
1

1

CZ4102 CZ4102 –– High Performance ComputingHigh Performance Computing

Lecture 11: Lecture 11:

Matrix AlgorithmsMatrix Algorithms

-- Dr Tay Seng ChuanDr Tay Seng Chuan

Reference:
“Introduction to Parallel Computing” – Chapter 8.

2

Topic Overview

• Parallel Algorithms for
- Matrix-Vector Multiplication
- Matrix-Matrix Multiplication

• Performance Analysis

2

3

Matrix Algorithms: Introduction
• Due to their regular structure, parallel computations

involving matrices and vectors readily lend themselves to
data-decomposition.

• Typical algorithms rely on input, output, or intermediate
data decomposition.

• Most algorithms use one- and two-dimensional block,
cyclic, and block-cyclic partitions for parallel processing.

• The run-time performance of such algorithms depends on
the amount of overheads incurred as compared to the
computation workload.

• As a rule of thumb, good speedup can be achieved if the
computation granularity is able to outweigh the overheads
such as the communication cost, consolidation cost –
algorithm penalty, data packaging, etc.

4

Matrix-Vector Multiplication

• We aim to multiply a dense n x n matrix A with an n x 1 vector x
to yield the n x 1 result vector y.

• The serial algorithm requires n2 multiplications and additions.

• The total workload is

x =n

n

A x y

3

5

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

• The n x n matrix A is partitioned among n processors,
with each processor storing a complete row of the
matrix.

• The n x 1 vector x is distributed such that each process
owns one of its elements.

:

:

:

:

A x y

6

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning (p = n)

• Since each process starts
with only one element of
Vector x , an all-to-all
broadcast is required to
distribute all the elements
x[j] to all the processes.

• Process Pi now computes

• The all-to-all broadcast
and the computation of
y[i] both take time Θ(n) .
Therefore, the parallel time
is Θ(n) .

p = n

4

7

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning (p < n)

n/p

• Consider now the case when
p < n and we use blocks in

partitions.

• Each process initially stores
n/p complete rows of the
matrix, and a portion of the
vector of size n/p.

• The all-to-all broadcast takes
place among p processes
and involves messages of
size n/p.

p

• This is followed by n/p rows of local dot products.
(computation time = n/p x n = n2/p)

8

p
n

p
n

NowNow m = , we have

T = ts log p + tw x x (p-1)

Recap: All-to-All Broadcast
based on Doubling-up

Approach:

~ ts log p + tw x n

• Thus, the parallel run time of matrix-vector
multiplication based on rowwise 1-D
partitioning (p < n) is

• This is cost-optimal.

All-to-all broadcast of vector elements.

5

9

Matrix-Vector Multiplication:
2-D Partitioning (p = n2)

• The n x n matrix is partitioned among n2 processors such
that each processor owns a single element.

• The n x 1 vector x is distributed only in the last column of
n processors.

x =n

n

(p = n2 processors)

10

Matrix-Vector Multiplication:
2-D Partitioning (p = n2)

• We must first align the vector
with the matrix appropriately.

• The first communication step
for the 2-D partitioning aligns
the vector x along the
principal diagonal of the
matrix.

• The second step copies the
vector elements from each
diagonal process to all the
processes in the
corresponding column using
n simultaneous broadcasts
among all processors in the
column.

• Finally, the result vector is
computed by performing an
all-to-one reduction along the
columns.

6

11

Matrix-Vector Multiplication:
2-D Partitioning (p = n2)

• Three basic communication operations are used in this algorithm: one-to-one
communication to align the vector along the main diagonal, one-to-all broadcast
of each vector element among the n processes of each column, and all-to-one
reduction in each row.

• These communications take Θ(log n) time. Computation time is O(1). The
parallel time of this algroithm is Θ(log n) + Θ(1) = Θ(log n) .

• The cost (process-time product) is n2 x log n = Θ(n2 log n) > n2; hence, the
algorithm is not cost-optimal.

12

Matrix-Vector Multiplication:
2-D Partitioning (p < n2)

• When using fewer than n2 processors, each process owns an
block of the matrix. p (ie, x) processors are used.

• The vector is distributed in portions of elements in the last process-
column only.

• In this case, the message sizes for the alignment, broadcast, and reduction
are all .

• The computation is a product of an submatrix with a
vector of length .

p

p

pp

7

13

Matrix-Vector Multiplication:
2-D Partitioning (p < n2)

• The first alignment step takes time

• The broadcast and reductions each take time

• Local matrix-vector products take time

• Total time is

14

Matrix-Matrix Multiplication

• Consider the problem of multiplying two n x n dense,
square matrices A and B to yield the product matrix

C = A x B.
• The serial complexity is O(n3).

x =n

n

A B C

n2

8

15

Matrix-Matrix Multiplication

• A useful concept in this case is called block operations.
In this view, an n x n matrix A can be regarded as a q x q
array of blocks Ai,j (0 ≤ i, j < q) such that each block is an
(n/q) x (n/q) submatrix.

• We perform q2 matrix multiplications, each involving
(n/q) x (n/q) matrices.

n/q

n/q

q

q

16

Matrix-Matrix Multiplication
• Consider two n x n matrices A and B partitioned into p

blocks of Ai,j and Bi,j (0 ≤ i, j <) of size
each.

• Process Pi,j initially stores Ai,j and Bi,j and computes block
Ci,j of the result matrix.

• Computing submatrix Ci,j requires all submatrices Ai,k
and Bk,j for 0 ≤ k < .

• All-to-all broadcast blocks of AA along rowsalong rows, and BB along along
columnscolumns are needed.

• Perform local submatrix multiplication.

9

17

Matrix-Matrix Multiplication
• The two broadcasts take time

• The computation requires multiplications of
sized submatrices.

• The parallel run time is approximately

• Major drawback of the algorithm is that it is not memory
optimal.

18

Matrix-Matrix
Multiplication:

Cannon's Algorithm

• In this algorithm, we
schedule the computations
of the processes of the
ith row such that, at any
given time, each process is
using a different block Ai,k.

• These blocks can be
systematically rotated
among the processes after
every submatrix
multiplication so that every
process gets a fresh Ai,k
after each rotation.

10

19

Matrix-Matrix
Multiplication:

Cannon's Algorithm

• Align the blocks of A and B in such a
way that each process multiplies its
local submatrices. This is done by
shifting all submatrices Ai,j to the left
(with wraparound) by i steps and all
submatrices Bi,j up (with
wraparound) by j steps.

• Perform local block multiplication.
• Each block of A moves one step left

and each block of B moves one step
up (again with wraparound).

• Perform next block multiplication,
add to partial result, repeat until all

blocks have been multiplied.

20

Matrix-Matrix Multiplication:
Cannon's Algorithm

• In the alignment step, since the
maximum distance over which a
block shifts is , the two shift
operations require a total of

time.

• Each of the single-step shifts in
the compute-and-shift phase of the
algorithm takes time.

• The computation time for multiplying
matrices of size

is . (i.e., X 3)

• The parallel time is approximately:

11

21

Matrix-Matrix Multiplication:
DNS (Dekel, Nassimi, and Sahni) Algorithm

• Uses a 3-D partitioning.
• Visualize the matrix multiplication

algorithm as a cube. Matrices A
and B come in two orthogonal
faces and result C comes out the
other orthogonal face.

• Each internal node in the cube
represents a single add-multiply
operation (and thus the
complexity).

• DNS algorithm partitions this
cube using a 3-D block scheme.

i

j

k

22

Matrix-Matrix Multiplication:
DNS Algorithm

• Assume an n x n x n mesh of
processors.

• Move the columns of A and rows of B
and perform broadcast.

• Each processor Pi, j, k computes a single
multiply: C[i,k] = A[i,k] x B[k,j].

• This is followed by an accumulation
along the k dimension.

• Since each add-multiply takes constant
time and accumulation and broadcast
takes log n time, the total runtime
is log n.

• This is not cost optimal. It can be made
cost optimal by using n / log n
processors along the direction of
accumulation.

k = 0

k = 1

k = 2

k = 3

12

23

Matrix-Matrix Multiplication:
DNS Algorithm

The vertical column of processes Pi,j,*
computes the dot product of row A[i, *]
and column B[*, j]. Therefore, rows of A
and columns of B need to be moved
appropriately so that each vertical
column of processes Pi,j,* has row A[i, *]
and column B[*, j]. More precisely,
process Pi,j,k should have A[i, k] and
B[k, j].

First, each column of A moves to a
different plane such that the j th column
occupies the same position in the plane
corresponding to k = j as it initially did in
the plane corresponding to k = 0.

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

24

Matrix-Matrix Multiplication:
DNS Algorithm

Now all the columns of A are
replicated n times in their
respective planes by a parallel
one-to-all broadcast along the
j axis.

Pi,0,j, Pi,1,j, ..., Pi,n-1,j receive a
copy of A[i, j] from Pi,j,j. At this
point, each vertical column of
processes Pi,j,* has row A[i, *].
More precisely, process Pi,j,k
has A[i, k].

13

25

Matrix-Matrix Multiplication:
DNS Algorithm

For matrix B, the
communication steps
are similar, but the roles
of i and j in process
subscripts are switched.
In the first one-to-one
communication step,
B[i, j] is moved from
Pi,j,0 to Pi,j,i.

1,0

1,2
1,3

1,1

2,0

2,2
2,3

2,1

3,0

3,2

3,3

3,1

26

Matrix-Matrix Multiplication:
DNS Algorithm

Then it is broadcast
from Pi,j,i among P0,j,i,
P1,j,i, ..., Pn-1,j,i.

At this point, each
vertical column of
processes Pi,j,* has
column B[*, j]. Now
process Pi,j,k has B[k, j],
in addition to A[i, k].

1,0

1,2
1,3

1,1

3,0

3,2
3,3

3,1

2,0

2,2
2,3

2,1

14

27

After these communication steps, A[i, k] and B[k, j] are multiplied at Pi,j,k. Now each element C[i, j]
of the product matrix is obtained by an all-to-one reduction along the k axis. During this step,
process Pi,j,0 accumulates the results of the multiplication from processes Pi,j,1, ..., Pi,j,n-1.

The DNS algorithm has three main communication steps: (1) moving the columns of A and the rows
of B to their respective planes, (2) performing one-to-all broadcast along the j axis for A, and along
the i axis for B, and (3) all-to-one reduction along the k axis. All these operations are performed
within groups of n processes and take time O(log n). Thus, the parallel run time for
multiplying two n x n matrices using the DNS algorithm on n3 processes is O(log n).

Matrix-Matrix Multiplication: DNS Algorithm

28

Matrix-Matrix Multiplication:
DNS Algorithm (Using fewer than n3 processors.)

• Assume that the number of processes p is
equal to q3 for some q < n.

• The two matrices are partitioned into blocks
of size (n/q) x(n/q).

• Each matrix can thus be regarded as a q x q
two-dimensional square array of blocks.

• The algorithm follows from the previous one,
except, in this case, we operate on blocks
rather than on individual elements.

15

29

• The first one-to-one communication step is performed for
both A and B, and takes time for each matrix.

• The two one-to-all broadcasts take
time for each matrix.

• The reduction takes time .
• Multiplication of submatrices takes time.
• The parallel time is approximated by:

Matrix-Matrix Multiplication:
DNS Algorithm (Using fewer than n3 processors.)

