
1

1

CZ4102 CZ4102 –– High Performance ComputingHigh Performance Computing

Lectures 2 and 3: The Hardware Lectures 2 and 3: The Hardware
ConsiderationsConsiderations

-- Dr Tay Seng ChuanDr Tay Seng Chuan

Reference: ``Introduction to Parallel Computing'‘ – Chapter 2.

2

Topic Overview

• Implicit Parallelism: Trends in Microprocessor
Architectures

• Limitations of Memory System Performance
• Dichotomy of Parallel Computing Platforms
• Communication Model of Parallel Platforms
• Physical Organization of Parallel Platforms
• Communication Costs in Parallel Machines
• Messaging Cost Models and Routing Mechanisms
• Mapping Techniques

2

3

Scope of Parallelism

• Different applications utilize different aspects of parallelism - e.g.,
data intensive applications utilize high aggregate throughput, server
applications utilize high aggregate network bandwidth, and scientific
applications typically utilize high processing and memory system
performance.

• It is important to understand each of these performance bottlenecks
and their interacting effect.

4

Implicit Parallelism: Trends in
Microprocessor Architectures

• Microprocessor clock speeds have posted impressive gains over the
past two decades (two to three orders of magnitude).

• Higher levels of device integration have made a large number of
transistors available.

• The question of how best to utilize these resources is an important
one.

• Current processors use these resources in multiple functional units
Eg: Add R1, R2 (i) Instruction Fetch, (ii) Instruction Decode, (iii)
Instruction Execute, and execute multiple instructions in the same
cycle.

• The precise manner in which these instructions are selected and
executed provides impressive diversity in architectures with different
performance and for different purpose. (Each architecture has its
own merits and pitfalls.)

3

5

Pipelining and Superscalar Execution

• Pipelining overlaps various stages of instruction
execution to achieve performance.

• At a high level of abstraction, an instruction can be
executed while the next one is being decoded and the
next one is being fetched.

• This is akin to an assembly line for manufacture of cars.

6

Pipelining and Superscalar Execution

• Pipelining, however, has several limitations.
• The speed of a pipeline is eventually limited by the slowest stage.

• For this reason, conventional processors rely on very deep pipelines
(20 stage pipelines in state-of-the-art Pentium processors).

• However, in typical program traces, every 5-6th instruction is a
conditional jump! This requires very accurate branch prediction.

• The penalty of a mis-prediction grows with the depth of the pipeline,
since a larger number of instructions will have to be flushed.

20 Second 20 Second 130 Second 20 Second 20 Second

1 unit per

?? second

4

7

Pipelining and Superscalar Execution

• One simple way of alleviating these bottlenecks is to use multiple
pipelines.

• Selecting which pipeline for execution becomes a challenge.

8

Superscalar Execution: An Example

Example of a two-way superscalar execution of instructions.

5

9

Superscalar Execution: An Example

• In the above example, there is some wastage of
resources due to data dependencies.

10

Superscalar Execution: An Example

• The example also illustrates that different instruction
mixes with identical semantics can take significantly
different execution time.

6

11

Superscalar Execution

• Scheduling of instructions is determined by a number of
factors:
– True Data Dependency: The result of one operation is an input to

the next.
– Resource Dependency: Two operations require the same

resource.
– Branch Dependency: Scheduling instructions across conditional

branch statements cannot be done deterministically before hands.
– The scheduler, a piece of hardware looks at a large number of

instructions in an instruction queue and selects appropriate number
of instructions to execute concurrently based on these factors.

– The complexity of this hardware is an important constraint on
superscalar processors.

12

Superscalar Execution:
Issue Mechanisms

• In the simpler model, instructions can be issued only in
the order in which they are encountered. That is, if the
second instruction cannot be issued because it has a
data dependency with the first, only one instruction is
issued in the cycle. This is called in-order issue.
(sequentialization)

• In a more aggressive model, instructions can be issued
out of order. In this case, if the second instruction has
data dependencies with the first, but the third instruction
does not, the first and third instructions can be co-
scheduled. This is also called dynamic issue.
(speculation)

• Performance of in-order issue is generally limited. Why?

7

13

Superscalar Execution:
Efficiency Considerations

• Not all functional units can be kept busy at all times.
• If during a cycle, no functional units are utilized, this is referred to as vertical

waste.

• If during a cycle, only some of the functional units are utilized, this is
referred to as horizontal waste.

• Due to limited parallelism in typical instruction traces, dependencies, or the
inability of the scheduler to extract parallelism, the performance of
superscalar processors is eventually limited.

• Conventional microprocessors typically support four-way superscalar
execution.

14

Very Long Instruction Word (VLIW)
Processors

• The hardware cost and complexity of the superscalar
scheduler is a major consideration in processor design.

• To address this issues, VLIW processors rely on compile
time analysis to identify and bundle together instructions
that can be executed concurrently.

• These instructions are packed and dispatched together,
and thus the name very long instruction word.

8

15

Very Long Instruction Word (VLIW)
Processors: Considerations

• Hardware aspect is simpler.
• Compiler has a bigger context from which to select co-

scheduled instructions. (More work for compiler.)
• Compilers, however, do not have runtime information

such as cache misses. Scheduling is, therefore,
inherently conservative.

• Branch and memory prediction is more difficult.
• VLIW performance is highly dependent on the compiler.

A number of techniques such as loop unrolling,
speculative execution, branch prediction are critical.

• Typical VLIW processors are limited to 4-way to 8-way
parallelism.

16

Limitations of
Memory System Performance

• Memory system, and not processor speed, is often the bottleneck for
many applications.

• Memory system performance is largely captured by two parameters,
latency and bandwidth.

• Latency is the time from the issue of a memory request to the time
the data is available at the processor. (Waiting time until the first
data is received. Consider the example of a fire-hose. If the water
comes out of the hose two seconds after the hydrant is turned on,
the latency of the system is two seconds. If you want immediate
response from the hydrant, it is important to reduce latency.)

• Bandwidth is the rate at which data can be pumped to the processor
by the memory system. (Once the water starts flowing, if the hydrant
delivers water at the rate of 5 gallons/second, the bandwidth of the
system is 5 gallons/second. If you want to fight big fires, you need
high bandwidth.)

9

17

Memory Latency: An Example

• Consider a processor operating at 1 GHz (1 ns clock) connected to
a DRAM with a latency of 100 ns (no caches). Assume that the
processor has two multiply-add units and is capable of executing
four instructions in each cycle of 1 ns. The following observations
follow:

– Since the memory latency is equal to 100 cycles and block size is one
word, every time a memory request is made, the processor must wait
100 cycles before it can process the data. This is a serious drawback.

– The peak processor rating (assume no memory access) is computed as
follows:
Assume 4 instructions are executed on registers, peak processing rating
= (4 Instructions)/(1 ns) = 4 GFLOPS. But this is not possible if
memory access is needed.

GFLOPS: Giga Floating Point Operations per Second

18

Seriousness of Memory Latency
• On the above architecture with memory latency of 100 ns,

consider the problem of computing a dot-product of two
vectors.
– A dot-product computation performs one multiply-add on a single

pair of vector elements, i.e., each floating point operation requires
one data fetch.

– It follows that the peak speed of this computation is limited to one
floating point operation every 100 ns, ie,
(1 FLOP)/(100 ns) = 1/(100 x 10-9 sec) FLOPS = 107 FLOPS
= 10 x 106 FLOPS = 10 MFLOPS.

– The speed of 10 MFLOPS is a very small fraction of the peak
processor rating (4 GFLOPS)!

10

19

Improving Effective Memory
Latency Using Caches

• Caches are small and fast memory elements between the processor
and DRAM.

• This memory acts as a low-latency high-bandwidth storage.
• If a piece of data is repeatedly used, the effective latency of this

memory system can be reduced by the cache.
• The fraction of data references satisfied by the cache is called the

cache hit ratio of the computation on the system.
• Cache hit ratio achieved by a code on a memory system often

determines its performance. Eg: For 100 attempts to access to data
in cache, if 30 attempts are successful, what is the cache hit ratio?
What is the cache miss ratio? What is the impact if the cache miss
ratio is greater than the cache hit ratio?

20

Impact of Memory Bandwidth

• Memory bandwidth is determined by the bandwidth of
the memory bus as well as the memory units.

• Memory bandwidth can be improved by increasing the
size of memory blocks.

• It is important to note that increasing block size does not
change latency of the system.

• In practice, wide data and address buses are expensive
to construct.

• In a more practical system, consecutive words are sent
on the memory bus on subsequent bus cycles after the
first word is retrieved. The reduces latency by half.

11

21

Impact of Memory Bandwidth

• Increased bandwidth results can improve computation rates.
• The data layouts were assumed to be such that consecutive data

words in memory were used by successive instructions (spatial
locality of reference).

• If we take a data-layout centric view, computations must be reordered
to enhance spatial locality of reference. See next 2 examples.

Scattered Data (strided access)

Consecutive Data

22

Impact of Memory Bandwidth: Example

Consider the following code fragment:
for (i = 0; i < 1000; i++)

column_sum[i] = 0.0;
for (j = 0; j < 1000; j++)

column_sum[i] += b[j][i];

The code fragment sums columns of the matrix b into a vector
column_sum.

5

1

3

2

11

i
j

12

23

Impact of Memory Bandwidth: Example
We can fix the above code as follows:

for (i = 0; i < 1000; i++)
column_sum[i] = 0.0;

for (j = 0; j < 1000; j++)
for (i = 0; i < 1000; i++)

column_sum[i] += b[j][i];

In this case, the matrix is traversed in a row-order and
performance can be expected to be significantly better.

5

1

3

132726

132726

i
j

5611

24

Memory System Performance: Summary

• The series of examples presented in this section
illustrate the following concepts:
– Exploiting spatial and temporal locality in applications is critical

for amortizing memory latency and increasing effective memory
bandwidth.

– The ratio of the number of operations to number of memory
accesses is a good indicator of anticipated tolerance to memory
bandwidth.

– Memory layouts and organizing computation (eg, the two
columnsum examples) appropriately can make a significant
impact on the spatial and temporal locality.

13

25

Alternate Approaches for
Hiding Memory Latency

• Consider the problem of browsing the web on a very
slow network connection. We deal with the problem in
one of three possible ways:
– we anticipate which pages we are going to browse ahead of time

and issue requests for them in advance;
– we open multiple browsers and access different pages in each

browser, thus while we are waiting for one page to load, we
could be reading others; or

– we access a whole bunch of pages in one go - amortizing the
latency across various accesses.

• The first approach is called prefetching, the second
multithreading, and the third one corresponds to spatial
locality in accessing memory words.

26

Multithreading for Latency Hiding
A thread is a single stream of control in the flow of a program.
We illustrate threads with a simple example:

for (i = 0; i < n; i++)
c[i] = dot_product(get_row(a, i), b);

Each dot-product is independent of the other, and therefore represents a
concurrent unit of execution. We can safely rewrite the above code segment as:

for (i = 0; i < n; i++)
c[i] = create_thread(dot_product,get_row(a, i), b);

14

27

Multithreading for Latency Hiding:
Example

• In the code, the first instance of this function accesses a pair of
vector elements and waits for them.

• In the meantime, the second instance of this function can access
two other vector elements in the next cycle, and so on.

• After l units of time, where l is the latency of the memory system,
the first function instance gets the requested data from memory and
can perform the required computation.

• In the next cycle, the data items for the next function instance arrive,
and so on. In this way, in every clock cycle, we can perform a
computation. This is how the memory latency is reduced.

Multiple threads
are created.

28

Multithreading for Latency Hiding

• The execution schedule in the previous example is
predicated upon two assumptions: the memory system is
capable of servicing multiple outstanding requests, and
the processor is capable of switching threads at every
cycle.

• It also requires the program to have an explicit
specification of concurrency in the form of threads.

15

29

Prefetching for Latency Hiding

• Misses on loads cause programs to stall.
• Why not advance the loads so that by the time the data

is actually needed, it is already there!
• The only drawback is that you might need more space to

store advanced loads.
• However, if the advanced loads are overwritten, we are

no worse than before!

30

Tradeoffs of Multithreading and
Prefetching

• Bandwidth requirements of a multithreaded system may
increase very significantly because of the smaller cache
residency of each thread.

• Multithreaded systems become bandwidth bound instead
of latency bound. Why?

• Multithreading and prefetching only address the latency
problem and may often exacerbate the bandwidth
problem (from bad to worst).

• Multithreading and prefetching also require significantly
more hardware resources in the form of storage.

• Context switching overhead incurred by the threads is
significant (but is not discussed in textbook).

16

31

Control Structure of Parallel Programs

• Parallelism can be expressed at various levels of
granularity (amount of workload) - from instruction level
to processes.

• Between these extremes exist a range of models, along
with corresponding architectural support.

32

Control Structure of Parallel Programs

• Processing units in parallel computers either operate
under the centralized control of a single control unit or
work independently.

• If there is a single control unit that dispatches the same
instruction to various processors (that work on different
data), the model is referred to as single instruction
stream, multiple data stream (SIMD).

• If each processor has its own control unit, each
processor can execute different instructions on different
data items. This model is called multiple instruction
stream, multiple data stream (MIMD).

17

33

SIMD and MIMD Processors

(a) (b)

Global

+

+

+

+
PE

PE

PE

PE

PE

PE

PE

PE

PE

control

unit

IN
T

E
R

C
O

N
N

E
C

T
IO

N
 N

E
T

W
O

R
K

IN
T

E
R

C
O

N
N

E
C

T
IO

N
 N

E
T

W
O

R
K

control unit

control unit

control unit

control unit

PE: Processing Element

A typical SIMD architecture (a) and a typical MIMD architecture (b).

34

Conditional
Execution in SIMD

Processors

Idle

Idle

(b)

Step 2

(a)

Idle

Step 1

Initial values

Idle

C

B

0

A

B

C 0

A

B

C0

A

B

A

0

else

C

Processor 0 Processor 1 Processor 2

5

0

4

2

1

1

0

0

A

B

C 0

A

B

C

A

B

C 0

A

B

C5 0

C = A/B;

C = A;

if (B == 0)

Processor 3

Processor 0 Processor 1 Processor 2 Processor 3

5

0

4

2

1

1

0

0

Processor 0 Processor 1 Processor 2 Processor 3

5

0

4

2

1

1

0

0

0

A

B

C

A

B

C

A

B

C

A

B

C 5 12

Executing a
conditional statement
on an SIMD computer
with four processors:

(a) the conditional
statement;

(b) the execution of the
statement in two steps.

Busy Busy Busy Busy

Busy Busy

Busy Busy

18

35

MIMD Processors

• In contrast to SIMD processors, MIMD processors can
execute different programs on different processors.

• A variant of this, called single program multiple data
streams (SPMD) executes the same program on
different processors.

• It is easy to see that SPMD and MIMD are closely
related in terms of programming flexibility and underlying
architectural support.

36

Communication Model
of Parallel Platforms

• There are two primary forms of data exchange between
parallel tasks - accessing a shared data space and
exchanging messages.

• Platforms that provide a shared data space are called
shared-address-space machines or multiprocessors.

• Platforms that support messaging are also called
message passing platforms or multicomputers.

19

37

Shared-Address-Space
vs.

Shared Memory Machines

• It is important to note the difference between the terms
shared address space and shared memory.

• Shared address space a programming abstraction.
• Shared memory is a physical machine attribute.
• It is possible to provide a shared address space using a

physically distributed memory.

38

Message-Passing Platforms

• These platforms comprise of a set of processors and
their own (exclusive) memory.

• Instances of such a view come naturally from clustered
workstations and non-shared-address-space
multicomputers.

• These platforms are programmed using (variants of)
send and receive primitives.

• Libraries such as MPI (used by CZ4102) and PVM
provide such primitives.

20

39

Architecture of an
Ideal Parallel Computer

• A natural extension of the Random Access Machine
(RAM) serial architecture is the Parallel Random Access
Machine, or PRAM. We begin this discussion with an
ideal parallel machine called Parallel Random Access
Machine, or PRAM.

• PRAMs consist of p processors and a global memory of
unbounded size that is uniformly accessible to all
processors.

• Processors share a common clock but may execute
different instructions in each cycle.

40

Architecture of an
Ideal Parallel Computer

• Depending on how simultaneous memory accesses are
handled, PRAMs can be divided into four subclasses.
– Exclusive-read, exclusive-write (EREW) PRAM.
– Concurrent-read, exclusive-write (CREW) PRAM.
– Exclusive-read, concurrent-write (ERCW) PRAM.
– Concurrent-read, concurrent-write (CRCW) PRAM.

• What does concurrent write mean, anyway? It depends
on the semantic:
– Common: write only if all values are identical.
– Arbitrary: write the data from a randomly selected processor.
– Priority: follow a predetermined priority order.
– Sum: Write the sum of all data items.

21

41

Interconnection Networks
for Parallel Computers

• Interconnection networks carry data between processors
and to memory.

• Interconnectors are made of switches and links (wires,
fiber).

• Interconnectors are classified as static or dynamic.
• Static networks consist of point-to-point communication

links among processing nodes and are also referred to
as direct networks. Its configuration cannot be changed.

• Dynamic networks are built using switches and
communication links. Dynamic networks are also
referred to as indirect networks. Its configuration can be
changed.

42

Static and Dynamic
Interconnection Networks

Static network Indirect network

Switching element
Processing node

Network interface/switch

P

P P P

P

P

PP

Classification of interconnection networks:
(a) a static network; and (b) a dynamic network.

22

43

Interconnection Networks

• Switches map a fixed number of inputs to outputs.
• The total number of ports on a switch is the degree of

the switch.

Degree of the switch = ?

44

Network Topologies

• A variety of network topologies have been proposed and
implemented.

• These topologies tradeoff performance for cost.
• Commercial machines often implement hybrids of

multiple topologies for reasons of packaging, cost, and
available components.

23

45

Network Topologies: Buses

• Some of the simplest and earliest parallel machines
used buses.

• All processors access a common bus for exchanging
data.

• The distance between any two nodes is O(1) in a bus.
The bus also provides a convenient broadcast media.

• However, the bandwidth of the shared bus is a major
bottleneck.

46

Network Topologies: Buses

Cache /
Local Memory

Cache /
Local Memory

Sh
ar

ed
 M

em
or

y

Data

Processor 0

Address

Data

Sh
ar

ed
 M

em
or

y

Processor 0 Processor 1

(a)

(b)

Address

Processor 1

Bus-based interconnects (a) with no local caches;
(b) with local memory/caches.

Since much of the data accessed by processors is
local to the processor, a local memory can improve the
performance of bus-based machines.

24

47

Network Topologies: Crossbars

A completely non-blocking crossbar network connecting p
processors to b memory banks.

A crossbar network uses an p×m grid of switches to
connect p inputs to m outputs in a non-blocking manner.

Memory Banks

b−1543210

Pr
oc

es
si

ng
 E

le
m

en
ts

0

1

2

3

4

5

6

p−1

element
A switching

Cross Bar Network

48

Network Topologies:
Multistage Networks

• Crossbars have excellent performance
scalability but poor cost scalability.

• Buses have excellent cost scalability, but poor
performance scalability.

• Multistage Interconnection Network strike a
compromise between these extremes.

111

110

101

100

011

010

001

000 000

001

010

011

100

101

110

111

25

49

Network Topologies:
Multistage Networks

Memory banks

0

1

0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Stage 1

b-1

Stage 2 Stage n

p-1

Processors Multistage interconnection network

1

The schematic of a typical multistage interconnection network.

50

Network Topologies: Multistage Omega
Network

• One of the most commonly used multistage
interconnects is the Omega network.

• This network consists of log p stages, where p is
the number of inputs/outputs.

• At each stage, input i is connected to output j if:

26

51

Network Topologies:
Multistage Omega Network

Each stage of the Omega network implements a perfect shuffle as follows:

A perfect shuffle interconnection for eight inputs and outputs.

000

010

100

110

001

011

101

111

000

010

100

110

001

011

101

111

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

= left_rotate(000)

= left_rotate(100)

= left_rotate(001)

= left_rotate(101)

= left_rotate(010)

= left_rotate(110)

= left_rotate(011)

= left_rotate(111)

i j

52

Network Topologies:
Multistage Omega Network

• The perfect shuffle patterns are connected using 2×2
switches.

• The switches operate in two modes – crossover or
passthrough (straight).

(b)(a)

Two switching configurations of the 2 × 2 switch:
(a) Pass-through (straight); (b) Cross-over.

27

53

Network Topologies:
Multistage Omega Network

A complete omega network connecting eight inputs and eight outputs.

An omega network has p/2 × log p switching nodes,
and the cost of such a network grows as (p log p).

A complete Omega network with the perfect shuffle
interconnects and switches can now be illustrated:

111

110

101

100

011

010

001

000 000

001

010

011

100

101

110

111

54

Network Topologies:
Multistage Omega Network – Routing

• Let s be the binary representation of the source and d be
that of the destination processor.

• The data traverses the link to the first switching node. If
the most significant bits of s and d are the same, then
the data is routed in pass-through mode by the switch
else, it switches to crossover.

• This process is repeated for each of the log p switching
stages.

• Note that this is not a non-blocking switch.

28

55

Network Topologies:
Multistage Omega Network – Routing

An example of blocking in omega network: one of the messages
(010 to 111, or, 110 to 100) is blocked at link AB.

111

110

101

100

011

010

001

000 000

001

010

011

100

101

110

111

 A

 B

(010 to 111): cross, straight, cross

(110 to 100): straight, cross, straight

56

Network Topologies:
Completely Connected Network

• Each processor is connected to every other processor.
• The number of links in the network scales as O(p2).
• While the performance scales very well, the hardware

complexity is not realizable for large values of p.
• In this sense, these networks are static counterparts of

crossbars.

29

57

Network Topologies:
Star Connected Network

• Every node is connected only to a common node at the
center.

• Distance between any pair of nodes is O(1). However, the
central node becomes a bottleneck.

• In this sense, star connected networks are static
counterparts of buses.

58

Network Topologies:
Linear Arrays, Meshes, and k-d Meshes

• In a linear array, each node has two neighbors, one to its
left and one to its right. If the nodes at either end are
connected, we refer to it as a 1-D torus or a ring.

Linear arrays: (a) with no wraparound links; (b) with
wraparound link.

(a) (b)

30

59

Network Topologies:
Linear Arrays, Meshes, and k-d Meshes

• A generalization to 2 dimensions has nodes with 4 neighbors, to the
north, south, east, and west.

• A further generalization to d dimensions has nodes with 2d
neighbors.

Two and three dimensional meshes: (a) 2-D mesh with no
wraparound; (b) 2-D mesh with wraparound link (2-D torus); and

(c) a 3-D mesh with no wraparound.

(c)(b)(a)

60

Network Topologies:
Linear Arrays, Meshes, and k-d Meshes

• A special case of a d-dimensional mesh is a hypercube.
Here, d = log p, where p is the total number of nodes.

Construction of
hypercubes from

hypercubes of lower
dimension.

0

1

00

01

10

11

000 010

001 011

100 110

111101

0000

0100

0001 0011

0101

0110

0010

0111

1100 1110

1111

10111001

 1000

1101

1010

0-D hypercube 1-D hypercube 2-D hypercube 3-D hypercube

4-D hypercube

31

61

Network Topologies:
Properties of Hypercubes

• The distance between any two nodes is at most log p.
• Each node has log p neighbors.
• The distance between two nodes is given by the number

of bit positions at which the two nodes differ.

Distance from
0000 to
1000 =1

Distance from
0100 to
1011 = 4

62

Network Topologies: Tree-Based Networks

Complete binary tree networks: (a) a static tree network; and
(b) a dynamic tree network.

(a) (b)

Processing nodes

Switching nodes

32

63

Network Topologies: Tree Properties
• The distance between any two nodes is no more than

2logp.

• Links higher up the tree potentially carry more traffic than
those at the lower levels.

• For this reason, a variant called a fat-tree, fattens the
links as we go up the tree.

• Trees can be laid out in 2D with no wire crossings. This
is an attractive property of trees.

64

Network Topologies: Fat Trees

A fat tree network of 16 processing nodes.

fat

fatter

Very fat

These fats will take care of
the bottleneck closer to the
root.

33

65

Evaluating
Static Interconnection Networks

• Diameter: The distance between the farthest two nodes in the
network. The diameter of a linear array is p − 1, that of a
mesh is 2(− 1), that of a tree is O(log p) (worst case is p),
and hypercube is log p, and that of a completely connected
network is O(1).

66

Evaluating
Static Interconnection Networks

• Bisection Width (may not have a picture to represent): The
minimum number of wires you must cut to divide the network
into two equal parts. The bisection width of a linear array and
tree is 1, that of a mesh is , that of a hypercube is p/2 and
that of a completely connected network is p2/4.

34

67

Evaluating
Static Interconnection Networks

• Cost: The number of links or switches (whichever is
asymptotically higher) is a meaningful measure of the cost.
However, a number of other factors, such as the ability to
layout the network, the length of wires, etc., also factor in to
the cost.

68

Cache Coherence
in Multiprocessor Systems

• Interconnection networks provide basic mechanisms for
data transfer.

• The underlying technique must provide some guarantees
on the semantics – data integrity must be ensured.

• This guarantee is generally one of serializability, i.e.,
there exists some serial order of instruction execution
that corresponds to the parallel schedule.

35

69

Cache Coherence
in Multiprocessor Systems

Cache coherence in multiprocessor systems: (a) Invalidate protocol;
(b) Update protocol for shared variables.

When the value of a variable is changes, all its
copies must either be invalidated or updated.

(b)

(a)

Invalidate
MemoryMemory

P1P0P1P0

Update
MemoryMemory

P1P0P1P0

load x

write #3, xload xload x

x = 1

x = 1x = 1

x = 1

x = 1x = 1

x = 3

x = 3

x = 3x = 3

x = 1

x = 1

write #3, xload x

70

Cache Coherence:
Update and Invalidate Protocols

• If a processor just reads a value once and does not need
it again, an update protocol may generate significant
overhead. It will be a waste of effort.

• If two processors make interleaved test and updates to a
variable, an update protocol is better because the new
value will be accessed again.

• Both protocols suffer from false sharing overheads (two
words that are not shared, however, they lie on the same
cache line).

• Most current machines use invalidate protocols.

36

71

Maintaining Coherence
Using Invalidate Protocols

• Each copy of a data item is associated with a state.
• One example of such a set of states is, shared, invalid,

or dirty.
• In shared state, there are multiple valid copies of the

data item (and therefore, an invalidate would have to be
generated on an update).

• In dirty state, only one copy exists and therefore, no
invalidates need to be generated.

• In invalid state, the data copy is invalid, therefore, a read
generates a data request (and associated state
changes).

72

Maintaining Coherence
Using Invalidate Protocols

flush

read/write

read write

C_read

read

C_write

write

C_write

Dirty

Shared

Invalid

State diagram of a simple three-state coherence protocol.

(throw away wrong data)

37

73

Maintaining Coherence
Using Invalidate Protocols

y = 13, D

y = 13, S

x = 6, S

x = 6, I

y = 19, D

y = 20, D

x = 5, S

y = 12, S

x = 5, I

y = 12, I

y = 13, S

x = 6, S

y = 13, I

x = 6, I

y = 13, I

x = 5, D

y = 12, D

x = 6, I

read x

x = x + 1

x = x + y

x = x + 1

read y

y = y + 1

read x

y = x + y

read y

y = 12, S

y = 13, I

x = 19, D

x = 6, S

x = 20, D

y = 13, S

x = 6, D

x = 5, S

y = y + 1

Processor 0

Variables and
their states at
Processor 1

Variables and
their states inProcessor 1
Global mem.

Instruction at
Processor 0

Instruction atTime
their states at
Variables and

Example of parallel program execution with the simple
three-state coherence protocol.

flush

read/write

read write

C_read

read

C_write

write

C_write

Dirty

Shared

Invalid

74

Snoopy Cache Systems

How are invalidates sent to the right processors?

In snoopy caches, there is a broadcast media that
listens to all invalidates and read requests and performs
appropriate coherence operations locally.

A simple snoopy bus based cache coherence system.

T
ag

s

Sn
oo

p
H

/W

Processor

Cache

T
ag

s

Sn
oo

p
H

/W

Processor

Cache

T
ag

s

Sn
oo

p
H

/W

Processor

Cache

Dirty

Address/data

Memory

38

75

Performance of Snoopy Caches

• Once copies of data are tagged dirty (have been
altered), all subsequent operations can be performed
locally (use the latest values) on the cache without
generating external traffic.

• If a data item is read by a number of processors, it
transitions to the shared state in the cache and all
subsequent read operations become local (data has
been acquired).

• If processors read and update data at the same time,
they generate coherence requests on the bus (to update
the other copy) - which is ultimately bandwidth limited.

76

Communication Costs
in Parallel Machines

• Along with idling and contention, communication is a
major overhead in parallel programs.

• The cost of communication is dependent on a variety of
features including the programming model semantics,
the network topology, data handling and routing, and
associated software protocols.

39

77

Message Passing Costs in
Parallel Computers

• The total time to transfer a message over a network
comprises of the following:
– Startup time (ts): Time spent at sending and receiving nodes to

set up communication link (executing the routing algorithm,
programming routers, etc.).

– Per-hop time (th): This time is a function of number of hops and
includes factors such as switch latencies, network delays, etc.

– Per-word transfer time (tw): This time includes all overheads that
are determined by the length of the message. This includes
bandwidth of links, error checking and correction, etc.

78

Store-and-Forward Routing

• A message traversing multiple hops is completely received at an
intermediate hop before being forwarded to the next hop.

• The total communication cost for a message of size m words to
traverse l communication links is

• In most platforms, th is small and the above expression can be
approximated by

40

79

Packet Routing

• Store-and-forward makes poor use of
communication resources.

• Packet routing breaks messages into packets
and pipelines them through the network.

• Since packets may take different paths, each
packet must carry routing information, error
checking, sequencing, and other related
header information.

• The total communication time for packet
routing is approximated by:

• The factor tw accounts for overheads in packet
headers.

80

Cut-Through Routing
(Same path for all Flits)

• Takes the concept of packet routing to an extreme by
further dividing messages into basic units called flits.

• Since flits are typically small, the header information
must be minimized.

• This is done by forcing all flits to take the same path, in
sequence.

• A tracer message first programs all intermediate routers.
All flits then take the same route.

• Error checks are performed on the entire message, as
opposed to flits.

• No sequence numbers are needed.

41

81

Cut-Through Routing

• The total communication time for cut-through routing
is approximated by:

• This is identical to packet routing, however, tw is
typically much smaller.

• In this expression, th is typically smaller than ts and tw.
For this reason, the second term in the RHS does not
show, particularly, when m is large.

• For these reasons, we can approximate the cost of
message transfer by

82

Simplified Cost Model for
Communicating Messages

• It is important to note that the original expression for
communication time is valid for only uncongested
networks.

• If a link takes multiple messages, the corresponding tw
term must be scaled up by the number of messages.

• Different communication patterns congest different
networks to varying extents.

• It is important to understand and account for this in the
communication time accordingly.

42

83

Cost Models for
Shared Address Space Machines

• While the basic messaging cost applies to these
machines as well, a number of other factors make
accurate cost modeling more difficult.

• Memory layout is typically determined by the system.
• Finite cache sizes can result in cache thrashing.
• Overheads associated with invalidate and update

operations are difficult to quantify.
• Spatial locality is difficult to model.
• Prefetching can play a role in reducing the overhead

associated with data access.
• False sharing and contention are difficult to model.

84

Routing Mechanisms
for Interconnection Networks

• How does one compute the route that a message takes from source
to destination?

– Routing must prevent deadlocks - for this reason, we use dimension-ordered or
e-cube routing.

– Routing must avoid hot-spots - for this reason, two-step routing is often used. In
this case, a message from source s to destination d is first sent to a randomly
chosen intermediate processor i and then forwarded to destination d.

Routing a message from node Ps (010) to node Pd (111) in a three-
dimensional hypercube using E-cube routing.

Step 2 (110 111)Step 1 (010 110)

pdpdpd

pspsps

111110

101

011

100

010

001000

111110

101

011

100

010

001001000

010

101100

011

110 111

000

011) (011 -> 111)

43

85

Mapping Techniques for Graphs

• Often, we need to embed a known communication
pattern into a given interconnection topology.

• We may have an algorithm designed for one network,
which we are porting to another topology.

For these reasons, it is useful to understand mapping
between graphs.

86

Mapping Techniques for Graphs: Metrics

• When mapping a graph G(V,E) into G’(V’,E’), the
following metrics are important:

• The maximum number of edges mapped onto any edge
in E’ is called the congestion of the mapping.

• The maximum number of links in E’ that any edge in E is
mapped onto is called the dilation of the mapping.

• The ratio of the number of nodes in the set V’ to that in
set V is called the expansion of the mapping.

44

87

Embedding a Linear Array
into a Hypercube

• A linear array (or a ring) composed of 2d nodes (labeled
0 through 2d − 1) can be embedded into a d-dimensional
hypercube by mapping node i of the linear array onto
node

• G(i, d) of the hypercube. The function G(i, x) is defined
as follows:

0

88

Embedding a Linear Array
into a Hypercube

The function G is called the binary reflected Gray
code (RGC).

Since adjoining entries (G(i, d) and G(i + 1, d)) differ
from each other at only one bit position, corresponding
processors are mapped to neighbors in a hypercube.
Therefore, the congestion, dilation, and expansion of the
mapping are all 1.

0

45

89

(a) A three-bit reflected Gray code ring; and (b) its embedding into
a three-dimensional hypercube.

0

Embedding a Linear Array
into a Hypercube: Example

