
1

1

CZ4102 CZ4102 –– High Performance ComputingHigh Performance Computing

Lecture 7: Lecture 7:

Analytical Modeling of Parallel Systems Analytical Modeling of Parallel Systems

-- Dr Tay Seng ChuanDr Tay Seng Chuan

Reference: “Introduction to Parallel Computing” – Chapter 5.

2

Topic OverviewTopic Overview

• Sources of Overhead in Parallel Programs

• Performance Metrics for Parallel Systems

• Effect of Granularity on Performance

• Scalability of Parallel Systems

2

3

Basics Basics
• A sequential algorithm is evaluated by its runtime as a

function of input size.

• In general, the asymptotic runtime (i.e., the trend of runtime
when the input size is being increased) of a sequential
program is identical on any serial platform.

• The parallel runtime of a program depends on the input size,
the number of processors, and the communication
parameters of the machine. An parallel algorithm must
therefore be analyzed in the context of the underlying
platform.

4

Performance MeasurePerformance Measure
• A number of performance measures such as the wall clock time or

CPU time are intuitive.

• Wall clock time - the time from the start of the first processor to the
stopping time of the last processor in a parallel ensemble. This can
be measured by system time (not by stop watch). But how does wall
clock time scale when the number of processors is changed or the
program is ported to another machine altogether?

• How much faster is the parallel version? What is the basis for
comparison? Can we use a sub-optimal serial program to make our
parallel program look better? These questions have been discussed
in tutorial 1.

3

5

Sources of Overhead in Parallel ProgramsSources of Overhead in Parallel Programs

• If I use two processors, shouldn't my program run 2 times faster? I used sweeping this
classroom as an example and gave 4 answers: (i) Yes, (ii) Faster but less than 2
times. (iii) Faster than 2 times, (iv) Slower than the time needed by 1 sweeper.

• Overheads in parallel execution include wasted computation, communication, idling,
and contention which cause degradation in performance.

P6

Essential/Excess Computation

P7

Interprocessor Communication

P4

Idling

P5

P3

P2

P1

P0

Execution Time

6

Sources of Overheads in Parallel ProgramsSources of Overheads in Parallel Programs

• Interprocess interactions: Processors
working on any non-trivial parallel
problem will need to communicate to
each other. Eg, queuing simulation.

• Idling: Processes may be idle because
of load imbalance, synchronization, or
serial components. Eg, the building-up
phase in parallel quicksort.

• Excess Computation: This refers to the
portion of the computation not
performed by the serial version. This
might be because the serial algorithm
is difficult to parallelize, or that some
computations are repeated across
processors to minimize
communication. Eg, the consolidation
of grid contents after row-sort to
establish heap structure.

11 12

10

9

65 87

3 421

1

11

2

1 3 4 2

3 4

865 1 311 47 2912 10

11 6 8 7 95 12 10

6 8 75

875 6 10 12 11

119 12 10

12

4

7

Performance Metrics for Parallel Systems: Performance Metrics for Parallel Systems:
Execution TimeExecution Time

• Serial runtime (denoted by TS or T1) of a program is the elapsed
time between the start and the end of its execution on a sequential
computer.

• The parallel runtime with p processing elements (denoted by TP) is
the elapsed time from the moment the first processor starts to the
moment the last processor finishes its execution.

• Let Tall be the total time collectively spent by all the processing
elements. We have Tall = p xTP

• Observe that Tall - TS is then the total time spent by all combined
processors in non-useful work. This is called the total overhead.
The overhead function (To) is therefore given by

To = p x TP - TS

8

Performance Metrics for Parallel Systems: Speedup

• What is the benefit from parallelism? After all, what we want is that the
program execution should be completed at a shorter time. So we need
to compute the speedup.

• Speedup (S) is the ratio of the time taken to solve a problem on a
single processor to the time required to solve the same problem on a
parallel computer with p identical processing elements.

p

s

T
TS =

pT
TpS 1)(=

• We also express speedup as follows:

• The secondary objective of using more than 1 PEs is to take advantage
of the larger consolidated amount of cache memory to run a big
program. Running a big program on a single PE can incur too much
cache misses thus causing thrashing effect.

5

9

Performance Metrics: ExamplePerformance Metrics: Example

• Consider the problem of adding n numbers by using n processing
elements.

• If n is a power of two, we can perform this operation in log n steps
by propagating partial sums down a logical binary tree of
processors.

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36

n

log n

10

In Summation In Summation
FormForm

Computing the global
sum of 16 partial sums
using 16 processing
elements. Σj

i denotes
the sum of numbers
with consecutive labels
from i to j.

0 3 4 111 2 5 6 7 8 9 10 12 13 14 15

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

1510 11 12 13 140 1 2 3 4 5 6 7 8 9

Σ0
15

Σ0 Σ15

ΣΣΣΣ0
3

4
7

8
11

12
15

Σ0 Σ Σ Σ Σ Σ Σ Σ151
2
3

4
5

6
7

8
9

10
11

12
13

14

7
8

(d) Fourth communication step

(c) Third communication step

(b) Second communication step

(a) Initial data distribution and the first communication step

(e) Accumulation of the sum at processing element 0 after the final communication

6

11

Performance Metrics: Example (continued)Performance Metrics: Example (continued)

• If an addition takes constant time, say, tc and communication
of a single word takes time ts + tw, we have the parallel time
TP = Θ (log n)

• We know that TS = Θ (n), which can be implemented by a for loop
as follows: for (i=0; i<n; i++) sum+= a[i];

• Speedup S is given by = Θ ()

• For a given problem, there might be many serial algorithms
available. These algorithms may have different asymptotic runtimes
and may be parallelizable to different degrees. What if TS (or T1) is
not optimal? Do we over represent the speedup?

• For the purpose of computing speedup, we always consider the
best sequential program as the baseline.

p

s

T
TS =

n
n

log

12

Performance Metrics: Speedup ExamplePerformance Metrics: Speedup Example

• Consider the problem of parallel bubble sort. The
serial time for bubblesort is 150 seconds.

• The parallel time for odd-even sort (efficient
parallelization of bubble sort) is 40 seconds. The
speedup would appear to be 150/40 = 3.75. Is this
really a fair assessment of the system?

• What if serial quicksort only took 30 seconds? In this
case, the speedup is 30/40 = 0.75. This is a more
realistic assessment of the system.

7

13

Performance Metrics: Speedup BoundsPerformance Metrics: Speedup Bounds

• Speedup can be as low as 0 (the parallel program never
terminates). This happens for infinite loop, dead lock and/or livelock
situations.

• Speedup, in theory, should be upper bounded by p - after all, we
can only expect a p-fold speedup if we use p times as many
resources.

• A speedup greater than p is possible only if each processing
element spends less than time TS / p solving the problem. This is
called super-linear speedup and cannot be guaranteed. Why?

14

Performance Metrics: SuperPerformance Metrics: Super--linear Speedupslinear Speedups

One reason for super linearity is
that the parallel version does less
work than corresponding serial
algorithm.

Processing element 1Processing element 0

S

Searching an unstructured tree for a
node with a given label, `S', on two
processing elements using depth-
first traversal. The two-processor
version with processor-0 searching
the left subtree and processor-1
searching the right subtree expands
only the shaded nodes before the
solution is found. The
corresponding serial formulation
expands the entire tree. It is clear
that the serial algorithm does more
work than the parallel algorithm.

S

T1 = 14c

T2 = 5c

S =

= 2.8 (super-linear as p = 2)

c
c

5
14

8

15

Performance Metrics: SuperPerformance Metrics: Super--linear Speedup Due to linear Speedup Due to
Higher Cache Hit RateHigher Cache Hit Rate

We call it resource-based super-linearity - the higher aggregate
cache/memory bandwidth can result in better cache-hit ratios, and therefore
super-linearity. Example: A processor with 64KB of cache yields an 80% hit
ratio. If cache access time is 2 ns, and DRAM access time is 100 ns, The
effective memory access time is 2 ns x 0.8 + 100 ns x 0.2 = 21.6 ns.

If the computation is memory bound and perform
1 FLOP/memory access, the processing rate is = 46.3 MFLOPS.

Now if two processors are used, since the problem size/processor is smaller,
the hit ratio goes up to 90%. Of the remaining 10% access, 8% come from
local memory and 2% from remote memory. If the remote memory access
time is 400 ns, the effective memory access time is

2 ns x 0.9 + 100 ns x 0.08 + 400 ns x 0.02 = 17.8 ns.

The processing rate in each processor is = 56.18 MFLOP.

The total processing rate for 2 processors is 56.18 x 2 = 112.36 MFLOPS, and
this corresponds to a speedup of 112.36/46.3 = 2.43 - superlinear!

ns6.21
1

ns8.17
1

16

Performance Metrics: EfficiencyPerformance Metrics: Efficiency

• Efficiency is a measure of the fraction of time for which a
processing element is usefully employed

• Mathematically, it is given by =

• Following the bounds on speedup, efficiency in general can be as
low as 0 and as high as 1. E > 1 can happen but cannot be
guaranteed.

• The speedup of adding numbers on processors is given by

and the efficiency is given by

=

=

9

17

Parallel Time, Speedup, and Efficiency Example

Consider the problem of edge-detection in images. The problem
requires us to apply a 3 x 3 template to each pixel. If each multiply-add
operation takes time tc, the serial time for an n x n image is given by
TS= tc n2.

Example of edge detection: (a) an 8 x 8 image; (b) typical
templates for detecting edges; and (c) partitioning of the image across
four processors with shaded regions indicating image data that must
be communicated from neighboring processors to processor 1.

(b)(a)

3210

(c)

0

1

2

1

0

0

−1

−2

−1

−1

0

1

1

−2

0

2

0

−1

18

Edge Detection Edge Detection

200

100

231

c = 1x(-1) + 3x(-2) + 2x1 + 0x0 + 0x0 + 1x0 + 0x(-1) + 0x2 + 2x1;

if (c >threshold) edge = true;

else edge = false;

10

19

Parallel Time, Speedup, and Efficiency Example Parallel Time, Speedup, and Efficiency Example
(continued)(continued)

• One possible parallelization partitioning
scheme is to divide the image equally into
vertical segments, each with n2 / p pixels –
which is the number of pixels to be
processed by each PE.

• The boundary of each segment is 2n pixels
(n pixels on the left, and n pixels on the
right). This is also the number of pixel
values that will have to be communicated.
This takes time 2(ts + twn).

• Templates (with 9 values) may now be
applied to all n2 / p pixels in time
9 tcn2 / p.

20

Parallel Time, Speedup, and Efficiency Example Parallel Time, Speedup, and Efficiency Example
(continued)(continued)

• The total time for the edge detection algorithm is therefore given
by the sum of computation time and communication time:

• The corresponding values of speedup () and efficiency ()
are given by:

and

pT
T 1

p
S

11

21

Cost of a Parallel SystemCost of a Parallel System

• Cost is the product of parallel runtime and the number of processing elements
used (p x TP).

• Cost reflects the sum of the timesum of the time that each processing element spends
solving the problem.

• A parallel system is said to be cost-optimal if the cost of solving a problem on a
parallel computer is asymptotically identical to serial cost.

• Since E = = , for cost optimal systems E = = O(1).

• Cost (p x TP) is sometimes referred to as work or processor-time product.

p
))/ (T(T ps

p
p

p

s

Tp
) (T

x

22

Cost of a Parallel System: ExampleCost of a Parallel System: Example

• Consider the problem of adding numbers on processors.

• We have, TP = log n (for p = n).

• The cost of this system is given by
p TP = n log n.

• Since the serial runtime of this operation
is Θ(n), the algorithm is not cost optimal.
What is the cause?What is the cause?

Answer:

12

23

Impact of NonImpact of Non--Cost OptimalityCost Optimality

Consider a sorting algorithm that uses n processing elements to sort
a list in time (log n)2 – eg, Odd-Even Merge Sort.

• Since the serial runtime of a (comparison-based) sort is n log n, the

speedup and efficiency of this algorithm are given by and

respectively.

• The p TP product of this algorithm is n (log n)2 showing that this algorithm
is not cost optimal by a factor of log n.

• If p < n, assigning n tasks to p processors gives TP = n (log n)2 / p .

• The corresponding speedup (T1 / Tp) of this formulation is . This

speedup goes down as the problem size n is increased for a given p !

n
n

log nlog
1

n
p

log

24

Effect of Granularity on Performance

• Often, using fewer processors improves performance of parallel
systems. Using fewer than the maximum possible number of
processing elements to execute a parallel algorithm is called scaling
down a parallel system.

• A naive way of scaling down is to think of each processor in the
original case as a virtual processor and to assign (or to cluster)
these virtual processors equally to scale down the available
processors.

• Since the number of processing elements decreases by a factor of
n / p, the computation at each processing element increases by a
factor of n / p.

• The communication cost should not increase by this factor since
some of the virtual processors assigned to a physical processors
might communicate to each other (intra-processor communication).
This is the basic reason for the improvement from building
granularity.

13

25

Scalability of Parallel SystemsScalability of Parallel Systems
How do we extrapolate performance from small problems and small

systems to larger problems on larger configurations?
Consider three parallel algorithms for computing an n-point Fast

Fourier Transform (FFT) on 64 processing elements. Asymptotic effect is
observed.

64

speedup

problem
size

26

Scaling Characteristics of Parallel Programs

• The efficiency of a parallel program can be written as:
(T0 = pTp – Ts Tp = (T0 + Ts)/p substituted into the

following formula:)

give

• The total overhead function To is an increasing function of p, ie,
T0 = pTp – Ts.

• For a given problem size (i.e., the value of TS remains constant),
as we increase the number of processing elements, To or
overhead increases. Consequently, the overall efficiency of the
parallel program goes down. This is the case for all parallel
programs.

14

27

Let f, 0 < f < 1, be the fraction of operations in a computation that must be
performed sequentially. What is the best speedup if the computation is
performed in parallel?

We have

p
TfTf

T
T
TpS

p
TfTfT

p

p

1
1

11

1
1

)1()(

)1(

×−
+×

==

×−
+×=

AmdahlAmdahl’’s Laws Law
A small number of sequential
operations can ultimately limit the
speedup of a parallel algorithm.

When p is a large number, we have S(p) = . This imposes an
upper bound on speedup. f

1

28

Change in Speedup when the Change in Speedup when the
number of PEs is increasednumber of PEs is increased

Speedup tends to saturate and efficiency drops as a
consequence of Amdahl's law.

 = 64

 = 192

 = 320

 = 512

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40

Linear

p

S

n

n

n

n

Number of PEs (p)

Sp
ee

du
p

(S
)

