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Topic Overview

» Algorithm for Solving a System of
Linear Equations

» Parallel Versions of the Algorithm
(1D Partition)

» Performance Analysis




Solving a System of Linear Equations

Consider the problem of solving linear equations of this
kind:

aporo +* apiri t -+ agn-1Tn—1 = bo,
1,00 + a1 + -+ ap_1no1 = by,
n—1,0L0 + n—1,1I1 + -+ Ay 1 1Tn_1 = E;'n.—l-

This is written as Ax = b, where A is an N X N matrix with
Ali,j1=4a;;, bisann X 1 vector [ by, by, ..., b, T, and x is
the solution.

Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form,
and back-substitution. The triangular form is as:

rg + wugiry+ ugre - + Upp—1Thn—1 = Yo.
ry + U1,2T2 27000 t U1 n-1Th-1 = Y1
i i

Tn-1 = Un-1.

We write this as: Ux=y .

A commonly used method for transforming a given
matrix into an upper-triangular matrix is Gaussian
Elimination.




llustration

Given
2x + 3y + z =
3Xx + 2y + 4z =
4x + y + 3z

We work on the 15t column first.

(1) /2 x|+ 1.5y
3x |+ 2y
4x |+ y
X + 1.5y
(2) - (1)x 3 0 - 2.5y
(3) - (L)x 4 0 - 5y

+ 0.

5z

(1)
(2)
(3)

(1)
(2)
(3)

(1)
(2)
(3)

We have these equations at the end of 15t iteration.

X + 1.5y +

0.5z

- 2.5y + 2.5z

- 5y +

z

3
0
-4

(1)
(2)
(3)

We proceed with the 2nd iteration to work on the 2" column.

X + 1.5y +

(2)/(-2.5) Y |-

- 5y |+

X + 1.5y +

(3) - (2)x(-5) 0 -

(1)
(2)
(3)

(1)
(2)
(3)




We have these equation at the end of 2nd iteration.
x + 1.5y + 0.5z = 3 (1)
y - z =0 (2)
- 4z = -4 (3)

We proceed with the 3 iteration to work on the 374 column.

x + 1.5y + 0.5z = 3 (1)
y - z =0 (2)
(3)/(-4) z 1 (3)

We can now do a back substitution to solve for the values of y and x.

7
Gaussian Elimination

1. procedure GAUSSIAN_ELIMINATION (A, b, y)
2. begin
3. ~fork:=0ton-1do /* Outer loop */
4./begin (1)-2 Xx + 1.5y + 0.5z = 3
5. {forj:='k+1tor!-1do 3x + 2y + 4z = 9
6. ALK, j1 := ALk, jI/ALK, K]; /* Division step */

4% + v + 3z = 8
7. y[K] := b[KI/ALK, K];
8. ALk, K] :=1;
9. fori:=k+1ton-1do
10. begin
11 {forj::k+1ton-1do
12. Afi, j1:=A[l, j] - A[i, K] x ALK, j]; /* Elimination step */
13. b[i] := b[i] - A[i, k] x y[K];
14. A[I,k] =0 =+ 1.5¢v + 0.5 = 3 {1}
15\ endfor; /* Line 9 %/ (2)-(A=3 p-259+282=0 (2)
16. ™ endfor; /* Line 3 */ (N-M=d g 59+ =z=-4 ()
17. end GAUSSIAN_ELIMINATION




Gaussian Elimination

1. procedure GAUSSIAN_ELIMINATION (A, b, y)
2. begin

3. [ fork:=0ton-1do /* Outer loop */
4. [ begin

5. {forj :=k+1lton-1do
6 ALK, J] := ALk, jI/ALK, k]; /* Division step */
7 y[K] := b[KI/ALK, K];

8

9

ALk, k] :=1; o
3 e
. fori:==k+1ton-1do Imactive part Ei EEI
10/ | begin N+
11, [forj::k+1ton-1do R
12. Al 1= AL 1] - ALL KI X ALK ;B i ) o A = AR
13. b[i] := b[i] - A[i, K] x y[KI; Active put
14, Ali, k] :=0; e
15\ endfor: /* Line 9 */ N ko -t ALid] = AL] - ARK] x Afkd)
16. ~ endfor; /* Line 3*/
17. end GAUSSIAN_ELIMINATION 9
Gaussian Elimination
agory t apari  t+ -+ agn-17n-1 = bo,
+ apir + -+ a1 = br
p—1n—1Tn-1 = bn—l-
* Gaussian elimination involves
L. procedure GATSSIAN_ELIMINATION (4, &, y) approximately n2/2 divisions (line 6).
2. begin .
3. fork=0ton-1do /% Outer loop */ + The .nu_mb.er Of.SUbtraCtlonS and
n fbegl.“ mzultlplgcatlons is (N-1)2+ (n-2)2 + .. +
5. [f;‘)rj::k+lmm-1(lo ‘ 22+ 1inline 12.
6. Alk, j] = ALk j1AL%. &]: /* Division step * 5,
. . iven that I =n(n+1)(2n+1)/6.
7| yE] = B[R)AL A G ; (n+1)( )6
8| ARH =1 The number of subtractions and
_ multiplications is approximately
9| (fori=k+lton-1ldo n3/3 - n2/2. (ignore n and below)
10| | begin -9
11, [fol‘,':=k+1mn-1do . .
12 [ Al /] = ALz, /] - 4[5, £ = ALk /1] 7 Elim /= \ Assume that each scalar arithmetic
13. B[] =[] - ALL. K] =314 peration takes unit time. With this
14, AL, 4] =0 assumption, the sequential run time
15 \ endfor /* Line 9 */ of the procedure is approximately
16.k endfor; /* Line 3%/ n2/2 +,2(n%/3 - n2/2)

multipl

17, end GAUSSIAN ELIMINATION
substract

= 2n%/3 (for large n).




Parallel Gaussian Elimination

We work on the 19 column first.

(1)r2 x|+ 1.5y + 0.5z

3x |+ 2y + 4z = 9

4x |+ Y + 3z = 8

1l
w

(1
(2
(3

]
]
]

Once the normalization
is done on a row, the
elimination done on
the subsequent rows
can proceed in parallel.

Parallel Gaussian Elimination

Assume p = n with each row
assigned to a processor.

The first step of the algorithm
normalizes the row. This is a serial
operation and takes time (n-k) in
the kth iteration.

In the second step, the normalized
row is broadcast to all the
processors. This takes time

(ts + tw(n —k— 1)) Iogn

Each processor can independently
eliminate this row from its own.
This requires (n-k-1) multiplications
and subtractions.

The total parallel time can be
computed by summing from
k=1..n-1, giving

Te= ;n(n—I] +i.nlqn+;i.n(u—l.]h¢n.
The formulation with process-time

product of O(n3 log n) is not cost
optimal because of the t,, term.
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Gaussian elimination steps
during the iteration
corresponding k=3 foran 8 x 8
matrix partitioned rowwise
among eight processes.

(a) Computation:
(i) Alkj) = AlkjVA[KK] for k<j<n

(i) Alk.k]:=1

(b) Communication:

Cne—to—all broadcast of row A[K,*]

{c) Computation:

() Alij] = Ali] = AlLKIX AlKg)
for k<i<n and k<j<n

(i) AliLk]:=0 for k<i<n
12




Parallel Gaussian

PI) 1Dy 02y (03) (04) (0.5) (0,68 (0,70
Elimination: B0 0 an s anaean
P, o o 1 (23) (24) (25) (260 (2T
Pipelined Execution k: [(n [ o ¢ woneseaen
) k+tl: B [0 ° ° endnan60an]|e—
In the previous formulation, the o O PR
(k+1)st iteration starts only after all e A s
the computation and communication J
for the kth iteration is complete. N
In the pipelined version, there are e
three steps - normalization of a row, b [0 0 o o EwEATG
communication, and elimination. B0 © ° eoaluslatan
These steps are performed in an i
asynchronous fashion. o R
A processor P, waits to receive and -
eliminate all rows prior to k. e s
Once it has done this, it forwards its E S R L e
own row to processor P,,,. No B |0 0 0w s aean
Wa'tlng. P,a 00 0 (83) (84) (35 (5.6 57
p° o n 0 (63) (64) (6,5) (6,60 (6,7)
P., 000 (T3 (T4 (73 (7.6 (1T 13
|

procedure GAUSSIAN_ELIMINATION (A, b, u)

H 1.
Parallel Gaussian 2 begin
. . . 3. fork :=0ton —1do /* Quter loop */
. 4 begin
El'mlnatlon‘ 5. forj:=k+1ton—1do
° ° ° . Alk, 4] = Alk, j]/A[k, &]; /" Division step */
Pipelined Execution S = blkl/ALk, B
) 8. Alk, k] = 1;
. 9. fori:=k+1ton — 1do
Assuming that the processes form a 0. begin
logical linear array, and P, is the first n O
process to receive the kth row from 13, Bli] = b[i] — Afi, k] X u[k]:
process P,. Then process P,,, must i onebi i =0 e 9/
forward this data to P,,.,. 16, endior; /* Line 3/

. 17. end GAUSSIAN_ELIMINATION
However, after forwarding the kth row to

P,.,, process P,,, needs not wait to P, |1 @002 03 04 05 06 ©1)
perform the elimination step (line 12)
until all the processes up to P, _, have
received the kth row. P«. 1] ] 1 {2.3) (24) (2.5) (26) (2T

|J| 0 L2y (L3 (b (13 (L&) (LT

Similarly, P,,, can start its computation k:|B [P 0 O [BHGAGES G BT

as soon as it has forwarded the kthrow | 1. p [0 0 0 @3 @s @5 we @
to P, and so on. Meanwhile, after
completing the computation for the kth ~ k+2:
iteration, P,,, can perform the division : B, |0 0 0 isdish 65 66 6D
step (line 6), and start the broadcast of -
the (k + 1)th row by sending it to P,,,.

P n 0 0 (53 (54 (55 (56 (5T
(]

P i [t} 0 (T3 (T4 (7.5 (76 (T
)




03, 41,03 1020 (1.3} (1.4 L (L0 (L2 (1,3 (14) L (L) (028 1,30 (14 Elimination.
l'em @ e en @ o @n 22 23 @ [aman anenh anl | amn o e ah bl 3 : :
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P | 00 (.11 02) @3 (04 b i02) (0.3) (04 1 a0 (02) 3) () 1L (02) (0.3 Ay Parallel Gaussian

P, (L Eh1 (02E 61,30 {14

P, B30 (30 (328 3.3 (34 (3.0 4300 320 (33) (34 (300 450 (3.2 (33 (34) (ELURTEN WA TR R TRCE RS
1 LR P L | Communication fork =10, 3
D) G2 3 A (A0 D 20 (3 G| [ D 420 A3 (441 | D) h2) (43) (A
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| L
: —=  Communication fork =1
(a) lteration k = 0 starts (h) {c) ()
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Po| ! (1) @2} (03 (04 1) 2 (03) 04 1oy 02y 03 () 1) (0.2 00,3 {04y Communication for k =2
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1
‘ Computation for k =0, 3

| |
P2 (200 (.13 (220 23p 2.4 o4z |_:|:.:|!|:..1|!\2.-n 0 (20 23 23 124) 0 fi1) (2,2) (230 (2.4) -
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I - [ 1 l:l Computation fork =1, 4

Pad| o | e \1_|. 34 0

Py | 200 (3,00 (32 (330 34 |30 (10 (32) (3. [EETRET
P, 4w (41 2 43 g4 im.m G042 @3 @A | D @ @3 (a4 0 ([, 20 6430 g4y ‘ | Computation for k=2
VOO W i
(e} Iteration k = | starts (f) (g) lteration k = 0 ends (h)

» The first step (Figure a) is to perform the division on row 0 at process P,. The
modified row 0 is then sent to P, (Figure b), which forwards it to P, (Figure c).

* Now P, is free to perform the elimination step using row 0 (Figure d).

* Inthe next step (Figure e), P, performs the elimination step using row 0. In the
same step, P, having finished its computation for iteration 0, starts the division
step of iteration 1.

» At any given time, different stages of the same iteration can be active on different
processes. For instance, in Figure h, process P, performs the elimination step of
iteration 1 while processes P;and P, are engaged in communication for the safne
iteration. (P.T.O)

[T VR - R | 1 Ay {02) (3) (0.4) LI 1 O Pl R DS

Po| 1 1y 02) @3 () |
P1 o 1 (L) (L3 (14 | o 10121 (.3 (1) L] LAl (13 (LA o T (L2k (130 {143
P2 o 0 {22) (23) (24)) | n 1] 1 (23 (24 L] ] 23 24 n ] I 4230 24)
| | | : | 1| ' | L jcation for k=0, 3
|:>3 0|0 (32 033 (34 | o0 SR o0 (3D (34 o0 E2e 33 (34
| | ' g | | . T =
P, 0 I G2 43 E) | 0 |t~1~ll D e R N Communication for k= 1
7 . 3 E ====  Communication for k=2
(i) Neration k = 2 starts  (j) Teration k=1 ends (k) (1)
Pyl 1 @ @ @n b | Il 02) 13) (04 I @2 03 0.4) DL} 0,28 (038 (04 | Computation for k=10, 3
Pyl 0 1 Bl | 2 3 () O O L3 (A LU BN ¢ PR PO R l:‘ Computation fork = 1,4
00 I (23 (24 noon 1 QL3 (24 13 " 23 124 [(R] I d23h (24 e
| omputation for k = 2
P2 | Computation for k = 2
Pyl 0 0 0|33 (34 | o001 (34 ¢ 00 1 (34 o0 0 1 {34
el J | | . |
p4 0 0 | {43 (43) (4.4 | D00 a3 (44 o 0 0 ig_.\; 4.4) om0 0 0
¥
m) Ireration k = 3 starts n o) lteration k = 3 ends cration k =
(m) Tteration k=3 start (n) (o} Iteration k = 3 ¢nd: (p) teration k = 4

* Furthermore, more than one iteration may be active
simultaneously on different processes. For instance, in
Figure (i), process P, is performing the division step of
iteration 2 while process P, is performing the elimination step
of iteration 1.
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Parallel Gaussian
Elimination:
Pipelined Execution

The total number of steps in
the entire pipelined
procedure is O(n).

In any step, either O(n)
elements are communicated
between directly-connected
processes, or a division step
is performed on O(n)
elements of a row, or an
elimination step is
performed on O(n) elements
of a row.

VD (k) WD 0H s e There are n equations (n
00 123 24 0o 1 23) 24) o 0 (A |1,4|. [T} 123 :!-h. rOWS). The para”el tlme iS
0 0 o .(3..1: 134 o o a 1 (34| | (1] 1) o 1 (34 o ] o I 34 therefore Of o(n2)
00 [MBEd s [0 o o0 @nes (o o 0 umdas (o 0 o o lﬁl L. i ’
: : + This is cost optimal. 17
(m) lteration k=3 starts (n} (0} Iteration k = 3 ends (p) Iteration k=4
Parallel Gaussian Elimination using
1D Horizontal Block withp <n
T () 2y (L3 (04 (0.5 (6 (0.7)
Ry 01 (L2 (L3) (14 (L5) (L&) (1.7
1] [ I (231 (24 (2.5) (2.6 (2T)
P [m=== ===
00 01 i34 (35) (36 tl.?al'
] 1 O (431 (441 4.5) 400 4.7)
P, !
= 1] [ 0 (5,3) (54) (5,5) (500 (5.7)
0 1] 0 (6.3) (6.4) (6.5) (6.6) (6.7)
P; ¥ ¥
" 1] [ o (7,3 (7.4 (7.5) (760 (7.7)
The communication in the Gaussian elimination iteration
corresponding to k = 3 for an 8 x 8 matrix distributed among
four processes using1-D block partitioning. 18




Parallel Gaussian Elimination (Pipelined
Execution ): 1D Block with p <n

* The above algorithms can be easily
adapted to the case when p <n.

* In the kth iteration, a processor with all

rows belonging to the active part of
the matrix performs (n -k -1) n/p
multiplications and subtractions.

* In the pipelined version, for n > p,
computation dominates
communication.

t]
Il!

1) (0.2) (0.3) (04) (0.5) (06) (0.7

1] L) (0.3) (L4 (L5 (1L6) (LT
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.......... ]
0 0 0 {4.3) (4.4) (4.5) (4.6) (4.7)
P, ' !
= 00 0 (53) (54) (55 (5.6) (5.7)
o ] 0 (6.3) (64): (6.5) (6.6) (6.7)
P,
3

¥ V
00 0 (7374 (0.5 (7.6 (L7

« The parallel time is given by: 2(n/p)Ep_3(n —k — 1)

or approximately, n®/p.

»  While the algorithm is cost optimal in term of order, the cost of
the parallel algorithm is higher than the sequential run time of
Gaussian Elimination (2n3/3 ) by a factor of 3/2 due to uneven

workload distribution (P.T.O.).

Parallel Gaussian Elimination:
1D Block with p < n (Uneven Workload Distribution)

1 i0d) 0.2 0.3 @04y (0.5 10.6) 40.7)

R
o a2y d13) (14 (1.5 (1,6) 41,7
oo 1230 (24) (2.5 (2,6} 42.7))
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k=3: B> (3.3) (34) (3.5) (B.6) (3.7)
00 0 (43 (44 (45 @46 47

P
- 0 1] 0 (5.3) (54) (550 (5,6) (5.7)
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i

1)

(430 (4.4) (4.5) (4.6) (4.7

I L2y (L3N 0048 (1,50 (LAY (1.7

(5,30 (5.4} (55) (56) (5.7)

(2.3) (2.4p (2,5) (26) (LT

(6.3) (6,4} (6,5) (6,6) (6.7

(330 (34) (3.5) (36) (3.7)

(7.3) (7.4} (1.5) (T6) (7.7

(a) Block 1-D mapping

Computation load on different processes in block and cyclic
1-D partitioning of an 8 x 8 matrix on four processes during the

(b) Cyelic 1-D mapping

R

Py

B

Gaussian elimination iteration corresponding to k = 3.

For example, during the iteration corresponding to k = 3 (see figure (a)), one

process is completely idle (P,), one is partially loaded (P,), and only two
processes (P, and P,) are fully active. By the time half of the iterations of the
outer loop are over, only half the processes are active. The remaining idle

processes make the parallel algorithm costlier than the sequential algorithm.20
The solution is cyclic mapping (see figure (b)).

(P.T.O))

10



Parallel Gaussian Elimination:
1D Block with p < n (Uneven Workload Distribution)

* The Ioad imbalance prOblem can be | P00 02 (03 (A (05 (06) 0,7
handled (but not completely solved) by ( T

using a cyclic mapping where the row : 0 (G430 Ehd) (3) (46) (hT)
assignment to process is on a round robin ( o Bm (3 (14 (15) (16 (L7

basis.

* In this case, other than processing of the
last p rows, there is no idle process. The
largest work imbalance is not more than 1
row in all processes for k = 0 to n-1-p.

* This corresponds to a reduced cumulative
idle time of O(n?) x p = O(n?p) (instead of
O(n®) in the previous case).

L4 0 {33) (54) (53] (36] (5T)
0 i 1 {23 (2.4) (2.5) (26) (2.7

[ 0 {63 (64) (65) (66) (6.7)

0 L] 0 {33) (3.4) (35) (36) (3.7

0 @ (I3 (74 (7.3) (7.6) (T.T))

(h) Cyclic 1-D mapping

21

Solving a Triangular System:
Back-Substitution

* In the second phase to solve the equations, the upper triangular matrix U
undergoes back-substitution to determine the vector x.

g + upaxr1t+ upar2t - t UWn-1Th-1 = Yo
ryp + uypxet - t Unp-1Tn-1 = YL
Tn-1 = Yn-1.
1. procedure BACK_SUBSTITUTION (U, =, u)
2. begin
3. for k := n — 1 downto 0 do /* Main loop */
4, begin
5! z[k] = ylk
6. fori := k — 1 downto 0 do
7. yli] := y[i] — «[k] x Uli, k];
8. endfor;
Q. end BACK_SUBSTITUTION

The serial algorithm performs approximately

n2/2 multiplications and subtractions. 2

11



Solving a Triangular System:
Back-Substitution (Parallel Version)

rg + woar o ougpret oo + o U0n—1Tn-1 Yo«

n/p

t Ul 1TaA

Consider a rowwise block 1-D
mapping of the n x n matrix U
with vector y distributed

uniformly. :

The value of the variable solved at a
step can be pipelined back.

Each step of a pipelined implementation
requires a constant amount of time for
communication, and @(n/p) time for
computation.

The parallel run time of the entire algorithm
is O(n?/p), or O(n) if p = n.

23

2-D Partition for Parallel
Gaussian Elimination Method
produces fine granularity so it

is not promising for
implementation.

We have completed the course.
All the best.

24

12



