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Reference: ``Introduction to Parallel Computing'‘ – Chapter 2.
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Topic Overview 

• Implicit Parallelism: Trends in Microprocessor 
Architectures 

• Limitations of Memory System Performance 
• Dichotomy of Parallel Computing Platforms 
• Communication Model of Parallel Platforms 
• Physical Organization of Parallel Platforms 
• Communication Costs in Parallel Machines 
• Messaging Cost Models and Routing Mechanisms 
• Mapping Techniques 
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Scope of Parallelism 

• Different applications utilize different aspects of parallelism - e.g., 
data intensive applications utilize high aggregate throughput, server 
applications utilize high aggregate network bandwidth, and scientific 
applications typically utilize high processing and memory system
performance. 

• It is important to understand each of these performance bottlenecks
and their interacting effect. 
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Implicit Parallelism: Trends in 
Microprocessor Architectures 

• Microprocessor clock speeds have posted impressive gains over the 
past two decades (two to three orders of magnitude). 

• Higher levels of device integration have made a large number of 
transistors available. 

• The question of how best to utilize these resources is an important 
one. 

• Current processors use these resources in multiple functional units 
Eg: Add R1, R2 (i) Instruction Fetch, (ii) Instruction Decode, (iii) 
Instruction Execute, and execute multiple instructions in the same 
cycle. 

• The precise manner in which these instructions are selected and 
executed provides impressive diversity in architectures with different 
performance and for different purpose. (Each architecture has its 
own merits and pitfalls.)
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Pipelining and Superscalar Execution 

• Pipelining overlaps various stages of instruction 
execution to achieve performance. 

• At a high level of abstraction, an instruction can be 
executed while the next one is being decoded and the 
next one is being fetched. 

• This is akin to an assembly line for manufacture of cars. 
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Pipelining and Superscalar Execution 

• Pipelining, however, has several limitations. 
• The speed of a pipeline is eventually limited by the slowest stage. 

• For this reason, conventional processors rely on very deep pipelines 
(20 stage pipelines in state-of-the-art Pentium processors). 

• However, in typical program traces, every 5-6th instruction is a 
conditional jump! This requires very accurate branch prediction.

• The penalty of a mis-prediction grows with the depth of the pipeline, 
since a larger number of instructions will have to be flushed. 

20 Second 20 Second 130 Second 20 Second 20 Second

1 unit per 

?? second
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Pipelining and Superscalar Execution 

• One simple way of alleviating these bottlenecks is to use multiple 
pipelines. 

• Selecting which pipeline for execution becomes a challenge. 

8

Superscalar Execution: An Example

Example of a two-way superscalar execution of instructions.
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Superscalar Execution: An Example

• In the above example, there is some wastage of 
resources due to data dependencies. 
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Superscalar Execution: An Example

• The example also illustrates that different instruction 
mixes with identical semantics can take significantly 
different execution time. 
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Superscalar Execution 

• Scheduling of instructions is determined by a number of 
factors: 
– True Data Dependency: The result of one operation is an input to 

the next. 
– Resource Dependency: Two operations require the same 

resource. 
– Branch Dependency: Scheduling instructions across conditional 

branch statements cannot be done deterministically before hands.
– The scheduler, a piece of hardware looks at a large number of 

instructions in an instruction queue and selects appropriate number 
of instructions to execute concurrently based on these factors. 

– The complexity of this hardware is an important constraint on 
superscalar processors. 
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Superscalar Execution: 
Issue Mechanisms 

• In the simpler model, instructions can be issued only in 
the order in which they are encountered. That is, if the 
second instruction cannot be issued because it has a 
data dependency with the first, only one instruction is 
issued in the cycle. This is called in-order issue. 
(sequentialization)

• In a more aggressive model, instructions can be issued 
out of order. In this case, if the second instruction has 
data dependencies with the first, but the third instruction 
does not, the first and third instructions can be co-
scheduled. This is also called dynamic issue. 
(speculation)

• Performance of in-order issue is generally limited. Why?
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Superscalar Execution: 
Efficiency Considerations 

• Not all functional units can be kept busy at all times. 
• If during a cycle, no functional units are utilized, this is referred to as vertical 

waste. 

• If during a cycle, only some of the functional units are utilized, this is 
referred to as horizontal waste. 

• Due to limited parallelism in typical instruction traces, dependencies, or the 
inability of the scheduler to extract parallelism, the performance of 
superscalar processors is eventually limited. 

• Conventional microprocessors typically support four-way superscalar 
execution. 
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Very Long Instruction Word (VLIW) 
Processors 

• The hardware cost and complexity of the superscalar 
scheduler is a major consideration in processor design. 

• To address this issues, VLIW processors rely on compile 
time analysis to identify and bundle together instructions 
that can be executed concurrently. 

• These instructions are packed and dispatched together, 
and thus the name very long instruction word. 
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Very Long Instruction Word (VLIW) 
Processors: Considerations 

• Hardware aspect is simpler. 
• Compiler has a bigger context from which to select co-

scheduled instructions. (More work for compiler.)
• Compilers, however, do not have runtime information 

such as cache misses. Scheduling is, therefore, 
inherently conservative. 

• Branch and memory prediction is more difficult. 
• VLIW performance is highly dependent on the compiler. 

A number of techniques such as loop unrolling, 
speculative execution, branch prediction are critical. 

• Typical VLIW processors are limited to 4-way to 8-way 
parallelism. 
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Limitations of 
Memory System Performance 

• Memory system, and not processor speed, is often the bottleneck for 
many applications. 

• Memory system performance is largely captured by two parameters,
latency and bandwidth. 

• Latency is the time from the issue of a memory request to the time 
the data is available at the processor. (Waiting time until the first 
data is received. Consider the example of a fire-hose. If the water 
comes out of the hose two seconds after the hydrant is turned on, 
the latency of the system is two seconds. If you want immediate 
response from the hydrant, it is important to reduce latency. )

• Bandwidth is the rate at which data can be pumped to the processor 
by the memory system. (Once the water starts flowing, if the hydrant 
delivers water at the rate of 5 gallons/second, the bandwidth of the 
system is 5 gallons/second. If you want to fight big fires, you need 
high bandwidth. ) 
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Memory Latency: An Example 

• Consider a processor operating at 1 GHz (1 ns clock) connected to 
a DRAM with a latency of 100 ns (no caches). Assume that the 
processor has two multiply-add units and is capable of executing 
four instructions in each cycle of 1 ns. The following observations 
follow: 

– Since the memory latency is equal to 100 cycles and block size is one 
word, every time a memory request is made, the processor must wait 
100 cycles before it can process the data. This is a serious drawback.

– The peak processor rating (assume no memory access) is computed as 
follows:
Assume 4 instructions are executed on registers, peak processing rating 
=  (4 Instructions)/(1 ns) = 4 GFLOPS. But this is not possible if 
memory access is needed.

GFLOPS: Giga Floating Point Operations per Second
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Seriousness of Memory Latency
• On the above architecture with memory latency of 100 ns, 

consider the problem of computing a dot-product of two 
vectors. 
– A dot-product computation performs one multiply-add on a single 

pair of vector elements, i.e., each floating point operation requires 
one data fetch. 

– It follows that the peak speed of this computation is limited to one 
floating point operation every 100 ns, ie, 
(1 FLOP)/(100 ns) = 1/(100 x 10-9 sec)  FLOPS = 107 FLOPS 
= 10 x 106 FLOPS = 10  MFLOPS.

– The speed of 10 MFLOPS is a very small fraction of the peak 
processor rating (4 GFLOPS)! 
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Improving Effective Memory 
Latency Using Caches 

• Caches are small and fast memory elements between the processor 
and DRAM. 

• This memory acts as a low-latency high-bandwidth storage. 
• If a piece of data is repeatedly used, the effective latency of this 

memory system can be reduced by the cache. 
• The fraction of data references satisfied by the cache is called the 

cache hit ratio of the computation on the system. 
• Cache hit ratio achieved by a code on a memory system often 

determines its performance. Eg: For 100 attempts to access to data 
in cache, if 30 attempts are successful, what is the cache hit ratio? 
What is the cache miss ratio? What is the impact if the cache miss 
ratio is greater than the cache hit ratio?

20

Impact of Memory Bandwidth

• Memory bandwidth is determined by the bandwidth of 
the memory bus as well as the memory units.

• Memory bandwidth can be improved by increasing the 
size of memory blocks. 

• It is important to note that increasing block size does not 
change latency of the system.  

• In practice, wide data and address buses are expensive 
to construct. 

• In a more practical system, consecutive words are sent 
on the memory bus on subsequent bus cycles after the 
first word is retrieved. The reduces latency by half.
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Impact of Memory Bandwidth 

• Increased bandwidth results can improve computation rates. 
• The data layouts were assumed to be such that consecutive data 

words in memory were used by successive instructions (spatial 
locality of reference). 

• If we take a data-layout centric view, computations must be reordered 
to enhance spatial locality of reference. See next 2 examples.

Scattered Data (strided access )

Consecutive Data
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Impact of Memory Bandwidth: Example 

Consider the following code fragment:
for (i = 0; i < 1000; i++) 

column_sum[i] = 0.0;
for (j = 0; j < 1000; j++)

column_sum[i] += b[j][i];

The code fragment sums columns of the matrix b into a vector
column_sum. 
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Impact of Memory Bandwidth: Example
We can fix the above code as follows:

for (i = 0; i < 1000; i++)
column_sum[i] = 0.0;

for (j = 0; j < 1000; j++)
for (i = 0; i < 1000; i++)

column_sum[i] += b[j][i];

In this case, the matrix is traversed in a row-order and 
performance can be expected to be significantly better.
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Memory System Performance: Summary 

• The series of examples presented in this section 
illustrate the following concepts: 
– Exploiting spatial and temporal locality in applications is critical 

for amortizing memory latency and increasing effective memory 
bandwidth. 

– The ratio of the number of operations to number of memory 
accesses is a good indicator of anticipated tolerance to memory 
bandwidth. 

– Memory layouts and organizing computation (eg, the two 
columnsum examples) appropriately can make a significant 
impact on the spatial and temporal locality. 
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Alternate Approaches for 
Hiding Memory Latency 

• Consider the problem of browsing the web on a very 
slow network connection. We deal with the problem in 
one of three possible ways: 
– we anticipate which pages we are going to browse ahead of time 

and issue requests for them in advance; 
– we open multiple browsers and access different pages in each 

browser, thus while we are waiting for one page to load, we 
could be reading others; or 

– we access a whole bunch of pages in one go - amortizing the 
latency across various accesses. 

• The first approach is called prefetching, the second 
multithreading, and the third one corresponds to spatial 
locality in accessing memory words. 
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Multithreading for Latency Hiding 
A thread is a single stream of control in the flow of a program.
We illustrate threads with a simple example: 

for (i = 0; i < n; i++)
c[i] = dot_product(get_row(a, i), b);

Each dot-product is independent of the other, and therefore represents a 
concurrent unit of execution. We can safely rewrite the above code segment as: 

for (i = 0; i < n; i++)
c[i] = create_thread(dot_product,get_row(a, i), b);
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Multithreading for Latency Hiding: 
Example

• In the code, the first instance of this function accesses a pair of 
vector elements and waits for them. 

• In the meantime, the second instance of this function can access
two other vector elements in the next cycle, and so on. 

• After l units of time, where l is the latency of the memory system, 
the first function instance gets the requested data from memory and 
can perform the required computation. 

• In the next cycle, the data items for the next function instance arrive, 
and so on. In this way, in every clock cycle, we can perform a 
computation. This is how the memory latency is reduced.

Multiple threads 
are created.
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Multithreading for Latency Hiding 

• The execution schedule in the previous example is 
predicated upon two assumptions: the memory system is 
capable of servicing multiple outstanding requests, and 
the processor is capable of switching threads at every 
cycle. 

• It also requires the program to have an explicit 
specification of concurrency in the form of threads. 
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Prefetching for Latency Hiding 

• Misses on loads cause programs to stall. 
• Why not advance the loads so that by the time the data 

is actually needed, it is already there! 
• The only drawback is that you might need more space to 

store advanced loads. 
• However, if the advanced loads are overwritten, we are 

no worse than before! 
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Tradeoffs of Multithreading and 
Prefetching 

• Bandwidth requirements of a multithreaded system may 
increase very significantly because of the smaller cache 
residency of each thread. 

• Multithreaded systems become bandwidth bound instead 
of latency bound. Why?

• Multithreading and prefetching only address the latency 
problem and may often exacerbate the bandwidth 
problem (from bad to worst). 

• Multithreading and prefetching also require significantly 
more hardware resources in the form of storage. 

• Context switching overhead incurred by the threads is 
significant (but is not discussed in textbook).
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Control Structure of Parallel Programs 

• Parallelism can be expressed at various levels of 
granularity (amount of workload) - from instruction level 
to processes. 

• Between these extremes exist a range of models, along 
with corresponding architectural support. 
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Control Structure of Parallel Programs 

• Processing units in parallel computers either operate 
under the centralized control of a single control unit or 
work independently. 

• If there is a single control unit that dispatches the same 
instruction to various processors (that work on different 
data), the model is referred to as single instruction 
stream, multiple data stream (SIMD). 

• If each processor has its own control unit, each 
processor can execute different instructions on different 
data items. This model is called multiple instruction 
stream, multiple data stream (MIMD). 
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SIMD and MIMD Processors
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Conditional 
Execution in SIMD 

Processors 
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MIMD Processors

• In contrast to SIMD processors, MIMD processors can 
execute different programs on different processors. 

• A variant of this, called single program multiple data 
streams (SPMD) executes the same program on 
different processors. 

• It is easy to see that SPMD and MIMD are closely 
related in terms of programming flexibility and underlying 
architectural support. 
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Communication Model 
of Parallel Platforms 

• There are two primary forms of data exchange between 
parallel tasks - accessing a shared data space and 
exchanging messages. 

• Platforms that provide a shared data space are called 
shared-address-space machines or multiprocessors. 

• Platforms that support messaging are also called 
message passing platforms or multicomputers. 
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Shared-Address-Space 
vs. 

Shared Memory Machines

• It is important to note the difference between the terms 
shared address space and shared memory. 

• Shared address space a programming abstraction.
• Shared memory is a physical machine attribute. 
• It is possible to provide a shared address space using a 

physically distributed memory. 

38

Message-Passing Platforms 

• These platforms comprise of a set of processors and 
their own (exclusive) memory. 

• Instances of such a view come naturally from clustered 
workstations and non-shared-address-space 
multicomputers. 

• These platforms are programmed using (variants of) 
send and receive primitives. 

• Libraries such as MPI (used by CZ4102) and PVM 
provide such primitives. 
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Architecture of an 
Ideal Parallel Computer 

• A natural extension of the Random Access Machine 
(RAM) serial architecture is the Parallel Random Access 
Machine, or PRAM. We begin this discussion with an 
ideal parallel machine called Parallel Random Access 
Machine, or PRAM.

• PRAMs consist of p processors and a global memory of 
unbounded size that is uniformly accessible to all 
processors. 

• Processors share a common clock but may execute 
different instructions in each cycle. 
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Architecture of an 
Ideal Parallel Computer

• Depending on how simultaneous memory accesses are 
handled, PRAMs can be divided into four subclasses. 
– Exclusive-read, exclusive-write (EREW) PRAM. 
– Concurrent-read, exclusive-write (CREW) PRAM. 
– Exclusive-read, concurrent-write (ERCW) PRAM. 
– Concurrent-read, concurrent-write (CRCW) PRAM. 

• What does concurrent write mean, anyway? It depends 
on the semantic:
– Common: write only if all values are identical. 
– Arbitrary: write the data from a randomly selected processor. 
– Priority: follow a predetermined priority order. 
– Sum: Write the sum of all data items. 



21

41

Interconnection Networks 
for Parallel Computers 

• Interconnection networks carry data between processors 
and to memory. 

• Interconnectors are made of switches and links (wires, 
fiber). 

• Interconnectors are classified as static or dynamic. 
• Static networks consist of point-to-point communication 

links among processing nodes and are also referred to 
as direct networks. Its configuration cannot be changed.

• Dynamic networks are built using switches and 
communication links. Dynamic networks are also 
referred to as indirect networks. Its configuration can be 
changed.

42

Static and Dynamic
Interconnection Networks 

Static network Indirect network

Switching element
Processing node

Network interface/switch

P

P P P

P

P

PP

Classification of interconnection networks: 
(a) a static network; and (b) a dynamic network.
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Interconnection Networks 

• Switches map a fixed number of inputs to outputs. 
• The total number of ports on a switch is the degree of 

the switch. 

Degree of the switch = ?

44

Network Topologies 

• A variety of network topologies have been proposed and 
implemented. 

• These topologies tradeoff performance for cost. 
• Commercial machines often implement hybrids of 

multiple topologies for reasons of packaging, cost, and 
available components. 
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Network Topologies: Buses 

• Some of the simplest and earliest parallel machines 
used buses. 

• All processors access a common bus for exchanging 
data. 

• The distance between any two nodes is O(1) in a bus. 
The bus also provides a convenient broadcast media. 

• However, the bandwidth of the shared bus is a major 
bottleneck. 
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Network Topologies: Buses 
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Network Topologies: Crossbars

A completely non-blocking crossbar network connecting p 
processors to b memory banks.

A crossbar network uses an p×m grid of switches to 
connect p inputs to m outputs in a non-blocking manner.
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Network Topologies: 
Multistage Networks 

• Crossbars have excellent performance 
scalability but poor cost scalability. 

• Buses have excellent cost scalability, but poor 
performance scalability. 

• Multistage Interconnection Network strike a 
compromise between these extremes. 
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Network Topologies: 
Multistage Networks
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50

Network Topologies: Multistage Omega 
Network

• One of the most commonly used multistage 
interconnects is the Omega network.

• This network consists of log p stages, where p is 
the number of inputs/outputs.

• At each stage, input i is connected to output j if:
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Network Topologies: 
Multistage Omega Network

Each stage of the Omega network implements a perfect shuffle as follows:

A perfect shuffle interconnection for eight inputs and outputs.
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Network Topologies: 
Multistage Omega Network

• The perfect shuffle patterns are connected using 2×2 
switches.

• The switches operate in two modes – crossover or 
passthrough (straight).

(b)(a)

Two switching configurations of the 2 × 2 switch: 
(a) Pass-through (straight);     (b) Cross-over.
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Network Topologies: 
Multistage Omega Network

A complete omega network connecting eight inputs and eight outputs.

An omega network has p/2 × log p switching nodes, 
and the cost of such a network grows as (p log p).

A complete Omega network with the perfect shuffle 
interconnects and switches can now be illustrated:
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Network Topologies: 
Multistage Omega Network – Routing

• Let s be the binary representation of the source and d be 
that of the destination processor.

• The data traverses the link to the first switching node. If 
the most significant bits of s and d are the same, then 
the data is routed in pass-through mode by the switch 
else, it switches to crossover.

• This process is repeated for each of the log p switching 
stages.

• Note that this is not a non-blocking switch.
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Network Topologies: 
Multistage Omega Network – Routing

An example of blocking in omega network: one of the messages 
(010 to 111, or, 110 to 100) is blocked at link AB.
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Network Topologies: 
Completely Connected Network

• Each processor is connected to every other processor.
• The number of links in the network scales as O(p2).
• While the performance scales very well, the hardware 

complexity is not realizable for large values of p.
• In this sense, these networks are static counterparts of 

crossbars.
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Network Topologies: 
Star Connected Network

• Every node is connected only to a common node at the 
center.

• Distance between any pair of nodes is O(1). However, the 
central node becomes a bottleneck.

• In this sense, star connected networks are static 
counterparts of buses.
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Network Topologies: 
Linear Arrays, Meshes, and k-d Meshes

• In a linear array, each node has two neighbors, one to its 
left and one to its right. If the nodes at either end are 
connected, we refer to it as a 1-D torus or a ring.

Linear arrays: (a) with no wraparound links; (b) with 
wraparound link.

(a) (b)
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Network Topologies: 
Linear Arrays, Meshes, and k-d Meshes

• A generalization to 2 dimensions has nodes with 4 neighbors, to the 
north, south, east, and west.

• A further generalization to d dimensions has nodes with 2d
neighbors.

Two and three dimensional meshes: (a) 2-D mesh with no 
wraparound; (b) 2-D mesh with wraparound link (2-D torus); and 

(c) a 3-D mesh with no wraparound.

(c)(b)(a)
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Network Topologies: 
Linear Arrays, Meshes, and k-d Meshes

• A special case of a d-dimensional mesh is a hypercube. 
Here, d = log p, where p is the total number of nodes.

Construction of 
hypercubes from 

hypercubes of lower 
dimension.
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Network Topologies: 
Properties of Hypercubes

• The distance between any two nodes is at most log p.
• Each node has log p neighbors.
• The distance between two nodes is given by the number 

of bit positions at which the two nodes differ.

Distance from 
0000 to 
1000 =1

Distance from 
0100 to 
1011 = 4
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Network Topologies: Tree-Based Networks

Complete binary tree networks: (a) a static tree network; and 
(b) a dynamic tree network.

(a) (b)

Processing nodes

Switching nodes
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Network Topologies: Tree Properties 
• The distance between any two nodes is no more than 

2logp. 

• Links higher up the tree potentially carry more traffic than 
those at the lower levels. 

• For this reason, a variant called a fat-tree, fattens the 
links as we go up the tree. 

• Trees can be laid out in 2D with no wire crossings. This 
is an attractive property of trees. 
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Network Topologies: Fat Trees

A fat tree network of 16 processing nodes.

fat

fatter

Very fat

These fats will take care of 
the bottleneck closer to the 
root.
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Evaluating 
Static Interconnection Networks

• Diameter: The distance between the farthest two nodes in the 
network. The diameter of a linear array is p − 1, that of a 
mesh is 2(     − 1), that of a tree is O(log p) (worst case is p),
and hypercube is log p, and that of a completely connected 
network is O(1).

66

Evaluating 
Static Interconnection Networks

• Bisection Width (may not have a picture to represent): The 
minimum number of wires you must cut to divide the network 
into two equal parts. The bisection width of a linear array and 
tree is 1, that of a mesh is      , that of a hypercube is p/2 and 
that of a completely connected network is p2/4.
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Evaluating 
Static Interconnection Networks

• Cost: The number of links or switches (whichever is 
asymptotically higher) is a meaningful measure of the cost. 
However, a number of other factors, such as the ability to 
layout the network, the length of wires, etc., also factor in to
the cost.
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Cache Coherence 
in Multiprocessor Systems 

• Interconnection networks provide basic mechanisms for 
data transfer. 

• The underlying technique must provide some guarantees 
on the semantics – data integrity must be ensured.

• This guarantee is generally one of serializability, i.e., 
there exists some serial order of instruction execution 
that corresponds to the parallel schedule. 
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Cache Coherence 
in Multiprocessor Systems 

Cache coherence in multiprocessor systems: (a) Invalidate protocol; 
(b) Update protocol for shared variables.

When the value of a variable is changes, all its 
copies must either be invalidated or updated.

(b)

(a)

Invalidate
MemoryMemory

P1P0P1P0

Update
MemoryMemory

P1P0P1P0

load x

write #3, xload xload x

x = 1

x = 1x = 1

x = 1

x = 1x = 1

x = 3

x = 3

x = 3x = 3

x = 1

x = 1

write #3, xload x
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Cache Coherence: 
Update and Invalidate Protocols 

• If a processor just reads a value once and does not need 
it again, an update protocol may generate significant 
overhead.  It will be a waste of effort. 

• If two processors make interleaved test and updates to a 
variable, an update protocol is better because the new 
value will be accessed again.

• Both protocols suffer from false sharing overheads (two 
words that are not shared, however, they lie on the same 
cache line). 

• Most current machines use invalidate protocols. 



36

71

Maintaining Coherence 
Using Invalidate Protocols 

• Each copy of a data item is associated with a state. 
• One example of such a set of states is, shared, invalid, 

or dirty. 
• In shared state, there are multiple valid copies of the 

data item (and therefore, an invalidate would have to be 
generated on an update). 

• In dirty state, only one copy exists and therefore, no 
invalidates need to be generated. 

• In invalid state, the data copy is invalid, therefore, a read 
generates a data request (and associated state 
changes). 
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Maintaining Coherence 
Using Invalidate Protocols

flush

read/write

read write

C_read

read

C_write

write

C_write

Dirty

Shared

Invalid

State diagram of a simple three-state coherence protocol.

(throw away wrong data)
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Maintaining Coherence 
Using Invalidate Protocols 

y = 13, D

y = 13, S

x = 6, S

x = 6, I

y = 19, D

y = 20, D

x = 5, S

y = 12, S

x = 5, I

y = 12, I

y = 13, S

x = 6, S

y = 13, I

x = 6, I

y = 13, I

x = 5, D

y = 12, D

x = 6, I

read x

x = x + 1

x = x + y

x = x + 1

read y

y = y + 1

read x

y = x + y

read y

y = 12, S

y = 13, I

x = 19, D

x = 6, S

x = 20, D

y = 13, S

x = 6, D

x = 5, S

y = y + 1

Processor 0

Variables and
their states at
Processor 1

Variables and
their states inProcessor 1
Global mem.

Instruction at
Processor 0

Instruction atTime
their states at
Variables and

Example of parallel program execution with the simple
three-state coherence protocol.

flush

read/write

read write

C_read

read

C_write

write

C_write

Dirty

Shared

Invalid
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Snoopy Cache Systems

How are invalidates sent to the right processors?

In snoopy caches, there is a broadcast media that 
listens to all invalidates and read requests and performs 
appropriate coherence operations locally.

A simple snoopy bus based cache coherence system.
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Performance of Snoopy Caches 

• Once copies of data are tagged dirty (have been 
altered), all subsequent operations can be performed 
locally (use the latest values) on the cache without 
generating external traffic. 

• If a data item is read by a number of processors, it 
transitions to the shared state in the cache and all 
subsequent read operations become local (data has 
been acquired). 

• If processors read and update data at the same time, 
they generate coherence requests on the bus (to update 
the other copy) - which is ultimately bandwidth limited. 
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Communication Costs 
in Parallel Machines 

• Along with idling and contention, communication is a 
major overhead in parallel programs. 

• The cost of communication is dependent on a variety of 
features including the programming model semantics, 
the network topology, data handling and routing, and 
associated software protocols. 
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Message Passing Costs in 
Parallel Computers

• The total time to transfer a message over a network 
comprises of the following:
– Startup time (ts): Time spent at sending and receiving nodes to 

set up communication link (executing the routing algorithm, 
programming routers, etc.).

– Per-hop time (th): This time is a function of number of hops and 
includes factors such as switch latencies, network delays, etc.

– Per-word transfer time (tw): This time includes all overheads that 
are determined by the length of the message. This includes 
bandwidth of links, error checking and correction, etc.
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Store-and-Forward Routing 

• A message traversing multiple hops is completely received at an 
intermediate hop before being forwarded to the next hop.

• The total communication cost for a message of size m words to 
traverse l communication links is

• In most platforms, th is small and the above expression can be 
approximated by
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Packet Routing

• Store-and-forward makes poor use of 
communication resources. 

• Packet routing breaks messages into packets 
and pipelines them through the network. 

• Since packets may take different paths, each 
packet must carry routing information, error 
checking, sequencing, and other related 
header information. 

• The total communication time for packet 
routing is approximated by: 

• The factor tw accounts for overheads in packet 
headers. 
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Cut-Through Routing 
(Same path for all Flits) 

• Takes the concept of packet routing to an extreme by 
further dividing messages into basic units called flits. 

• Since flits are typically small, the header information 
must be minimized. 

• This is done by forcing all flits to take the same path, in 
sequence. 

• A tracer message first programs all intermediate routers. 
All flits then take the same route. 

• Error checks are performed on the entire message, as 
opposed to flits. 

• No sequence numbers are needed. 
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Cut-Through Routing 

• The total communication time for cut-through routing 
is approximated by: 

• This is identical to packet routing, however, tw is 
typically much smaller. 

• In this expression, th is typically smaller than ts and tw. 
For this reason, the second term in the RHS does not 
show, particularly, when m is large.

• For these reasons, we can approximate the cost of 
message transfer by
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Simplified Cost Model for 
Communicating Messages

• It is important to note that the original expression for 
communication time is valid for only uncongested 
networks. 

• If a link takes multiple messages, the corresponding tw
term must be scaled up by the number of messages. 

• Different communication patterns congest different 
networks to varying extents. 

• It is important to understand and account for this in the 
communication time accordingly. 
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Cost Models for 
Shared Address Space Machines 

• While the basic messaging cost applies to these 
machines as well, a number of other factors make 
accurate cost modeling more difficult. 

• Memory layout is typically determined by the system. 
• Finite cache sizes can result in cache thrashing. 
• Overheads associated with invalidate and update 

operations are difficult to quantify. 
• Spatial locality is difficult to model. 
• Prefetching can play a role in reducing the overhead 

associated with data access. 
• False sharing and contention are difficult to model. 
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Routing Mechanisms 
for Interconnection Networks 

• How does one compute the route that a message takes from source 
to destination? 

– Routing must prevent deadlocks - for this reason, we use dimension-ordered or 
e-cube routing. 

– Routing must avoid hot-spots - for this reason, two-step routing is often used. In 
this case, a message from source s to destination d is first sent to a randomly 
chosen intermediate processor i and then forwarded to destination d. 

Routing a message from node Ps (010) to node Pd (111) in a three-
dimensional hypercube using E-cube routing.

Step 2 (110     111)Step 1 (010     110)

pdpdpd

pspsps

111110

101

011

100

010

001000

111110

101

011

100

010

001001000

010

101100

011

110 111

000

011) (011 -> 111)
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Mapping Techniques for Graphs 

• Often, we need to embed a known communication 
pattern into a given interconnection topology. 

• We may have an algorithm designed for one network, 
which we are porting to another topology. 

For these reasons, it is useful to understand mapping 
between graphs. 
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Mapping Techniques for Graphs: Metrics 

• When mapping a graph G(V,E) into G’(V’,E’), the 
following metrics are important:

• The maximum number of edges mapped onto any edge 
in E’ is called the congestion of the mapping.

• The maximum number of links in E’ that any edge in E is
mapped onto is called the dilation of the mapping.

• The ratio of the number of nodes in the set V’ to that in 
set V is called the expansion of the mapping.
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Embedding a Linear Array 
into a Hypercube 

• A linear array (or a ring) composed of 2d nodes (labeled 
0 through 2d − 1) can be embedded into a d-dimensional 
hypercube by mapping node i of the linear array onto 
node

• G(i, d) of the hypercube. The function G(i, x) is defined 
as follows:

0
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Embedding a Linear Array 
into a Hypercube

The function G is called the binary reflected Gray 
code (RGC).

Since adjoining entries (G(i, d) and G(i + 1, d)) differ 
from each other at only one bit position, corresponding 
processors are mapped to neighbors in a hypercube. 
Therefore, the congestion, dilation, and expansion of the 
mapping are all 1.

0
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(a) A three-bit reflected Gray code ring; and (b) its embedding into 
a three-dimensional hypercube.

0

Embedding a Linear Array 
into a Hypercube: Example


