

Illustration

Given

2x + 3y + z = 6 (1) 3x + 2y + 4z = 9 (2) 4x + y + 3z = 8 (3)

We work on the 1^{st} column first.

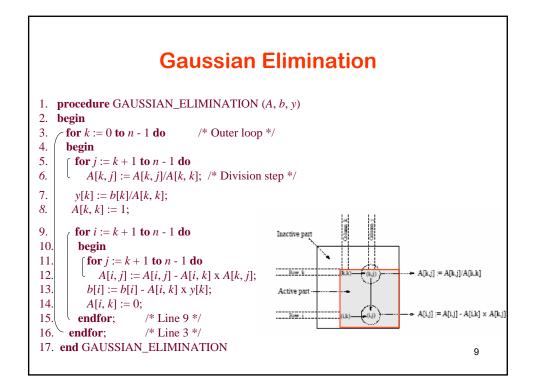
					1								
(1)/	2			x	+	1.5y	+	0.5z	=	3	(1) (2) (3)		
				3 x	+	2y	+	4 z	=	9	(2)		
				4x	+	У	+	3 z	=	8	(3)		
					1								
				x	+	1.5y	+	0.5z	=	3	(1)		
(2)	-	(1) x	3	0	-	2.5y	+	2.5z	=	0	(2)		
(3)	-	(1) x	4	0	-	5y	+	z	=	-4	(3)	Ę	5

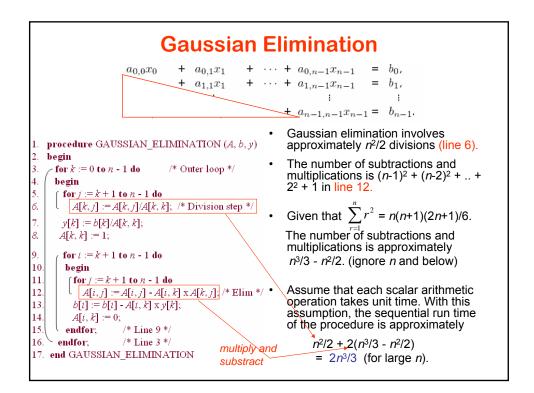
We have these equations at the end of 1st iteration. x + 1.5y + 0.5z = 3(1) -2.5y + 2.5z = 0(2) -5y + z = -4(3) We proceed with the 2nd iteration to work on the 2nd column. x + 1.5y + 0.5z = 3(1) y - z = 0 (2) (2)/(-2.5) -5y + z = -4(3) x + 1.5y + 0.5z = 3(1) y - z = 0(2) 0 - 4z = -4 $(3) - (2) \mathbf{x}(-5)$ (3)

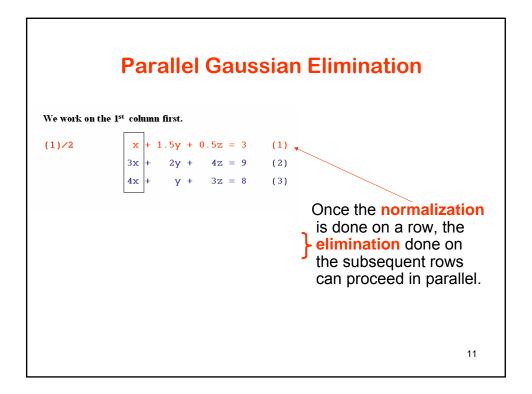
6

We have these equation at the end of 2nd iteration.

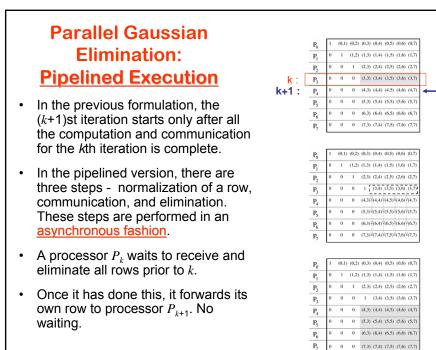
x + 1.5y + 0.5z = 3 (1) y - z = 0 (2) - 4z = -4 (3)

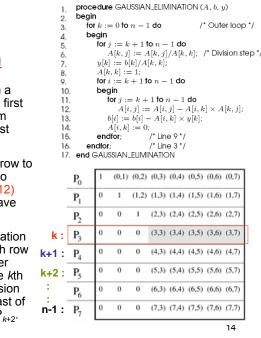

We proceed with the 3rd iteration to work on the 3rd column.


 $x + 1.5y + 0.5z = 3 \qquad (1)$ $y - z = 0 \qquad (2)$ $(3)/(-4) \qquad z = 1 \qquad (3)$

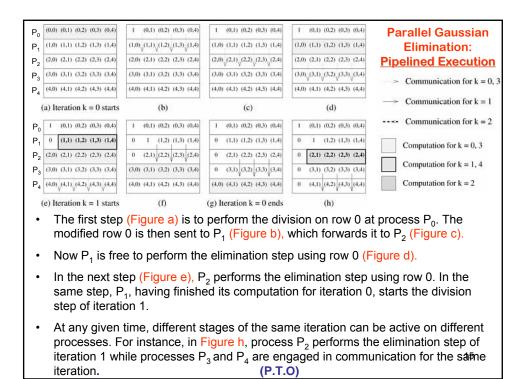

We can now do a back substitution to solve for the values of y and x.

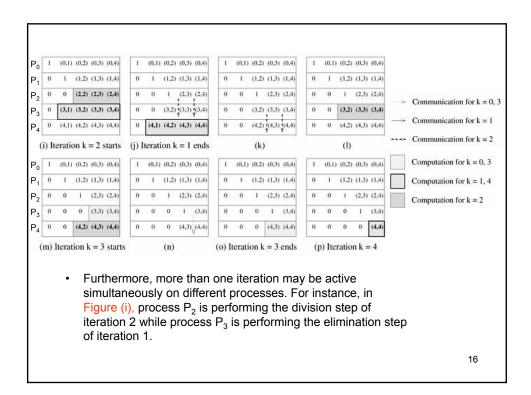
7


Gaussian Elimina	tion
1. procedure GAUSSIAN_ELIMINATION (A, b, y) 2. begin 3. for $k := 0$ to $n - 1$ do /* Outer loop */ 4. begin 5. [for $j := k + 1$ to $n - 1$ do 6. $[for j := k + 1$ to $n - 1$ do 7. $y[k] := b[k]/A[k, k];$ /* Division step */ 7. $y[k] := b[k]/A[k, k];$ 8. $A[k, k] := 1;$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	ep */ x + 1.5y + 0.5z = 3 (1 0 - 2.5y + 2.5z = 0 (2 0 - 5y + z = -4 (3 8

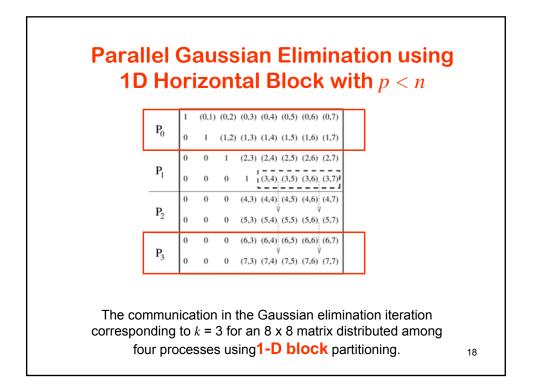


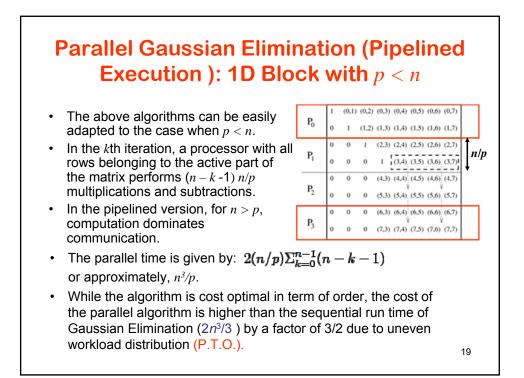
	Parallel Gaus	SS	ian Elimination
 •	Assume $p = n$ with each row assigned to a processor.	P ₀ P ₁	1 (0.1) (0.2) (0.4) (0.5) (0.6) (0.7) 0 1 (1.2) (1.3) (1.4) (1.5) (1.6) (1.7) 0 1 (1.2) (1.3) (1.4) (1.5) (1.6) (1.7) 0 1 (1.2) (1.3) (1.4) (1.5) (1.6) (1.7) 0 1 (1.2) (1.3) (1.4) (1.5) (1.6) (1.7) 0 </th
•	The first step of the algorithm normalizes the row. This is a serial operation and takes time $(n-k)$ in the <i>k</i> th iteration.	P ₂ P ₃ P ₄ P ₅ P ₆	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
.	In the second step, the normalized row is broadcast to all the processors. This takes time $(t_s + t_w(n - k - 1)) \log n$	P ₇ P ₀ P ₁ P ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
•	Each processor can independently eliminate this row from its own. This requires (<i>n</i> - <i>k</i> -1) multiplications and subtractions.	P ₃ P ₄ P ₅ P ₆ P ₇	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	The total parallel time can be computed by summing from $k = 1 \dots n-1$, giving $T_{F} = \frac{3}{2}n(n-1) + t_{s}n \log n + \frac{1}{2}t_{s}n(n-1) \log n$.	P ₀ P ₁ P ₂ P ₃ P ₄	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
•	The formulation with process-time product of $O(n^3 \log n)$ is not cost optimal because of the t_w term.	P ₅ P ₆ P ₇	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

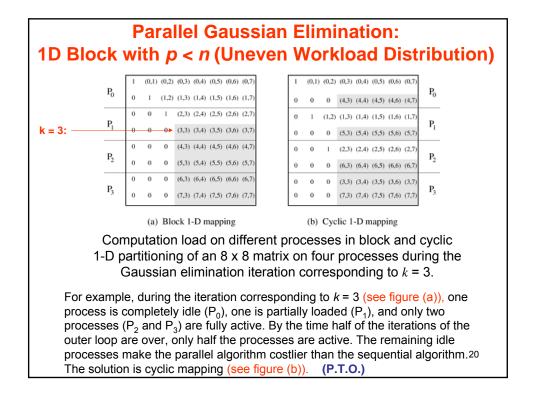


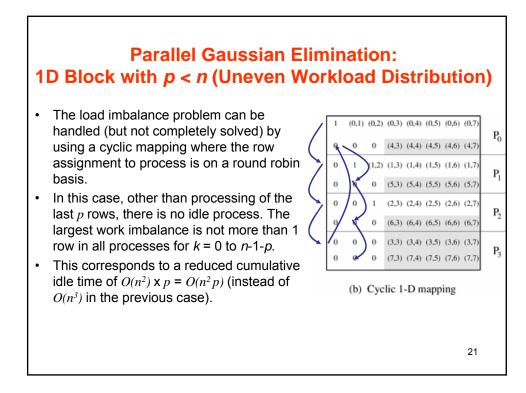


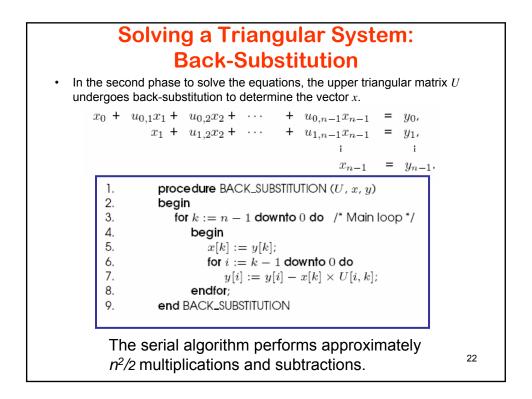
13


Parallel Gaussian <u>Elimination:</u> Pipelined Execution


- Assuming that the processes form a logical linear array, and P_{k+1} is the first process to receive the *k*th row from process P_k. Then process P_{k+1} must forward this data to P_{k+2}.
- However, after forwarding the *k*th row to P_{k+2}, process P_{k+1} needs not wait to perform the elimination step (line 12) until all the processes up to P_{n-1} have received the *k*th row.
- Similarly, P_{k+2} can start its computation as soon as it has forwarded the *k*th row to P_{k+3}, and so on. Meanwhile, after completing the computation for the *k*th iteration, P_{k+1} can perform the division step (line 6), and start the broadcast of the (*k* + 1)th row by sending it to P_{k+2}.






(0,0) $(0,1)$ $(0,2)$ $(0,3)$ $(0,4)$	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	
(1,0) (1,1) (1,2) (1,3) (1,4)	$(1,0)_{\sqrt{(1,1)}_{\sqrt{(1,2)}_{\sqrt{(1,3)}_{\sqrt{(1,4)}}}}$	(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) $(1,1)$ $(1,2)$ $(1,3)$ $(1,4)$	Parallel Gaussian
(2,0) (2,1) (2,2) (2,3) (2,4)	(2.0) (2.1) (2.2) (2.3) (2.4)	$(2,0)_{\sqrt{(2,1)}}(2,2)_{\sqrt{(2,2)}}(2,3)_{\sqrt{(2,4)}}$	(2,0) (2,1) (2,2) (2,3) (2,4)	Elimination:
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	$(3,0)_{ij}(3,1)_{ij}(3,2)_{ij}(3,3)_{ij}(3,4)$	Pipelined Execution
(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	Fipelined Execution
a) Iteration k = 0 starts	(b)	(c)	(d)	
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	The total number of steps ir
0 (1,1) (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 (1,1) (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	the entire pipelined
(2,0) (2,1) (2,2) (2,3) (2,4)	0 (2.1) (2.2) (2.3) (2.4)	0 (2.1) (2.2) (2.3) (2.4)	0 (2,1) (2,2) (2,3) (2,4)	procedure is $O(n)$.
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)	0 (3,1) (3,2) (3,3) (3,4)	
(4,0) $(4,1)$ $(4,2)$ $(4,3)$ $(4,4)$	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)	In any step, either $O(n)$
e) Iteration k = 1 starts	(f)	(g) Iteration k = 0 ends	(h)	elements are communicate
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	between directly-connected
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	processes, or a division ste
0 0 (2,2) (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	is performed on O(n)
0 (3,1) (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	elements of a row, or an
0 (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)	elimination step is
i) Iteration $k = 2$ starts	(j) Iteration k = 1 ends	(k)	(1)	performed on $O(n)$ elements
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	of a row.
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	There are <i>n</i> equations (<i>n</i>
0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	rows). The parallel time is
0 0 0 (3,3) (3,4)	0 0 0 1 (3,4)	0 0 0 1 (3,4)	0 0 0 1 (3,4)	therefore of $O(n^2)$.
0 0 (4,2) (4,3) (4,4)	0 0 0 (4,3) (4,4)	0 0 0 (4,3) (4,4)	0 0 0 0 (4,4)	This is cost optimal. ¹⁷

