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Chapter Overview: Algorithms and Concurrency 

• Introduction to Parallel Algorithms 
– Tasks and Decomposition 

– Processes and Mapping 

– Processes Versus Processors 

• Decomposition Techniques 
– Recursive Decomposition 

– Recursive Decomposition 

– Exploratory Decomposition 

– Hybrid Decomposition 

• Characteristics of Tasks and Interactions 
– Task Generation, Granularity, and Context 

– Characteristics of Task Interactions.
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Preliminaries: Decomposition, Tasks, and 
Dependency Graphs

• The first step in developing a parallel algorithm is to decompose the 
problem into tasks that can be executed concurrently.

• A given problem may be decomposed into tasks in many different 
ways. Tasks may be of same and different sizes. 

• A decomposition can be illustrated in the form of a directed graph 
with nodes corresponding to tasks and edges indicating that the 
result of one task is required for processing the next. Such a graph 
is called a task dependency graphtask dependency graph.  Eg:
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Example: Multiplying a Dense Matrix with a Vector

b yA

10 n
Task 1

Task n
n-1

2

Computation of each element of output vector y is independent of other 
elements. Based on this, a dense matrix-vector product can be decomposed 
into n tasks. The figure highlights the portion of the matrix and vector accessed 
by Task 1. 

Observations: While tasks share data (namely, the vector b ), they do 
not have any control dependencies in this example, i.e., no task needs 
to wait for the (partial) completion of any other. All tasks are of the same 
size in terms of number of operations. Is this the maximum number of Is this the maximum number of 
tasks we could decompose this problem?tasks we could decompose this problem? Answer?Answer?



3

5

Example: Database Query Processing 
Consider the execution of the query:

MODEL = ``CIVIC'' AND YEAR = 2001 AND
(COLOR = ``GREEN'' OR COLOR = ``WHITE)

on the following database: 

$18,000 WA Red 2002 Civic 7352 
$17,000 CA Red 2001 Civic 4395 
$18,000 VT Green 2000 Accord 8354 
$22,000 NY Blue 2001 Maxima 3845 
$19,000 FL Green 2001 Altima 5342 
$17,000 OR White 2001 Civic 6734 
$18,000 CA Green 2001 Prius 9834 
$21,000 NY Green 2001 Camry 7623 
$15,000 IL White 1999 Corolla 3476 
$18,000 MN Blue 2002 Civic 4523 
Price Dealer Color Year Model ID# 
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Example: Database Query Processing

The execution of the query can be divided into subtasks in various
ways. Each task can be thought of as generating an intermediate
table of entries that satisfy a particular clause. 

Decomposing the given query into a number of tasks. Edges in this graph 
denote that the output of one task is needed to accomplish the nextoutput of one task is needed to accomplish the next.
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ID# Model Year Color

6734
4395

ID# Model Year

4395
3845
5342
6734
7623

ID# Year

4523
6734
4395
7352

ID# Model

Civic
Civic
Civic
Civic

2001
2001
2001
2001
2001

Civic
Civic

2001
2001

3476
6734

ColorID# 7623
9834
5342
8354

ID# Color

3476
7623
9834
6734
5342
8354

ID# Color

Civic 2001 White

Green
Green
White
Green
Green
White

White
White

Green
Green
Green
Green



4

7

Example: Database Query Processing 
Note that the same problem can be decomposed into subtasks in 
other ways as well. 

2001 AND (White or Green)

Green

Civic AND 2001 AND (White OR Green)

Civic 2001 White 

White OR Green

7623

6734 Civic White

ID# Model Year Color

2001

3476
6734

White
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ColorID#

3476
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9834
6734
5342
8354

8354

Green
Green
White
Green
Green
White

ID# Color
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Green

4395
3845
5342
6734
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2001
2001
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Green
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Green

ID# Color
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Civic
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ID# Model
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9834

An alternate decomposition of the given problem into subtasks, 
along with their data dependencies.

Different task decompositions may lead to significant differences 
with respect to their eventual parallel performance. 
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Granularity of Task Decompositions 

• The number of tasks into which a problem is decomposed 
determines its granularity. 

• Decomposition into a large number of tasks results in fine-grained 
decomposition and that into a small number of tasks results in a
coarse grained decomposition. 

n10

A yb

...

Task 4

Task 2

Task 3

Task 1

A coarse grained counterpart to the dense matrix-vector product 
example. Each task in this example corresponds to the computation of three 
elements of the result vector. 
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Degree of Concurrency 

• The number of tasks that can be executed in parallel is the degree 
of concurrency of a decomposition. 

• Since the number of tasks that can be executed in parallel may 
change over program execution, the maximum degree of 
concurrency is the maximum number of such tasks at any point 
during execution. What is the maximum degree of concurrency of 
the database query examples?
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Answers?
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Critical Path Length 
• A directed path in the task dependency graph represents a 

sequence of tasks that must be processed one after the other. The 
number in the node represents the workload.

• The longest such path determines the shortest time (lower bound) in 
which the program execution can be completed in parallel. 

• The length of the longest path (sum of the workload of the nodes) in 
a task dependency graph is called the critical path length. What is 
the critical path lengths in the following 2 directed graphs?

10 10 10

Task 7

10

6

7

10 10 10 10

8

9 6

11

(a) (b)

Task 1Task 1Task 2Task 3Task 4

Task 5Task 6

Task 7

Task 2Task 3Task 4

Task 5

Task 6
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Average Degree of Concurrency 
• Defined as the ratio of total amount of work to the critical path length. 

Total amount of work =

Average degree of 
concurrency =

Total amount of work = 

Average degree of 
concurrency =

12

Limits on Parallel Performance 

• It would appear that the parallel time can be made arbitrarily small 
by making the decomposition finer in granularity. 

• There is an inherent bound on how fine the granularity of a 
computation can be. For example, in the case of multiplying a dense 
matrix with a vector, there can be no more than (n2) concurrent 
tasks.

• Concurrent tasks may also have to exchange data with other tasks. 
This results in communication overhead. The tradeoff between the
granularity of a decomposition and associated overheads often 
determines performance bounds. 
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Task Interaction Graphs 

• Subtasks generally exchange data with others in a 
decomposition. For example, even in the trivial decomposition 
of the dense matrix-vector product, if the vector is not replicated 
across all tasks, they will have to communicate elements of the 
vector. 

• The graph of tasks (nodes) and their interactions/data 
exchange (edges) is referred to as a task interaction graphtask interaction graph.  

4 5 6 7 8 9 10110
b

21
A

3

(b)

2

4 6

1
3

5

11109

0

8

7

Task 0

Task 11

8

4

(a) (edge has no 
arrow)
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Task Interaction Graphs: An Example 

Consider the problem of multiplying a sparse matrix A with a 
vector b. The following observations can be made:

4 5 6 7 8 9 10110
b

21
A

3

(b)

2

4 6

1
3

5

11109

0

8

7

Task 0

Task 11

8

4

(a)

• As before, the computation of each element of the result vector can be 
viewed as an independent task. 

• Unlike a dense matrix-vector product though, only non-zero elements of 
matrix A participate in the computation. Blank in A represents 0.

• If, for memory optimality, we also partition b across tasks where each task-i 
contain b[i] and is responsible to multiply with A[i,*],  then one can see that 
the task interaction graph of the computation is identical to the graph of the 
matrix A (the graph for which A represents the adjacency structure). 
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Task Interaction Graphs 

• Note that task interaction graphs represent data dependencies, 

whereas task dependency graphs represent control dependencies. 

16

Task Interaction Graphs, Granularity, and 
Communication 

In general, if the granularity of a decomposition is finer, the associated 
overhead (as a ratio of useful work associated with a task) increases. 
Example: Consider the sparse matrix-vector product example from 
previous foil. Assume that each node takes unit time to process and each 
interaction (edge) causes an overhead of a unit time. 

Viewing node 0 as an independent task involves a useful computation 
of one time unit and overhead (communication) of three time units. (1:3)

Now, if we consider nodes 0, 4, and 5 as one task, then the task has 
useful computation totaling to three time units and communication 
corresponding to five time units (five edges) (3:5). Clearly, this is a more 
favorable ratio than the former case.
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Processes and Mapping 

• In general, the number of tasks in a decomposition exceeds the 
number of processing elements available.

• Appropriate mapping of tasks to processes is critical to the parallel 
performance of an algorithm. 

• Mappings are determined by both the task dependency and task 
interaction graphs. 

• Task dependency graphs can be used to
ensure that work is as equally spread across 
all processes at any point as possible 
(minimum idling and optimal load balance). 

• Task interaction graphs can be used to 
make sure that processes need minimum 
interaction with other processes 
(minimum communication). 
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Processes and Mapping 

An appropriate mapping must minimize parallel execution time by:

• Mapping independent tasks to different processes. 
• Assigning tasks on critical path to processes as soon as they 

become available. 
• Minimizing interaction between processes by mapping tasks with 

dense interactions to the same process. 
• These criteria often conflict each other (see the partitions in the 

previous slides)
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Processes and Mapping: Example 

Mapping tasks in the database query decomposition to 
processes. These mappings were arrived at by viewing the 
dependency graph in terms of levels (no two nodes in a level have 
dependencies). Tasks within a single level are then assigned to 
different processes. 

20

Decomposition Techniques

Commonly used techniques:
• recursive decomposition 
• data decomposition 
• exploratory decomposition 
• speculative decomposition 
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Recursive Decomposition 
• Generally suited to problems that are solved using the divide-and-

conquer strategy. 
• A given problem is first decomposed into a set of sub-problems. 
• These sub-problems are recursively decomposed further until a desired 

granularity is reached. 
• A classic example of a divide-and-conquer algorithm on which we

can apply recursive decomposition is Quicksort. 
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11 6 8 7 95 12 10
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Recursive Decomposition: Quicksort 

In this example, once the list has been partitioned around the pivot, each 
sublets can be processed concurrently (i.e., each sublets represents an 
independent subtask). This can be repeated recursively. 
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Recursive Decomposition: Finding Minimum

The problem of finding the minimum number in a given list (or indeed 
any other associative operation such as sum, AND, etc.) can be 
fashioned as a divide-and-conquer algorithm. The following algorithm 
illustrates this. 

We first start with a simple serial loop for computing the minimum 
entry in a given list: 

1. procedure SERIAL_MIN (A, n)
2. begin
3. min = A[0];
4. for i := 1 to n − 1 do
5. if (A[i] < min) min := A[i];
6. end for;
7. return min;
8. end SERIAL_MIN 72525938247754365

24

Recursive Decomposition: Example

We can rewrite the loop as follows: 

1. procedure RECURSIVE_MIN (A, n) 
2. begin
3. if ( n = 1 ) then
4. min := A [0]  ; 
5. else
6. left_min := RECURSIVE_MIN ( A, n/2 ); 
7. right_min := RECURSIVE_MIN (  &(A[n/2]), n - n/2 ); 
8. if (left_min < right_min) then
9. min := left_min; 
10. else
11. min := right_min; 
12. endelse; 
13. endelse; 
14. return min; 
15. end RECURSIVE_MIN 

A[0] A[n/2]

left_min right_min
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Recursive Decomposition: Example

The code in the previous parallel can be decomposed naturally 
using a recursive decomposition strategy. We illustrate this with the 
following example of finding the minimum number in the set {4, 9, 1, 
7, 8, 11, 2, 12}. The task dependency graph associated with this
computation is as follows: 

min(1,7) min(8,11)min(4,9) min(2,12)

min(1,2)

min(4,1) min(8,2)

26

Data Decomposition 

• Identify the data on which computations are performed. 
• Partition this data across various tasks. 
• This partitioning induces a decomposition of the problem. 
• Data can be partitioned in various ways - this critically impacts 

performance of a parallel algorithm. 



14

27

Output Data Decomposition: Example 

Consider the problem of multiplying two n x n matrices A and B to 
yield matrix C. The output matrix C can be partitioned into four tasks 
as follows: 

Task 1:

Task 2:

Task 3:

Task 4:

28

Output Data Decomposition: Non unique

Task 1:  C1,1 = A1,1 B1,1

Task 2:  C1,1 = C1,1 + A1,2 B2,1

Task 3:  C1,2 = A1,2 B2,2

Task 4:  C1,2 = C1,2 + A1,1 B1,2

Task 5:  C2,1 = A2,2 B2,1

Task 6:  C2,1 = C2,1 + A2,1 B1,1

Task 7:  C2,2 = A2,1 B1,2

Task 8:  C2,2 = C2,2 + A2,2 B2,2

Task 1:  C1,1 = A1,1 B1,1

Task 2:  C1,1 = C1,1 + A1,2 B2,1

Task 3:  C1,2 = A1,1 B1,2

Task 4:  C1,2 = C1,2 + A1,2 B2,2

Task 5:  C2,1 = A2,1 B1,1

Task 6:  C2,1 = C2,1 + A2,2 B2,1

Task 7:  C2,2 = A2,1 B1,2

Task 8:  C2,2 = C2,2 + A2,2 B2,2

Decomposition IIDecomposition I
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Exploratory Decomposition 

• In many cases, the decomposition of the problem goes hand-in-
hand with its execution. 

• These problems typically involve the exploration (search) of a state 
space of solutions. 

• Problems in this class include a variety of discrete optimization 
problems, theorem proving, game playing, etc. E.g., the 15-square 
puzzle:

(solved state)

30

Exploratory Decomposition: Example 

A simple application of exploratory decomposition is in the 
solution to a 15-square puzzle (a tile puzzle). We show a 
sequence of three moves that transform a given initial 
state (a) to desired final state (d). 

1 2 3 4

5 6 8

9 10

13 14 15 12

117

1 2 3 4

5 6 7 8

9 10

13 14 15 12

11

(d)

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

(a) (b) (c)

15-square puzzle is a NP-complete problem. Some initial 
arrangements do not have a solution. E.g.,

32

1

3

21
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Exploratory Decomposition: Example 

The state space can be explored by generating various successor 
states of the current state and to view them as independent tasks. 
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Exploratory Decomposition: Anomalous Computations 

• In many instances of exploratory decomposition, the decomposition 
technique may change the performance for different instance. 

• This change results in different computation times thus different 
speedups. 

• E.g.. Computation in left-to-right order.

Serial time:

Parallel time:

Serial time: 

Parallel time:
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Speculative Decomposition 

• In some applications, dependencies between tasks are not known in 
advance. 

• For such applications, it is impossible to identify independent tasks. 
• There are generally two approaches to dealing with such 

applications: conservative approaches, which identify independent 
tasks only when they are guaranteed to not have dependencies, 
and, optimistic approaches, which schedule tasks even when they 
may potentially be erroneous. 

• Conservative approaches may yield little concurrency, and optimistic 
approaches may require roll-back mechanism in the case of an 
error. 

34

Speculative Decomposition: Example 

A classic example of speculative decomposition is in discrete event 
simulation. 

• The central data structure in a discrete event simulation is a time-
ordered event list. 

• Events are extracted precisely in time order, processed, and if 
required, resulting events are inserted back into the event list. 

• Consider your day today as a discrete event system - you get up, 
get ready, drive to work, work, eat lunch, work some more, drive
back, eat dinner, and sleep. 

• Each of these events may be processed independently, however, in
driving to work, you might meet with an unfortunate accident and not 
get to work at all. 

• Therefore, an optimistic scheduling of other events will have to be 
rolled back. 
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                                                      waiting    server 
                                                           line 
 
 
 

Customer  
pool 

~u(1...8) ~u(1.5...3) 

Example: Simple Queue

Event: Arrival, Departure

36

How and when to schedule arrival events?

increment the number of arrivals by 1;increment the number of arrivals by 1;

schedule the next arrival event;schedule the next arrival event;

if server is idleif server is idle

{{

set server to busy;set server to busy;

schedule a departure event for this arrival;schedule a departure event for this arrival;

}}

elseelse

increment queue length by 1;increment queue length by 1;

34
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How and when to schedule departure events?

if queue length is 0if queue length is 0
{{
set  server to idle;set  server to idle;
set departure time to infinity;set departure time to infinity;

}}
elseelse

{{
decrement queue length by 1;decrement queue length by 1;
schedule the next departure event;schedule the next departure event;

}}
35

38

The Mechanism

1. The increment of clock time is discrete.
2. We are doing almost the same things in each iteration:

select the event (arrival or departure) of least time;

update the system state

advance clock time

execute event

0 Duration

A A A AD D

. . .. . .

What if arrival is from a service station?

 
 
 
 
 
 
 
                                                      waiting    server 
                                                           line 

~u(1.5...3) 
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Conservative ApproachConservative Approach

(Null Message)

~u[2..3]

~u[2..8]

~u[3..5]

Clock = 4.2

Departure event to be execute at time 14 but

to execute or not?

D (t=14.5)

Clock = 2.1

Wait for Arrival

Clock = 4.3

1

2

3

P2 send null (t=5.1) to P3
P3 send null (t=7.1) to P1
P1 send null (t=9.1) to P2
P2 send null (t=12.1) to P3
P3 send null (t=14.1) to P1
P1 send null (t=16.1) to P2
P2 send null (t=19.1) to P3
D (t=14.5) is executed by P3
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Speculative Decomposition: Example 

Another example is the simulation of a network of nodes (for 
instance, an assembly line or a computer network through which 
packets pass). The task is to simulate the behavior of this network 
for various inputs and node delay parameters (note that networks
may become unstable for certain values of service rates, queue 
sizes, etc.). 

System Components
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Optimistic (Speculative) ApproachOptimistic (Speculative) Approach

~u[2..3]

~u[2..8]

~u[3..5]

Clock = 4.2

Departure event to be execute at time 14.

D (t=14.5)

Clock = 2.1

Wait for Arrival

Clock = 4.3

1

2

3

P3 executes Departure and 
advance clock to 14.5

If the arrival time > 14.5, no 
error.

If the arrival time is less than 
14.5, rollback.

42

Hybrid Decompositions 

2 1

1

1

Recursive
decomposition

Data
decomposition

3 7 2 11 75 8 10 6 13 19 3 99 4

Often, a mix of decomposition techniques is necessary for 
decomposing a problem. Consider the following examples: 

• In quick sort, recursive decomposition alone limits concurrency (Why?). A 
mix of data and recursive decompositions is more desirable. 

• In discrete event simulation, there might be concurrency in task processing. 
A mix of speculative decomposition and data decomposition may work well. 

• Even for simple problems like finding a minimum of a list of numbers, a mix 
of data and recursive decomposition works well.
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Task Generation 

• Static task generation: Concurrent tasks can be identified a-priori. 
Typical matrix operations, graph algorithms, image processing 
applications, and other regularly structured problems fall in this 
class. These can typically be decomposed using data or recursive
decomposition techniques. 

• Dynamic task generation: Tasks are generated as we perform 
computation. A classic example of this is in game playing - each 15 
puzzle board is generated from the previous one. These applications 
are typically decomposed using exploratory or speculative 
decompositions. 
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Characteristics of Task Interactions: Example 

Pixels

Tasks

A simple example of a regular static 
interaction pattern is in image 
dithering used when display capacity 
is less than representation capacity. 
The underlying communication 
pattern is a structured (2-D mesh) 
one as shown here:
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Characteristics of Task Interactions: Example 

The multiplication of a sparse matrix with a vector is a good example 
of a static irregular interaction pattern. Here is an example of a 
sparse matrix and its associated interaction pattern. 

46

Characteristics of Task Interactions 

• Interactions may be read-only or read-write. 
• In read-only interactions, tasks just read data items 

associated with other tasks. 
• In read-write interactions, tasks read as well as modify data 

items associated with other tasks. 
• In this course these interactions will be implemented by 

message passing.


