : (-210) + (-210) = -410 (no overflow)

 29

3. Octal System

1358 = 1 x 82 + 3 x 81 + 5 x 80

 = 6410 + 2410 + 510
 = 9310

Convert from Binary to Octal

Group of 3 bits !!

 0110101012 = 3258

4. Hexadecimal System

 Digits : 0 1 2 3 4 5 6 7 8 9 A B C D E F
 (Small letter a b c d e f can be used.)

 AB616 = 10 x 162 + 11 x 161 + 6 x 160

 = 256010 + 17610 + 610

 = 274210

 30

Conversion of Decimal Numbers
to Hexadecimal Numbers

 Example : 10610 = ?? 16

106 / 16 = 6 remainder 1010 (A16)
 6 / 16 = 0 remainder 610 (616)

 i.e. 10610 = 6A16

Binary to Hexadecimal

Group of 4 bits

 10101110111100112 = AEF316

If the number of digits in the binary number is not a multiple
of four, we must append the leading zeros to the left hand
side. Thus

110112 = 000110112 = 0001 10112 = lB16

When adding and subtracting hexadecimal numbers
remember to carry or borrow sixteens!

 31

ASCII Codes

. ASCII is only a 7 bit code, for 128 characters, the 8th bit

(bit-7) is used for error checking during data
transmission.

. IBM have extended the ASCII codes to include a special

set of characters.

 MSBs
LSBs 000 001 010 011 100 101 110 111
0000 NUL DLE SP 0 @ P ` p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 “ 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F V f v
0111 BEL ETB ‘ 7 G W g w
1000 BS CAN (8 H X h x
1001 HT EM) 9 I Y i y
1010 LF SUB * : J Z j z
1011 VT ESC + ; K [k {
1100 FF FS , < L \ l |
1101 CR GS - = M] m }
1110 O RS . > N ^ n ~
1111 SI US / ? O _ o DEL

Character ASCII Code
0 0110000
1 0110001

.
9 0111001
: 0111010
A 1000001
B 1000010

.
Z 1011010
[1011011
\ 1011100

 32

The first 32 characters are known as control characters.
These are used to control some action of the computer and
are not printable characters like the remaining 224
characters. Some points to notice about the table are :

• The decimal digits 0 to 9 have ASCII codes in the range

4810 to 5710 or 3016 to 3916 which may be easier to
remember because the last digit of the code in
hexadecimal is the same as the character represented).

• Uppercase (capital) letters have codes in the range 6510

to 9010 (i.e. 4116 to 5A16). Lowercase (small) letters have
codes in the range 9710 to l2210 (i.e. 6116 to 7A16). To
convert an uppercase character to a lower case character
we need to add 3210 (2016) to the ASCII code. To convert
lowercase to uppercase we would subtract 3210 (2016)
from the ASCII code.

 ‘A’ = 65, ‘a’=97

 65 66 97 98

 A B ? a b ?*

