

Matrix Algorithms: Introduction Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decomposition. Typical algorithms rely on input, output, or intermediate data decomposition. Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitions for parallel processing. The run-time performance of such algorithms depends on

- The run-time performance of such algorithms depends on the amount of overheads incurred as compared to the computation workload.
- As a rule of thumb, good speedup can be achieved if the computation granularity is able to outweigh the overheads such as the communication cost, consolidation cost algorithm penalty, data packaging, etc.

Matrix-Matrix Multiplication: Cannon's Algorithm

- Align the blocks of *A* and *B* in such a way that each process multiplies its local submatrices. This is done by shifting all submatrices *A_{ij}* to the left (with wraparound) by *i* steps and all submatrices *B_{ij}* up (with wraparound) by *j* steps.
- Perform local block multiplication.
- Each block of *A* moves one step left and each block of *B* moves one step up (again with wraparound).
- Perform next block multiplication, add to partial result, repeat until all √p blocks have been multiplied.

B _{0,0}	B _{0,1}	B _{0,2}	B _{0,3}	
B _{1,0}	B _{1,1}	B _{1,3}	B _{1,3}	
B _{2,0}	B _{2,1}	B _{2,2}	B _{2,3}	
B _{3,0}	в _{3,1}	B _{3,2}	B _{3,3}	

(b) Initial alignment of B

·			2
	4		•
A.2	A _{0.3}	-Aaa	A _{0.1}
B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}
A1.3	A _{1.0}	-A _{1.1} -	A _{1.2}
B _{3,0}	B _{0,1}	B _{1,2}	B _{2,3}
A2.0	A _{2.1}	-A22	A2.3
B _{0,0}	B _{1,1}	B _{2,2}	B _{3,3}
A.,	A _{3.2}	+A ₁₃ -	A
B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}
	(-		(

(e) Submatrix locations after second shift (f) Submatrix locations after third shift

-1,0	-2,1	3,2	-0,5					
A _{1,2}	-A _{1,3}	A _{1,0}	A _{1,1}					
B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}					
A _{2,3}	-A _{2,0}	A _{2,1}	+A _{2,2}					
B _{3,0}	B _{0,1}	B _{1,2}	B _{2,3}					
A _{3,0}	-A _{3,1}	A _{3,2}	-A _{3,3}					
B _{0,0}	B _{1,1}	B _{2,2}	B _{3,3}					
Submatrix locations after first shift								
A _{0,3} B _{3,0}	A _{0,0} B _{0,1}	$\substack{A_{0,1} \\ B_{1,2}}$	A _{0,2} B _{2,3}					
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}					
B _{0,0}	B _{1,1}	B _{2,2}	B _{3,3}					
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,0}					
B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}					
A _{3,2}	A _{3,3}	A _{3,0}	A _{3,1}					

 $(n/\sqrt{p}) \times (n/\sqrt{p})$ **Matrix-Matrix Multiplication: Cannon's Algorithm** A., In the alignment step, since the maximum distance over which a block shifts is $\sqrt{p} - 1$, the two shift operations require a total of $2(t_s + t_w n^2/p)$ time. Each of the \sqrt{p} single-step shifts in the compute-and-shift phase of the algorithm takes $t_s + t_w n^2/p$ time. The computation time for multiplying \sqrt{p} matrices of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ is n^{3}/p . (i.e., $\sqrt{p} \times (n/\sqrt{p})^{3}$) A_{0,0} B_{0,1} A_{0,1} B_{1,2} A_{0,2} B_{2,3} A_{1,0} B_{0,0} A_{1,1} B_{1,1} A_{1,2} B_{2,2} A_{1,3} B_{3,3} • The parallel time is approximately: $T_P = \frac{n^3}{n} + 2\sqrt{p}t_s + 2t_w \frac{n^2}{\sqrt{p}}.$ A_{2,1} B_{1,0} A_{2,2} B_{2,1} A_{2,3} B_{3,2} A_{2,0} B_{0,3} A_{3,1} B_{1,3}

10

process P_{i,j,0} accumulates the results of the multiplication from processes P_{i,j,1}, ..., P_{i,j,n-1}.

The DNS algorithm has three main communication steps: (1) moving the columns of A and the rows of B to their respective planes, (2) performing one-to-all broadcast along the j axis for A, and along the i axis for B, and (3) all-to-one reduction along the k axis. All these operations are performed within groups of n processes and take time O(log n). Thus, the parallel run time for 27 multiplying two n x n matrices using the DNS algorithm on n³ processes is O(log n).

