
1

1

CZ4102 CZ4102 –– High Performance ComputingHigh Performance Computing

Lecture 12 (Last): Lecture 12 (Last):

ParallelParallel Algorithms for Algorithms for
Solving a System of Linear EquationsSolving a System of Linear Equations

-- Dr Tay Seng ChuanDr Tay Seng Chuan

Reference:
“Introduction to Parallel Computing” – Chapter 8.

2

Topic Overview

• Algorithm for Solving a System of
Linear Equations

• Parallel Versions of the Algorithm
(1D Partition)

• Performance Analysis

2

3

Solving a System of Linear Equations

• Consider the problem of solving linear equations of this
kind:

• This is written as Ax = b, where A is an n x n matrix with
A[i, j] = ai,j, b is an n x 1 vector [b0, b1, … , bn]T, and x is
the solution.

4

Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form,
and back-substitution. The triangular form is as:

We write this as: Ux = y .
A commonly used method for transforming a given
matrix into an upper-triangular matrix is Gaussian Gaussian
EliminationElimination.

3

5

Given

2x + 3y + z = 6 (1)

3x + 2y + 4z = 9 (2)

4x + y + 3z = 8 (3)

x + 1.5y + 0.5z = 3 (1)

3x + 2y + 4z = 9 (2)

4x + y + 3z = 8 (3)

(1)/2(1)/2

x + 1.5y + 0.5z = 3 (1)

0 - 2.5y + 2.5z = 0 (2)

0 - 5y + z = -4 (3)

(2) (2) -- (1)x 3(1)x 3

(3) (3) -- (1)x 4(1)x 4

We work on the 1We work on the 1stst column first.column first.

IllustrationIllustration

6

x + 1.5y + 0.5z = 3 (1)

- 2.5y + 2.5z = 0 (2)

- 5y + z = -4 (3)

(3) (3) -- (2)x((2)x(--5)5)

We have these equations at the end of 1We have these equations at the end of 1stst iteration.iteration.

We proceed with the 2nd iteration to work on the 2We proceed with the 2nd iteration to work on the 2ndnd column.column.

(2)/((2)/(--2.5)2.5)

x + 1.5y + 0.5z = 3 (1)

y - z = 0 (2)

- 5y + z = -4 (3)

x + 1.5y + 0.5z = 3 (1)

y - z = 0 (2)

0 - 4z = -4 (3)

4

7

We have these equation at the end of 2nd iteration.We have these equation at the end of 2nd iteration.

We proceed with the 3We proceed with the 3rdrd iteration to work on the 3iteration to work on the 3rdrd column.column.

(3)/((3)/(--4)4)

x + 1.5y + 0.5z = 3 (1)

y - z = 0 (2)

- 4z = -4 (3)

x + 1.5y + 0.5z = 3 (1)

y - z = 0 (2)

z = 1 (3)

We can now do a back substitution to solve for the values of y aWe can now do a back substitution to solve for the values of y and x.nd x.

8

Gaussian Elimination

1. procedure GAUSSIAN_ELIMINATION (A, b, y)
2. begin
3. for k := 0 to n - 1 do /* Outer loop */
4. begin
5. for j := k + 1 to n - 1 do
6. A[k, j] := A[k, j]/A[k, k]; /* Division step */
7. y[k] := b[k]/A[k, k];
8. A[k, k] := 1;

9. for i := k + 1 to n - 1 do
10. begin
11. for j := k + 1 to n - 1 do
12. A[i, j] := A[i, j] - A[i, k] x A[k, j]; /* Elimination step */
13. b[i] := b[i] - A[i, k] x y[k];
14. A[i, k] := 0;
15. endfor; /* Line 9 */
16. endfor; /* Line 3 */
17. end GAUSSIAN_ELIMINATION

5

9

Gaussian Elimination

1. procedure GAUSSIAN_ELIMINATION (A, b, y)
2. begin
3. for k := 0 to n - 1 do /* Outer loop */
4. begin
5. for j := k + 1 to n - 1 do
6. A[k, j] := A[k, j]/A[k, k]; /* Division step */
7. y[k] := b[k]/A[k, k];
8. A[k, k] := 1;

9. for i := k + 1 to n - 1 do
10. begin
11. for j := k + 1 to n - 1 do
12. A[i, j] := A[i, j] - A[i, k] x A[k, j]; /* Elimination step */
13. b[i] := b[i] - A[i, k] x y[k];
14. A[i, k] := 0;
15. endfor; /* Line 9 */
16. endfor; /* Line 3 */
17. end GAUSSIAN_ELIMINATION

10

Gaussian Elimination

• Gaussian elimination involves
approximately n2/2 divisions (line 6).

• The number of subtractions and
multiplications is (n-1)2 + (n-2)2 + .. +
22 + 1 in line 12.

• Given that = n(n+1)(2n+1)/6.
The number of subtractions and
multiplications is approximately
n3/3 - n2/2. (ignore n and below)

• Assume that each scalar arithmetic
operation takes unit time. With this
assumption, the sequential run time
of the procedure is approximately

n2/2 + 2(n3/3 - n2/2)
= 2n3/3 (for large n).

∑
=

n

r
r

1

2

multiply and
substract

6

11

Parallel Gaussian Elimination

Once the normalization
is done on a row, the
elimination done on
the subsequent rows
can proceed in parallel.

12

Parallel Gaussian Elimination
• Assume p = n with each row

assigned to a processor.

• The first step of the algorithm
normalizes the row. This is a serial
operation and takes time (n-k) in
the kth iteration.

• In the second step, the normalized
row is broadcast to all the
processors. This takes time

• Each processor can independently
eliminate this row from its own.
This requires (n-k-1) multiplications
and subtractions.

• The total parallel time can be
computed by summing from
k = 1 … n-1, giving

• The formulation with process-time
product of O(n3 log n) is not cost
optimal because of the tw term.

n

Gaussian elimination steps
during the iteration

corresponding k = 3 for an 8 x 8
matrix partitioned rowwise

among eight processes.

7

13

Parallel Gaussian
Elimination:

Pipelined ExecutionPipelined Execution
• In the previous formulation, the

(k+1)st iteration starts only after all
the computation and communication
for the kth iteration is complete.

• In the pipelined version, there are
three steps - normalization of a row,
communication, and elimination.
These steps are performed in an
asynchronous fashionasynchronous fashion.

• A processor Pk waits to receive and
eliminate all rows prior to k.

• Once it has done this, it forwards its
own row to processor Pk+1. No
waiting.

k :
k+1 :

14

Parallel Gaussian
Elimination:

Pipelined ExecutionPipelined Execution

• Assuming that the processes form a
logical linear array, and Pk+1 is the first
process to receive the kth row from
process Pk. Then process Pk+1 must
forward this data to Pk+2.

• However, after forwarding the kth row to
Pk+2, process Pk+1 needs not wait to
perform the elimination step (line 12)
until all the processes up to Pn-1 have
received the kth row.

• Similarly, Pk+2 can start its computation
as soon as it has forwarded the kth row
to Pk+3, and so on. Meanwhile, after
completing the computation for the kth
iteration, Pk+1 can perform the division
step (line 6), and start the broadcast of
the (k + 1)th row by sending it to Pk+2.

k :
k+1 :

k+2 :
:
:

n-1 :

8

15

Parallel Gaussian
Elimination:

Pipelined ExecutionPipelined Execution

• The first step (Figure a) is to perform the division on row 0 at process P0. The
modified row 0 is then sent to P1 (Figure b), which forwards it to P2 (Figure c).

• Now P1 is free to perform the elimination step using row 0 (Figure d).

• In the next step (Figure e), P2 performs the elimination step using row 0. In the
same step, P1, having finished its computation for iteration 0, starts the division
step of iteration 1.

• At any given time, different stages of the same iteration can be active on different
processes. For instance, in Figure h, process P2 performs the elimination step of
iteration 1 while processes P3 and P4 are engaged in communication for the same
iteration. (P.T.O)

P0

P1

P2

P3

P4

P0

P1

P2

P3

P4

16

• Furthermore, more than one iteration may be active
simultaneously on different processes. For instance, in
Figure (i), process P2 is performing the division step of
iteration 2 while process P3 is performing the elimination step
of iteration 1.

P0

P1

P2

P3

P4

P0

P1

P2

P3

P4

9

17

Parallel Gaussian
Elimination:

Pipelined Execution

• The total number of steps in
the entire pipelined
procedure is O(n).

• In any step, either O(n)
elements are communicated
between directly-connected
processes, or a division step
is performed on O(n)
elements of a row, or an
elimination step is
performed on O(n) elements
of a row.

• There are n equations (n
rows). The parallel time is
therefore of O(n2).

• This is cost optimal.

18

The communication in the Gaussian elimination iteration
corresponding to k = 3 for an 8 x 8 matrix distributed among

four processes using1-D block partitioning.

Parallel Gaussian Elimination using
1D Horizontal Block with p < n

10

19

Parallel Gaussian Elimination (Pipelined
Execution): 1D Block with p < n

• The above algorithms can be easily
adapted to the case when p < n.

• In the kth iteration, a processor with all
rows belonging to the active part of
the matrix performs (n – k -1) n/p
multiplications and subtractions.

• In the pipelined version, for n > p,
computation dominates
communication.

• The parallel time is given by:
or approximately, n3/p.

• While the algorithm is cost optimal in term of order, the cost of
the parallel algorithm is higher than the sequential run time of
Gaussian Elimination (2n3/3) by a factor of 3/2 due to uneven
workload distribution (P.T.O.).

n/p

20

Parallel Gaussian Elimination:
1D Block with p < n (Uneven Workload Distribution)

Computation load on different processes in block and cyclic
1-D partitioning of an 8 x 8 matrix on four processes during the

Gaussian elimination iteration corresponding to k = 3.

For example, during the iteration corresponding to k = 3 (see figure (a)), one
process is completely idle (P0), one is partially loaded (P1), and only two
processes (P2 and P3) are fully active. By the time half of the iterations of the
outer loop are over, only half the processes are active. The remaining idle
processes make the parallel algorithm costlier than the sequential algorithm.
The solution is cyclic mapping (see figure (b)). (P.T.O.)

k = 3:

11

21

• The load imbalance problem can be
handled (but not completely solved) by
using a cyclic mapping where the row
assignment to process is on a round robin
basis.

• In this case, other than processing of the
last p rows, there is no idle process. The
largest work imbalance is not more than 1
row in all processes for k = 0 to n-1-p.

• This corresponds to a reduced cumulative
idle time of O(n2) x p = O(n2 p) (instead of
O(n3) in the previous case).

Parallel Gaussian Elimination:
1D Block with p < n (Uneven Workload Distribution)

22

Solving a Triangular System:
Back-Substitution

• In the second phase to solve the equations, the upper triangular matrix U
undergoes back-substitution to determine the vector x.

The serial algorithm performs approximately
n2/2 multiplications and subtractions.

12

23

Solving a Triangular System:
Back-Substitution (Parallel Version)

• Consider a rowwise block 1-D
mapping of the n x n matrix U
with vector y distributed
uniformly.

• The value of the variable solved at a
step can be pipelined back.

• Each step of a pipelined implementation
requires a constant amount of time for
communication, and Θ(n/p) time for
computation.

• The parallel run time of the entire algorithm
is O(n2/p), or O(n) if p = n.

:

n/p

n/p

24

2-D Partition for Parallel
Gaussian Elimination Method
produces fine granularity so it

is not promising for
implementation.

We have completed the course.We have completed the course.
All the best.All the best.

