CZ24102 - High Performance Computing
Lecture 11:
Matrix Algorithms

- Dr Tay Seng Chuan

Reference:
“Introduction to Parallel Computing” — Chapter 8.

Topic Overview
+ Parallel Algorithms for
- Matrix-Vector Multiplication

- Matrix-Matrix Multiplication

» Performance Analysis

Matrix Algorithms: Introduction

Due to their regular structure, parallel computations
involving matrices and vectors readily lend themselves to
data-decomposition.

Typical algorithms rely on input, output, or intermediate
data decomposition.

* Most algorithms use one- and two-dimensional block,
cyclic, and block-cyclic partitions for parallel processing.

» The run-time performance of such algorithms depends on
the amount of overheads incurred as compared to the
computation workload.

* As a rule of thumb, good speedup can be achieved if the
computation granularity is able to outweigh the overheads
such as the communication cost, consolidation cost —
algorithm penalty, data packaging, etc.

Matrix-Vector Multiplication

* We aim to multiply a dense n x n matrix A with an n x 1 vector x
to yield the n x 1 result vector y.

» The serial algorithm requires n? multiplications and additions.

A X y

n

The total workload is W = nﬂ, 4

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

* The nx n matrix A is partitioned among n processors,
with each processor storing a complete row of the
matrix.

» The n x 1 vector x is distributed such that each process
owns one of its elements.

A X y
[| [
" - O
[| L
5
Pl

Matrix-Vector Multiplication:

Rowwise 1-D Partitioning (p= n)
yli] = E325 (Al 4] x =[3])

Matix 4 Vector x Processes
, R I S T
* Since each process starts [[. D!
with only one element of - A D ; !
Vector x, an all-to-all S B —— = T D ‘
broadcast is required to = S
distribute all the elements = Al r i
X[j]to all the processes. @ ki ottremamis (9 Biscbtenof el e sone o
* Process P, now computes Matix 4 Veetor
uli] = Z;;&(A[z,gl x z[j]) 5 [[0 1 B [
+ The all-to-all broadcast x|l [00 FH LA [
and the computation of DEOORE. -1 [
y[i] both take time O(n) . OO [
Therefore, the parallel time = |[;] [1] [] [] B,
is O(n) . S
) e s oz b

p=n

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning (p < n)

« Consider now the case when
p < n and we use blocks in

partitions.
— — In/p °
+ Each process initially stores] |
n/p complete rows of the " XM= = . P
matrix, and a portion of the 1 [
vector of size n/p. - - °

* The all-to-all broadcast takes
place among p processes 7
and involves messages of
size n/p.

» This is followed by n/p rows of local dot products.
(computation time = n/p x n =n2/p)

Recap: All-to-All Broadcast
based on Doubling-up ¢

v
Approach: <‘4—< ol
g . : [e s
T == Z (ts + 21_ ltwm) (a0 Initial distribation of nussages () Disiriborion before the second Mep (i) Diaribetion befunre the thid sep
=1

1+2+22+2%+ . +2M09p-1
=tslogp + tym(p — 1).
_ 1(2 {log p=11+1 _1)

21

n
Now m= —, we have

Thus, the parallel run time of matrix-vector

n multiplication based on rowwise 1-D
T=1 |ng+th/E/XM partitioning (p < n) is
2

n
Tp = —+tzlogp + tyn.
~tlogp+t,xn P -

All-to-all broadcast of vector elements.

8
* This is cost-optimal.

Matrix-Vector Multiplication:
2-D Partitioning (p =n?)
* The n x n matrix is partitioned among n? processors such

that each processor owns a single element.
* The nx 1 vector x is distributed only in the last column of

N processors.

(p = n? processors)

e[e/e[®
o000
0/0/0/0)

A O000
0/0/0/0)
Q000
nnn
eee/®

n

Matrix-Vector Multiplication:

2-D Partitioning (p =n?)

We must first align the vector
with the matrix appropriately.
The first communication step
for the 2-D partitioning aligns
the vector x along the
principal diagonal of the
matrix.

The second step copies the
vector elements from each
diagonal process to all the
processes in the
corresponding column using

n simultaneous broadcasts
among all processors in the
column.

Finally, the result vector is
computed by performing an
all-to-one reduction along the
columns.

}'I‘ﬂn‘ili ‘:{ WVector x
O Lo} ﬁD
& I ammain
Peaed L
i _D
|
e T e e
i 1
i

(2) Initial data distribution and communication

steps to align the vector along the diagonal

i
(c) All-to-one reduction of partial results

(b) One-to-all broadcast of portions of
the vector along process columns

Matrix A ector
h h
rodrd i ksl)
i i i i
P H
\rﬁl_ T] T ___|;|___
a ol L
i i i i
ey
i i i i
P D

i i i i
(d) Final distribution of the result vector

Matrix-Vector Multiplication:
2-D Partitioning (p = n?)

Three basic communication operations are used in this algorithm: one-to-one
communication to align the vector along the main diagonal, one-to-all broadcast
of each vector element among the n processes of each column, and all-to-one
reduction in each row.

o Mamx A Vector x 1‘ g . \ \ .
0 ||
4 ME..=,.=,=. A1
2 |
’ e il ampmpmill

b) One-to-all broadeast of pertions of (c) All-to-one reduction of partial results

the vector along process columns

(@) Initial data distribution and communication
steps to align the vector along the diagonal

* These communications take ©@(log n) time. Computation time is O(1). The
parallel time of this algroithm is ©(log n) + ©(1) = ©(log n) .
* The cost (process-time product) is n2 x log n = ©(n2log n) > n2; hence, the

algorithm is not cost-optimal. 11

Matrix-Vector Multiplication:
2-D Partitioning (p < n?)

* When using fewer than n? processors, each process owns an

(n/y/P) x (n/,/B) block of the matrix. p (ie, {/p x,/p) processors are used.

» The vector is distributed in portions of nf,/p? elements in the last process-
column only.

* Inthis case, the message sizes for the alignment, broadcast, and reduction
are all n/\/p .
* The computation is a product of an (n/,/p) x (n/,/p) submatrix with a
vector of length n/\/p . I
p

:I.I—‘ﬁ;
n/yP| H| H (=

-
N

Matrix-Vector Multiplication:
2-D Partitioning (p < n?)
* The first alignment step takes time ¢, +-t,n/,/p

* The broadcast and reductions each take time

(£ + tun//P) log(\/P)

« Local matrix-vector products take time t.n?/p

v

n X

1

L]

In/ﬁ @

.:u/E
@

HIEENEEEE

LI T[]

2

n n
« Totaltimeis Tp a3 — +tzlogp +tu—log 13

Matrix-Matrix Multiplication

» Consider the problem of multiplying two n x n dense,
square matrices A and B to yield the product matrix

C=AxB.
« The serial complexity is O(n3).
n n2
A \ //\\
nl d []

Matrix-Matrix Multiplication

» A useful concept in this case is called block operations.
In this view, an n x n matrix A can be regarded as a g xq
array of blocks A;; (0 <1, j < q) such that each block is an
(n/q) x (n/q) submatrix.

« We perform g2 matrix multiplications, each involving

(n/q) x (n/q) matrices.

n

n/q S —

n/q I °

n X = q

Matrix-Matrix Multiplication

» Consider two N X N matrices A and B partitioned into p
blocks of A;; and B;; (0 <, j <y) of size (n/\/P) x (n/y/B)
each.

* Process P;;initially stores A;; and B;; and computes block
C;; of the result matrix.

 Computing submatrix C;; requires all submatrices A;,
and By for 0 =k </m.

* All-to-all broadcast blocks of A along rows, and B along
columns are needed.

* Perform local submatrix muftiplication.

nfp —_

Wy 7] .
" >< -H [
@ mil ﬂ ° 16
B

A

Matrix-Matrix Multiplication

* The two broadcasts take time

2(t, log(y/P) + tw(n?/p)(vE — 1))

Jr

—_——
e ® e @

=—EH .\/;

[11

A B

+ The computation requires /p

c

multiplications of

(n//B) % (n/,/P) sized submatrices.

* The parallel run time is approximately

3

Tp= %—i—t.logp-i- 2ty

n?

VP

» Major drawback of the algorithm is that it is not memory

optimal.
. . A | A | A | Aw :
Matrix-Matrix -
. e . Ay | Ay | A | A B,
Multiplication: E e e
. Ay A AL | A B
Cannon's Algorithm =
A | A | A Ass By,

* In thIS algorlthm’ We i 2) Initial aliznment of A (b} Inital aliznment of B
schedule the computations e . NV
of the v processes of the Ta fa T oo T o e e
ith row such that, at any BT o el o I o e T
given time, each processis {1 n R (LR
using a different block A;,. £ ' e daet

’ B Bue B |[Ba | Bu

» These blocks can be

. (d) Subrats locations after first shift

systematically rotated

among the processes after el el ol s

every submatrix il Bl g

multiplication so that every R D R
Bie | B | Bu | Bus

process gets a fresh A, e v B by

after each rotation. - L WL BE.

(&) Submairix locations after second shift (f) Submarix lcations after third shift

Matrix-Matrix
Multiplication:
Cannon's Algorithm

Align the blocks of A and B in such &
way that each process multiplies its
local submatrices. This is done by

shifting all submatrices A, to the left

(with wraparound) by i steps and all ol > o |
submatrices B;; up (with Ené; Ea.‘..' L l‘
wraparound) by j steps. B R Tl Tl N

Perform local block multiplication.
Each block of A moves one step left

and each block of B moves one step -
up (again with wraparound). S

Perform next block multiplication,
add to partial result, repeat until all

+/P blocks have been multiplied.

L]

—

e

Cu

— -
L
TS
¥
=

L]

>

a

;

£
T
g e

—a -

A | Aw | A | A

-

{2} Initial aliznment of A

[
R

() A and B after initial aligmmen:

(d) Submamiz locations after first shift

{
i 1
7 Aan ™0 Ao A | A | Aw | A
By | B | By | B | Bu
L
T B A | A | A | As
Bie | B | B | Bu
- A | A | A | Ay
B | By | By | Bus
B :\5..' ',"I} A}.: "‘I.I
Bis | By | Bu | Bu

{2} Suhmrm: locations after second shift (f)

Submatrix locations after third shift

Matrix-Matrix Multiplicatio
Cannon's Algorithm

* In the alignment step, since the
maximum distance over which a
block shifts is /7 — 1, the two shift
operations require a total of

2(t, + tan?/p) time.

« Each of the /P single-step shifts in
the compute-and-shift phase of the
algorithm takes t, + ¢t,,n?/p time.

* The computation time for multiplying

VP matrices of size (n//7) % (n//P}

is n®/p. (ie., B X(n//p)*)

+ The parallel time is approximately:
3

Tp = 2 1+ 2\ /pts + 2 Lo
P 7 g w‘/ﬁ-

n: (n/\/P} x {n/yP)

Agn | Aw | Aax | A

(@) Submarrix locations after first shift

A | A [e | A

Be B | B | B2

Ao | A [Ae | A

Bh: 3|.| B:J 3|,<

Ao | A | Ao | Aw

k By By | By | By
i B | A | A | A
| B ML EN

|

(&) Swomatrix locarions after second shift (f) Submatrix locations after third shift

10

Matrix-Matrix Multiplication:

DNS (Dekel, Nassimi, and Sahni) Algorithm

Uses a 3-D partitioning.
Visualize the matrix multiplication
algorithm as a cube. Matrices A
and B come in two orthogonal
faces and result C comes out the
other orthogonal face.

Each internal node in the cube

represents a single add-multiply “

operation (and thus the
complexity).

DNS algorithm partitions this
cube using a 3-D block scheme.

/.

j

21

Matrix-Matrix Multiplication:

DNS Algorithm

Assume an N X N X N mesh of
processors.

Move the columns of A and rows of B
and perform broadcast.

Each processor P, ; , computes a single
multiply: C[i,k] = A[i,k] x B[k,j].

This is followed by an accumulation
along the k dimension.

Since each add-multiply takes constant
time and accumulation and broadcast
takes log n time, the total runtime

is log n.

This is not cost optimal. It can be made
cost optimal by using n/log n
processors along the direction of
accumulation.

22

11

Matrix-Matrix Multiplication:

3,3

DNS Algorithm <: 53 463

The vertical column of processes P, ;. 5 Ty 7y
computes the dot product of row A[i, *]] S
and column B[*, j]. Therefore, rows of A R

<4, 0 N0 L I,
and columns of B need to be moved AB 02 1 B Gy

appropriately so that each vertical e 62 O
column of processes P, ;. has row Ali, *] FAPEYEECINY,

and column B[*, j]. More precisely, g 7 Y
process P;;, should have Ali, k] and k o Vi i e 0
BLk, jl. 01 (11 (21 3,1

First, each column of A moves to a

different plane such that the j th column i ;y<EZ 03 oy

(3329

occupies the same position in the plane

corresponding to k = j as it initially did in e I :

the plane corresponding to k = 0. Sl (o 2o B
—_—

{a) Initial distribution of A and &

Matrix-Matrix Multiplication:

DNS Algorithm

k=3

Now all the columns of A are
replicated n times in their

respective planes by a parallel k=2
one-to-all broadcast along the
j axis.

Pi,o,j, Pm, ..., P .1 receive a k=]

copy of Afi, j] from P, ;. At this
point, each vertical column of
processes P, ;. has row A[i, *].
More precisely, process P,
has A[i, k].

(b} Afier moving Afijf from By, to

P

L

12

Matrix-Matrix Multiplication:
DNS Algorithm

For matrix B, the
communication steps
are similar, but the roles
of i and j in process
subscripts are switched.
In the first one-to-one
communication step,
Bl[i, j] is moved from
Pijo to Py

Matrix-Matrix Multiplication:
DNS Algorithm

Then it is broadcast
from P;;; among Py,

L)l

P1 ,j,i’ ey Pn_»] ,j,i'

At this point, each

vertical column of
processes P, - has
column B[*, j]. Now

process P;;, has B[k,]],

in addition to Al[i, Kk].

13

Matrix-Matrix Multiplication: DNS Algorithm

RS 1] PR
) = A3 B3 G300 (a2
oy Bl

(30!

Af0.3]% B3.0] = M _
g

'!__I,'I 5 :H_._I' £ +
Lyl

_-

.:G.l. I Ll

g O I T Y

A0 1% BILOY o~
3o AR

3 ch-.l?" (3.

i (T (10 O
e T T
g7 O (T I

4+

of the product matrix is obtained by an all-to-one reduction along the k axis. During this step,
process P;; , accumulates the results of the multiplication from processes P; ;, ..., Pjjn.q.

The DNS algorithm has three main communication steps: (1) moving the columns of A and the rows
of B to their respective planes, (2) performing one-to-all broadcast along the j axis for A, and along
the i axis for B, and (3) all-to-one reduction along the k axis. All these operations are performed
within groups of n processes and take time O(log n). Thus, the parallel run time for 27
multiplying two n x n matrices using the DNS algorithm on n3 processes is O(log n).

Matrix-Matrix Multiplication:
DNS Algorithm (Using fewer than n2 processors.)

» Assume that the number of processes p is
equal to g2 for some g <n.

» The two matrices are partitioned into blocks
of size (n/q) x(n/q).

« Each matrix can thus be regarded as aq x q
two-dimensional square array of blocks.

+ The algorithm follows from the previous one,
except, in this case, we operate on blocks
rather than on individual elements.

28

14

Matrix-Matrix Multiplication:
DNS Algorithm (Using fewer than n2 processors.)

» The first one-to-one communication step is performed for
both A and B, and takes ¢, + t.{n/g)? time for each matrix.

+ The two one-to-all broadcasts take 2(.logq + t.(n/q)*logq)
time for each matrix.

+ The reduction takes time tslogg+ tu(n/g)’logg.

+ Multiplication of (n/g) x (n/g) submatrices takes (n/g)® time.

* The parallel time is approximated by: '

n2

3
n
Te = ; +tslogp+ t"'pz/s logp.

15

