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CZ4102 CZ4102 –– High Performance ComputingHigh Performance Computing

Lecture 11: Lecture 11: 

Matrix AlgorithmsMatrix Algorithms

-- Dr Tay Seng ChuanDr Tay Seng Chuan

Reference: 
“Introduction to Parallel Computing” – Chapter 8.
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Topic Overview

• Parallel Algorithms for
- Matrix-Vector Multiplication 
- Matrix-Matrix Multiplication 

• Performance Analysis
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Matrix Algorithms: Introduction 
• Due to their regular structure, parallel computations 

involving matrices and vectors readily lend themselves to 
data-decomposition. 

• Typical algorithms rely on input, output, or intermediate 
data decomposition. 

• Most algorithms use one- and two-dimensional block, 
cyclic, and block-cyclic partitions for parallel processing.

• The run-time performance of such algorithms  depends on 
the amount of overheads incurred as compared to the 
computation workload.

• As a rule of thumb, good speedup can be achieved if the 
computation granularity is able to outweigh the overheads 
such as the communication cost, consolidation cost –
algorithm penalty, data packaging, etc.
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Matrix-Vector Multiplication

• We aim to multiply a dense n x n matrix A with an n x 1 vector x
to yield the n x 1 result vector y.

• The serial algorithm requires n2 multiplications and additions.

• The total workload is                 

x =n

n

A x y
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Matrix-Vector Multiplication: 
Rowwise 1-D Partitioning

• The n x n matrix A is partitioned among n processors, 
with each processor storing a complete row of the 
matrix. 

• The n x 1 vector x is distributed such that each process 
owns one of its elements. 

:

:

:

:

A x y
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Matrix-Vector Multiplication: 
Rowwise 1-D Partitioning (p = n)

• Since each process starts 
with only one element of 
Vector  x , an all-to-all 
broadcast is required to 
distribute all the elements 
x[ j ] to all the processes. 

• Process Pi now computes                                         

• The all-to-all broadcast 
and the computation of  
y[i] both take time  Θ(n) . 
Therefore, the parallel time 
is Θ(n) . 

p = n
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Matrix-Vector Multiplication:
Rowwise 1-D Partitioning (p < n)

n/p

• Consider now the case when 
p < n and we use blocks in 

partitions.

• Each process initially stores 
n/p complete rows of the 
matrix, and a portion of the 
vector of size n/p.

• The all-to-all broadcast takes 
place among p processes 
and involves messages of 
size n/p.

p

• This is followed by n/p rows of local dot products. 
(computation time = n/p x  n = n2/p)
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p
n

p
n

NowNow m =       , we have

T = ts log p + tw x x (p-1)

Recap: All-to-All Broadcast 
based on Doubling-up 

Approach:

~ ts log p + tw x n

• Thus, the parallel run time of  matrix-vector 
multiplication based on rowwise 1-D 
partitioning (p < n) is

• This is cost-optimal.

All-to-all broadcast of vector elements.
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Matrix-Vector Multiplication: 
2-D Partitioning (p = n2 )

• The n x n matrix is partitioned among n2 processors such 
that each processor owns a single element.

• The n x 1 vector x is distributed only in the last column of 
n processors.

x =n

n

(p = n2 processors)
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Matrix-Vector Multiplication: 
2-D Partitioning (p = n2 )

• We must first align the vector 
with the matrix appropriately. 

• The first communication step 
for the 2-D partitioning aligns 
the vector x along the 
principal diagonal of the 
matrix. 

• The second step copies the 
vector elements from each 
diagonal process to all the 
processes in the 
corresponding column using 
n simultaneous broadcasts 
among all processors in the 
column. 

• Finally, the result vector is 
computed by performing an 
all-to-one reduction along the 
columns. 
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Matrix-Vector Multiplication: 
2-D Partitioning (p = n2)

• Three basic communication operations are used in this algorithm: one-to-one 
communication to align the vector along the main diagonal, one-to-all broadcast 
of each vector element among the n processes of each column, and all-to-one 
reduction in each row. 

• These communications take  Θ(log n) time. Computation time is O(1). The 
parallel time of this algroithm is Θ(log n) + Θ(1) = Θ(log n) . 

• The cost (process-time product) is n2 x log n = Θ(n2 log n) > n2; hence, the 
algorithm is not cost-optimal. 
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Matrix-Vector Multiplication: 
2-D Partitioning (p < n2)

• When using fewer than  n2 processors, each process owns an 
block of the matrix. p (ie,       x      ) processors are used.

• The vector is distributed in portions of              elements in the last process-
column only. 

• In this case, the message sizes for the alignment, broadcast, and reduction 
are all              . 

• The computation is a product of an                              submatrix with a 
vector of length               . 

p

p

pp
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Matrix-Vector Multiplication: 
2-D Partitioning (p < n2)

• The first alignment step takes time    

• The broadcast and reductions each take time  

• Local matrix-vector products take time   

• Total time is 
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Matrix-Matrix Multiplication 

• Consider the problem of multiplying two n x n dense, 
square matrices A and B to yield the product matrix 

C = A x B.
• The serial complexity is O(n3).

x =n

n

A B C 

n2
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Matrix-Matrix Multiplication 

• A useful concept in this case is called block operations. 
In this view, an n x n matrix A can be regarded as a q x q
array of blocks Ai,j (0 ≤ i, j < q) such that each block is an 
(n/q) x (n/q) submatrix.

• We perform q2 matrix multiplications, each involving 
(n/q) x (n/q) matrices.

n/q

n/q

q

q

16

Matrix-Matrix Multiplication
• Consider two n x n matrices A and B partitioned into p

blocks of Ai,j and Bi,j (0 ≤ i, j < ) of size                      
each.

• Process Pi,j initially stores Ai,j and Bi,j and computes block 
Ci,j of the result matrix.

• Computing submatrix Ci,j requires all submatrices Ai,k
and Bk,j for 0 ≤ k <     .

• All-to-all broadcast blocks of AA along rowsalong rows, and BB along along 
columnscolumns are needed.

• Perform local submatrix multiplication.
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Matrix-Matrix Multiplication
• The two broadcasts take time

• The computation requires       multiplications of             
sized submatrices. 

• The parallel run time is approximately 

• Major drawback of the algorithm is that it is not memory 
optimal. 
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Matrix-Matrix 
Multiplication: 

Cannon's Algorithm

• In this algorithm, we 
schedule the computations 
of the     processes of the 
ith row such that, at any 
given time, each process is 
using a different block Ai,k.

• These blocks can be 
systematically rotated 
among the processes after 
every submatrix 
multiplication so that every 
process gets a fresh Ai,k
after each rotation.
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Matrix-Matrix 
Multiplication: 

Cannon's Algorithm

• Align the blocks of A and B in such a 
way that each process multiplies its 
local submatrices. This is done by 
shifting all submatrices Ai,j to the left 
(with wraparound) by i steps and all 
submatrices Bi,j up (with 
wraparound) by j steps.

• Perform local block multiplication.
• Each block of A moves one step left 

and each block of B moves one step 
up (again with wraparound).

• Perform next block multiplication, 
add to partial result, repeat until all 

blocks have been multiplied.
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Matrix-Matrix Multiplication: 
Cannon's Algorithm

• In the alignment step, since the 
maximum distance over which a 
block shifts is             , the two shift 
operations require a total of                        

time. 

• Each of the        single-step shifts in 
the compute-and-shift phase of the 
algorithm takes                      time. 

• The computation time for multiplying       
matrices of size       

is          .  (i.e.,       X 3 )

• The parallel time is approximately:



11

21

Matrix-Matrix Multiplication: 
DNS (Dekel, Nassimi, and Sahni) Algorithm

• Uses a 3-D partitioning.
• Visualize the matrix multiplication 

algorithm as a cube. Matrices A
and B come in two orthogonal 
faces and result C comes out the 
other orthogonal face.

• Each internal node in the cube 
represents a single add-multiply 
operation (and thus the 
complexity).

• DNS algorithm partitions this 
cube using a 3-D block scheme.

i

j

k
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Matrix-Matrix Multiplication: 
DNS Algorithm

• Assume an n x n x n mesh of 
processors.

• Move the columns of A and rows of B
and perform broadcast.

• Each processor Pi, j, k computes a single 
multiply: C[i,k] = A[i,k] x B[k,j].

• This is followed by an accumulation 
along the k dimension.

• Since each add-multiply takes constant 
time and accumulation and broadcast 
takes log n time, the total runtime 
is log n.

• This is not cost optimal. It can be made 
cost optimal by using n / log n
processors along the direction of 
accumulation.

k = 0

k = 1

k = 2

k = 3
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Matrix-Matrix Multiplication: 
DNS Algorithm

The vertical column of processes Pi,j,*
computes the dot product of row A[i, *] 
and column B[*, j]. Therefore, rows of A 
and columns of B need to be moved 
appropriately so that each vertical 
column of processes Pi,j,* has row A[i, *] 
and column B[*, j]. More precisely, 
process Pi,j,k should have A[i, k] and 
B[k, j].

First, each column of A moves to a 
different plane such that the j th column 
occupies the same position in the plane 
corresponding to k = j as it initially did in 
the plane corresponding to k = 0. 

0,1           1,1           2,1           3,1

0,2           1,2           2,2           3,2

0,3           1,3           2,3           3,3

24

Matrix-Matrix Multiplication: 
DNS Algorithm

Now all the columns of A are 
replicated n times in their 
respective planes by a parallel 
one-to-all broadcast along the 
j axis. 

Pi,0,j, Pi,1,j, ..., Pi,n-1,j receive a 
copy of A[i, j] from Pi,j,j. At this 
point, each vertical column of 
processes Pi,j,* has row A[i, *]. 
More precisely, process Pi,j,k
has A[i, k].
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Matrix-Matrix Multiplication: 
DNS Algorithm

For matrix B, the 
communication steps 
are similar, but the roles 
of i and j in process 
subscripts are switched. 
In the first one-to-one 
communication step, 
B[i, j] is moved from 
Pi,j,0 to Pi,j,i.

1,0

1,2
1,3

1,1

2,0

2,2
2,3

2,1

3,0

3,2

3,3

3,1
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Matrix-Matrix Multiplication: 
DNS Algorithm

Then it is broadcast 
from Pi,j,i among P0,j,i, 
P1,j,i, ..., Pn-1,j,i. 

At this point, each 
vertical column of 
processes Pi,j,* has 
column B[*, j]. Now 
process Pi,j,k has B[k, j], 
in addition to A[i, k].

1,0

1,2
1,3

1,1

3,0

3,2
3,3

3,1

2,0

2,2
2,3

2,1
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After these communication steps, A[i, k] and B[k, j] are multiplied at Pi,j,k. Now each element C[i, j] 
of the product matrix is obtained by an all-to-one reduction along the k axis. During this step, 
process Pi,j,0 accumulates the results of the multiplication from processes Pi,j,1, ..., Pi,j,n-1. 

The DNS algorithm has three main communication steps: (1) moving the columns of A and the rows 
of B to their respective planes, (2) performing one-to-all broadcast along the j axis for A, and along 
the i axis for B, and (3) all-to-one reduction along the k axis. All these operations are performed 
within groups of n processes and take time O(log n). Thus, the parallel run time for 
multiplying two n x n matrices using the DNS algorithm on n3 processes is O(log n).

Matrix-Matrix Multiplication: DNS Algorithm
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Matrix-Matrix Multiplication: 
DNS Algorithm (Using fewer than n3 processors.)

• Assume that the number of processes p is 
equal to q3 for some q < n.

• The two matrices are partitioned into blocks 
of size (n/q) x(n/q).

• Each matrix can thus be regarded as a q x q
two-dimensional square array of blocks.

• The algorithm follows from the previous one, 
except, in this case, we operate on blocks 
rather than on individual elements.
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• The first one-to-one communication step is performed for 
both A and B, and takes                     time for each matrix. 

• The two one-to-all broadcasts take                              
time for each matrix. 

• The reduction takes time                                  . 
• Multiplication of                     submatrices takes         time. 
• The parallel time is approximated by: 

Matrix-Matrix Multiplication: 
DNS Algorithm (Using fewer than n3 processors.)


