
1

CZ1106 Problem Solving and
Computation II

Introduction to Data Structures

Linked List, Stack and Queue

Dr Tay Seng ChuanDr Tay Seng Chuan

Faculty of ScienceFaculty of Science

Data Structures

Data structure is an organizational scheme,
such as a record, array, or pointer that can
be applied to data to facilitate interpreting
the data or performing operations on it.

2

a1 a2 a3 a4

head represents
null

Linked List Linked List

element next

ai

A linked list is a sequence of items.

A node in linked list:

The linked list:

One-Way Linked List
Representation

• O(n) as opposed to an array O(1) access time
• In a linked list we have to start at the first

position.

a1 a2 a3 a4

head represents
null

3

Circular Linked List

Given a pointer to an arbitrary node on a circular
Linked List, we can follow links from a node to
access any other node.

Two Way Linked List

Point to both their left and right neighbours, you can
follow links in either direction to access other nodes.

4

• Stacks can be implemented efficiently and are very useful in computing.

• Stacks exhibit the LIFO behaviour.

push(o)

pop

What is a Stack? What is a Stack?

stack of newspapersstack of newspapers

Applications Applications

Many application areas use stacks:

• line editing

• bracket matching

• postfix calculation

• function call stack

5

Line EditingLine Editing
A line editor would place the characters read into a buffer but may use
a backspace symbol (denoted by ←) to do error correction.

Example:

Input :

Corrected Input :

Reversed Output :

Refined Task
• read in a line
• correct the errors via backspace
• print the corrected line in reverse

abc_defgh←2klpqr←←wxyz

abc_defg2klpwxyz

zyxwplk2gfed_cba

• Initialise a new stack.

• For each character read:
- if it is a backspace, pop out last char entered
- if not a backspace, push the char into stack

• To print in reverse, pop out each char for output.

Stack

Informal ProcedureInformal Procedure Line Editing Line Editing

Input : fgh←r←←yz

Corrected Input :

Reversed Output : f

g

hr

y

z

fyz

zyf

6

Bracket Matching Problem Bracket Matching Problem

• An Example: {a,(b+f[4])*3,d+f[5]}

Ensures that pairs of brackets are properly matched.

• Bad Examples:

(..)..) // too many closing brackets

(..(..) // too many open brackets

[..(..]..) // mismatched brackets

Example

{a,(b+f[4])*3,d+f[5]}

Stack

Informal ProcedureInformal Procedure Bracket Matching Bracket Matching

Initialise the stack to empty.

For every char read.
• if open bracket then push onto stack
• if close bracket, then

• topAndPop from the stack
• if doesn’t match then flag error

• if non-bracket, skip the char read

{

(

[

)

}

]

[]

7

Postfix CalculatorPostfix Calculator
Computation of arithmetic expressions can be efficiently
carried out in Postfix notation with the help of a stack.

Infix - arg1 op arg2
Prefix - op arg1 arg2
Postfix - arg1 arg2 op

(2*3)+4

2*(3+4) 2 3 4 + *

2*3+4

infix 2 3 * 4 +

postfix

Initialise stack
For each item read.

If it is an operand,
push on the stack

If it is an operator,
pop arguments from stack;
perform operation;
push result onto the stack

2

3

4

Informal ProcedureInformal Procedure Postfix Calculator Postfix Calculator

Stack

Expr
2
3
4
+

*

s.push(2)
s.push(3)
s.push(4)
arg2=s.topAndPop()
arg1=s.topAndPop()
s.push(arg1+arg2)
arg2=s.topAndPop()
arg1=s.topAndPop()
s.push(arg1*arg2)

3+4=7

2*7=14

8

15

Queue

Queue has the disciple of First In
First Out (FIFO).

Front
(Head)

Rear
(Tail)

double average (listptr head)
{

double sum = 0;
int n = 0;

if (head == NULL)
{

printf (“\n empty list”);
exit (1);

}

do
{

n++;
sum += head->value;
head = head->next;

}
while (head != NULL);

return sum/n;
}

Example: Compute the Average on List Example: Compute the Average on List

9

listptr concatlists (listptr first, listptr second)
{

listptr temp;

if (first == NULL)
return second;

if (second != NULL)
{

temp = first;
while (temp->next != NULL) temp = temp->next;

temp->next = second;
}

return first;
}

Example: Concatenate 2 listsExample: Concatenate 2 lists

