
1

1

CZ4102 CZ4102 –– High Performance ComputingHigh Performance Computing

Lecture 10: Lecture 10:

MultiMulti--threadingthreading

-- Dr Tay Seng ChuanDr Tay Seng Chuan

Reference:
(i) “Introduction to Parallel Computing” – Chapter 7.
(ii) “Introduction to Java Programming”, Y. Daniel Liang,

Quek E&T, ISBN 1-58076-255-7, Chapter 12.

2

Topic OverviewTopic Overview

• Executions of Single Thread and Multiple Threads

• Thread Synchronization and Protocols

• Over Consumption and Deadlock

• Producer-Consumer Paradigm

• JAVA Thread Examples

2

3

Overview of Programming Models

• Programming models provide support for expressing concurrency
and synchronization.

• Process based models assume that all data associated with a
process is private by default, unless otherwise specified.

• Lightweight processes and threads assume the existence of global
memory.

• Directive based programming models extend the threaded model by
facilitating creation and synchronization of threads.

4

What Is a Thread?

• A sequential program has a beginning, an execution
sequence, and an end. At any given time during the
runtime of the program there is a single point of
execution.

• A thread is similar to the sequential programs but a
thread itself is not a program; it cannot run on its own.
Rather, it runs within a program. The following figure
shows this relationship.

3

5

Multiple Threads

• Multiple threads can be implemented in a single program
running at the same time and performing different tasks.
Its execution can be in interleaved manner if it is run on
unprocessed platform, or in parallel if more than one
processor is available. This is illustrated in the following
figure.

6

Thread Example

• A thread is a single stream of control in the flow of a program. A program like:
for (row = 0; row < n; row++)

for (column = 0; column < n; column++)
c[row][column] =
dot_product(get_row(a, row),

get_col(b, col));
can be transformed to:

for (row = 0; row < n; row++)
for (column = 0; column < n; column++)

c[row][column] =
create_thread(dot_product(get_row(a, row),

get_col(b, col)));

In this case, one may think of the thread as an instance of a function that returns
before the function has finished executing.

Multiple threads
are created.

4

7

Thread BasicsThread Basics

• Threads provide software portability.
• It provides inherent support for latency

hiding.
• It facilitates static or dynamic scheduling and

load balancing.
• It can simplify programming algorithm.
• It has extensive use in applet programming,

eg, concurrent user input and update of
screen graphics.

8

Multiple Threads ExampleMultiple Threads Example

• I am going to show you the first program that contains 3 threads: printA,
printB and print100.

printA will print a 100 times, printB will print b 100 times, and print100
will print the integers 1, 2 , 3, …, to 100.

• What would you expect from the screen output?

5

9

Screen Output

The execution is interleaved and its order changes at
different execution run.

10

How are the 3 threads being executed on a
uniprocessor?

• Since the execution platform contains only one CPU, the threads are
executed in concurrent manner as follows:

But at any time only one thread is active. We say the execution
sequence of the three threads is interleaved. The order of execution
may not be on a round robin basis.

6

11

What if more than one processor is available
(3 processors in this diagram)?

Thread 1

Thread 2

Thread 3

Threads 1, 2
and 3 are
independent.

Threads 1, 2 and 3
access to shared
data. Exclusiveness
is allocated to
thread 3.

Threads 2 and 3
access to shared data.
Exclusiveness is
allocated to thread 2.

Threads 1 and 2
access to shared
data. Exclusiveness is
allocated to thread 1.

Threads 1, 2
and 3 are
independent.

12

Exam Scope:Exam Scope:

Your are expected to write C program and MPI
program.

You need notneed not write java program but you are
expected to explain the java code for
multithreading (ie, the effect of the
multithreading algorithm).

7

13

Structure of a Threaded Program in
JAVA (Concurrent Programming)

• The Thread class implements a generic thread that, by default, does
nothing. That is, the implementation of its run method is empty. This is not
particularly useful, so the Thread class defines API that lets a Runnable
object provide a more interesting run method for a thread.

• The run method gives a thread something to do. Its code implements the
thread's running behavior. It can do anything that can be encoded in Java
statements.

• To customize what a thread does when it is running, we can subclass
(extend or inherit) Thread (itself a Runnable object) and override its empty
run method so that it will do something.

14

Threaded JAVA Program
// TestThreads.java

import java.io.*; // for System I/O
import java.util.*; // for StringTokenizer
class TestThreads
{ public static void main (String[] args)

{
StringTokenizer stok;
DataInputStream in = new DataInputStream (System.in);

//declare and create threads
PrintChar printA = new PrintChar('a',100);
PrintChar printB = new PrintChar('b',100);
PrintNum print100 = new PrintNum(100);

//start threads
print100.start();
printA.start();
printB.start();

String ch = "";
// hold the screen
try{

ch = in.readLine();
} catch (IOException e) {}

}
} // P.T.O.

8

15

//The thread class for printing a specified character in specified times

class PrintChar extends Thread
{ private char charToPrint; //the character to print

private int times; //the times to repeat

//The thread class constructor
public PrintChar(char c, int t)
{ charToPrint = c;

times = t;
}

//override the run() method to tell the system what the thread will do
public void run()
{ for (int i=1; i <= times; i++)

System.out.print(charToPrint);
}

} // P.T.O.

16

//The thread class for printing number from 1 to n for a given n

class PrintNum extends Thread
{ private int lastNum;

public PrintNum(int i)
{ lastNum = i; }

public void run()
{ for (int i=1; i <= lastNum; i++)

System.out.print(" "+i);
}

} // end of program

9

17

ProducerProducer--Consumer ParadigmConsumer Paradigm

The producer-consumer scenario
imposes the following constraints:

• The producer thread must not
overwrite the shared buffer when
the previous task has not been
picked up by a consumer thread.

• The consumer threads must not
pick up tasks until there is
something present in the shared
data structure.

• Individual consumer threads
should pick up tasks one at a
time.

18

Applications ofApplications of
ProducerProducer--Consumer ParadigmConsumer Paradigm

• Memory consistency
• Delivery flow
• Parallel/distributed processing – synchronization aspect
• etc …

10

19

// shared1.java

import java.io.*; // for System I/O
import java.util.*; // for StringTokenizer

class SharedRegion
{

private int sharedInt = -1;
private boolean moreData = true;

public void setSharedInt(int val)
{ sharedInt = val; }

public int getSharedInt() { return sharedInt; }

public void setMoreData(boolean b)
{ moreData = b; }

public boolean hasMoreData() { return moreData; }
} //P.T.O.

ProducerProducer--Consumer ProgramConsumer Program

20

class Producer extends Thread
{

private SharedRegion this1;
public Producer(SharedRegion h)
{

this1 = h;
}

public void run()
{

for (int count = 0; count < 10; count++)
{

try { // sleep for a random interval
Thread.sleep((int) (Math.random() * 3000));
}

catch(InterruptedException e) {
System.err.println(e.toString());

}
this1.setSharedInt(count);
System.out.println("Producer set sharedInt to " + count);
System.out.flush();

}
this1.setMoreData(false);

}
} //P.T.O.

11

21

class Consumer extends Thread
{

private SharedRegion this1;
public Consumer(SharedRegion h)
{

this1 = h;
}

public void run()
{

int val;
while (this1.hasMoreData())
{

// sleep for a random interval
try {

Thread.sleep((int) (Math.random() * 3000));
}
catch(InterruptedException e) {

System.err.println(e.toString());
}
val = this1.getSharedInt();
System.out.println("Consumer retrieved " + val);
System.out.flush();

}
}

} //P.T.O.

22

public class shared1
{

public static void main(String args[])
{

StringTokenizer stok;
DataInputStream in = new DataInputStream (System.in);

SharedRegion h = new SharedRegion();
Producer p = new Producer(h);
Consumer c = new Consumer(h);
p.start();
c.start();

String ch = "";
// hold the screen
try{

ch = in.readLine();
} catch (IOException e) {}

}
} // end of shared1.java

Shared Shared
RegionRegion

ProducerProducer ConsumerConsumer

12

23

What will be the screen output for shared1.java?

24

Synchronization Protocol 1Synchronization Protocol 1
Global flags: Lock_P, Lock_C;
set Lock_P to false (indicate that the shared integer is not used by producer);
set Lock_C to false (indicate that the shared integer is not used by consumers);

Consumer
if Lock_P is true, keep waiting until
Lock_P is false (if the producer is
using the integer, the consumer will
have to wait);

set Lock_C to true (indicate that
the shared integer will be used by
consumer);

access the shared integer (read
operation);

set Lock_C to false (indicate that
the consumer has released the
shared integer);

Producer
if Lock_C is true, keep waiting until
Lock_C is false (if the consumer is
using the integer, the producer will
have to wait);

set Lock_P to true (indicate that the
shared integer will be used by
producer);

access the shared integer (write
operation);

set Lock_P to false (indicate that
the producer has released the
shared integer);

13

25

Effect of the first set of protocol:

26

Synchronization Protocol 2Synchronization Protocol 2
Global flags: Lock_P, Lock_C;
set Lock_P to false (indicate that the shared integer is not used by producer);
set Lock_C to false (indicate that the shared integer is not used by consumers);

Consumer
set Lock_C to true (indicate that
the shared integer will be used by
consumer);

if Lock_P is true, keep waiting until
Lock_P is false (if the producer is
using the integer, the consumer will
have to wait);

access the shared integer (read
operation);

set Lock_C to false (indicate that
the consumer has released the
shared integer);

Producer
set Lock_P to true (indicate that the
shared integer will be used by
producer);

if Lock_C is true, keep waiting until
Lock_C is false (if the consumer is
using the integer, the producer will
have to wait);

access the shared integer (write
operation);

set Lock_P to false (indicate that
the producer has released the
shared integer);

14

27

Effect of the second set of protocol:

28

Precautions

If you write a program in which several concurrent threads are
competing for resources (e.g., the shared integer), you must take
precautions to ensure fairness. A system is fair when each thread
gets enough access to limited resource to make reasonable
progress. A fair system prevents starvation and deadlock.
Starvation occurs when one or more threads in your program are
blocked from gaining access to a resource and thus cannot make
progress.

Deadlock is the ultimate form of starvation; it occurs when two or
more threads are waiting on a condition that cannot be satisfied.
Deadlock most often occurs when two (or more) threads are each
waiting for the other(s) to do something.

Symmetrical synchronization protocol is very easy to design, but it
is very prone to deadlock. A lot of programmers design this type of
algorithm.

15

29

When multiple threads attempt to manipulate the same data item, the
results can often be incoherent if proper care is not taken to
synchronize them.

The Java programming language provides two basic synchronization
idioms: synchronized methods and synchronized statements.

First, it is not possible for two invocations of synchronized methods
on the same object to interleave. When one thread is executing a
synchronized method for an object, all other threads that invoke
synchronized methods for the same object block (suspend
execution) until the first thread is done with the object.

Second, when a synchronized method exits, it automatically
establishes a happens-before relationship with any subsequent
invocation of a synchronized method for the same object. This
guarantees that changes to the state of the object are visible to all
threads.

Synchronization of JAVA ThreadSynchronization of JAVA Thread

30

JAVAJAVA’’s notify Mechanisms notify Mechanism
public final void notify()

Wakes up a single thread that is waiting on this object's monitor. If any
threads are waiting on this object, one of them is chosen to be awakened.
The choice is arbitrary and occurs at the discretion of the implementation. A
thread waits on an object's monitor by calling one of the wait methods. The
awakened thread will not be able to proceed until the current thread
relinquishes the lock on this object. The awakened thread will compete in
the usual manner with any other threads that might be actively competing to
synchronize on this object; for example, the awakened thread enjoys no
reliable privilege or disadvantage in being the next thread to lock this object.
This method should only be called by a thread that is the owner of this
object's monitor.

A thread becomes the owner of the object's monitor in one of three ways:
- By executing a synchronized instance method of that object.
- By executing the body of a synchronized statement that synchronizes on
the object.

- For objects of type Class, by executing a synchronized static method of
that class.

16

31

// shared3.java// shared3.java
// with synchronization// with synchronization
// sleep removed in shared3// sleep removed in shared3

import java.io.*; // for System I/Oimport java.io.*; // for System I/O
import java.util.*; // for StringTokenizerimport java.util.*; // for StringTokenizer

class SharedRegionclass SharedRegion
{{

private int sharedInt = private int sharedInt = --1;1;
private boolean moreData = true;private boolean moreData = true;
private boolean writeable = true;private boolean writeable = true;

// P.T.O.// P.T.O.

32

public synchronized void setSharedInt(int val)public synchronized void setSharedInt(int val)
{{

while (!writeable)while (!writeable)
{{

trytry
{{

wait();wait();
}}
catch (InterruptedException e)catch (InterruptedException e)
{{

System.err.println("Exception: " + e.toString());System.err.println("Exception: " + e.toString());
}}

}}
sharedInt = val;sharedInt = val;
writeable = false;writeable = false;
notify();notify();

}}

// P.T.O// P.T.O

17

33

public synchronized int getSharedInt()public synchronized int getSharedInt()
{{

while (writeable)while (writeable)
{{

trytry
{{

wait();wait();
}}
catch (InterruptedException e)catch (InterruptedException e)
{{

System.err.println("Exception: " + e.toString())System.err.println("Exception: " + e.toString());;
}}

}}

writeable = true;writeable = true;
notify();notify();
return sharedInt;return sharedInt;

}}
public void setMoreData(boolean b) { moreData = b; }public void setMoreData(boolean b) { moreData = b; }
public boolean hasMoreData() { return moreData; }public boolean hasMoreData() { return moreData; }

} } // end class SharedRegion// end class SharedRegion P.T.O.P.T.O.

34

class Producer extends Threadclass Producer extends Thread
{{

private SharedRegion this1;private SharedRegion this1;
public Producer(SharedRegion h)public Producer(SharedRegion h)
{{

this1 = h;this1 = h;
}}
public void run()public void run()
{{

for (int count = 0; count < 10; count++)for (int count = 0; count < 10; count++)
{{

this1.setSharedInt(count);this1.setSharedInt(count);
System.out.println("Producer set sharedInt to " + counSystem.out.println("Producer set sharedInt to " + count);t);
System.out.flush();System.out.flush();

}}
this1.setMoreData(false);this1.setMoreData(false);

}}
} } // P.T.O.// P.T.O.

18

35

class Consumer extends Threadclass Consumer extends Thread
{{

private SharedRegion this1;private SharedRegion this1;
public Consumer(SharedRegion h)public Consumer(SharedRegion h)
{{

this1 = h;this1 = h;
}}

public void run()public void run()
{{

int val;int val;
while (this1.hasMoreData())while (this1.hasMoreData())
{{

val = this1.getSharedInt();val = this1.getSharedInt();
System.out.println("Consumer retrieved " + val);System.out.println("Consumer retrieved " + val);
System.out.flush();System.out.flush();

}}
}}

} } // P.T.O.// P.T.O.

36

public class shared3public class shared3
{{

public static void main(String args[])public static void main(String args[])
{{

StringTokenizer stok;StringTokenizer stok;
DataInputStream in = new DataInputStream (System.in);DataInputStream in = new DataInputStream (System.in);
SharedRegion this1 = new SharedRegion();SharedRegion this1 = new SharedRegion();

Producer p = new Producer(this1);Producer p = new Producer(this1);
Consumer c = new Consumer(this1);Consumer c = new Consumer(this1);

p.start();p.start();
c.start();c.start();

String ch = "";String ch = "";
// hold the screen// hold the screen
try{try{

ch = in.readLine();ch = in.readLine();
} catch (IOException e) {}} catch (IOException e) {}

}}
} } //end shared3.java//end shared3.java

Shared Shared
RegionRegion

ProducerProducer ConsumerConsumer

19

37

Output of shared3.javaOutput of shared3.java

Producer set sharedInt to 0Producer set sharedInt to 0
Consumer retrieved 0Consumer retrieved 0
Producer set sharedInt to 1Producer set sharedInt to 1
Consumer retrieved 1Consumer retrieved 1
Producer set sharedInt to 2Producer set sharedInt to 2
Consumer retrieved 2Consumer retrieved 2
Producer set sharedInt to 3Producer set sharedInt to 3
Consumer retrieved 3Consumer retrieved 3
Producer set sharedInt to 4Producer set sharedInt to 4
Consumer retrieved 4Consumer retrieved 4
Producer set sharedInt to 5Producer set sharedInt to 5
Consumer retrieved 5Consumer retrieved 5
Producer set sharedInt to 6Producer set sharedInt to 6
Consumer retrieved 6Consumer retrieved 6
Producer set sharedInt to 7Producer set sharedInt to 7
Consumer retrieved 7Consumer retrieved 7
Producer set sharedInt to 8Producer set sharedInt to 8
Consumer retrieved 8Consumer retrieved 8
Producer set sharedInt to 9Producer set sharedInt to 9
Consumer retrieved 9Consumer retrieved 9

