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CZ4102 CZ4102 –– High Performance ComputingHigh Performance Computing

Lecture 7: Lecture 7: 

Analytical Modeling of Parallel Systems Analytical Modeling of Parallel Systems 

-- Dr Tay Seng ChuanDr Tay Seng Chuan

Reference: “Introduction to Parallel Computing” – Chapter 5.
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Topic OverviewTopic Overview

• Sources of Overhead in Parallel Programs 

• Performance Metrics for Parallel Systems 

• Effect of Granularity on Performance 

• Scalability of Parallel Systems 
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Basics Basics 
• A sequential algorithm is evaluated by its runtime as a 

function of input size. 

• In general, the asymptotic runtime (i.e., the trend of runtime
when the input size is being increased) of a sequential 
program is identical on any serial platform. 

• The parallel runtime of a program depends on the input size, 
the number of processors, and the communication 
parameters of the machine. An parallel algorithm must 
therefore be analyzed in the context of the underlying 
platform. 
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Performance MeasurePerformance Measure
• A number of performance measures such as the wall clock time or 

CPU time are intuitive. 

• Wall clock time - the time from the start of the first processor to the 
stopping time of the last processor in a parallel ensemble. This can 
be measured by system time (not by stop watch). But how does wall 
clock time scale when the number of processors is changed or the
program is ported to another machine altogether? 

• How much faster is the parallel version? What is the basis for 
comparison? Can we use a sub-optimal serial program to make our 
parallel program look better? These questions have been discussed 
in tutorial 1.
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Sources of Overhead in Parallel ProgramsSources of Overhead in Parallel Programs

• If I use two processors, shouldn't my program run 2 times faster? I used sweeping this 
classroom as an example and gave 4 answers: (i) Yes, (ii) Faster but less than 2 
times. (iii) Faster than 2 times, (iv) Slower than the time needed by 1 sweeper.

• Overheads in parallel execution include wasted computation, communication, idling, 
and contention which cause degradation in performance. 
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Sources of Overheads in Parallel ProgramsSources of Overheads in Parallel Programs

• Interprocess interactions: Processors 
working on any non-trivial parallel 
problem will need to communicate to 
each other. Eg, queuing simulation.

• Idling: Processes may be idle because 
of load imbalance, synchronization, or 
serial components. Eg, the building-up 
phase in parallel quicksort.

• Excess Computation: This refers to the 
portion of the computation not 
performed by the serial version. This 
might be because the serial algorithm 
is difficult to parallelize, or that some 
computations are repeated across 
processors to minimize 
communication. Eg, the consolidation 
of grid contents after row-sort to 
establish heap structure.
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Performance Metrics for Parallel Systems: Performance Metrics for Parallel Systems: 
Execution TimeExecution Time

• Serial runtime (denoted by TS  or T1) of a program is the elapsed 
time between the start and the end of its execution on a sequential 
computer. 

• The parallel runtime with p processing elements (denoted by TP) is 
the elapsed time from the moment the first processor starts to the 
moment the last processor finishes its execution. 

• Let Tall be the total time collectively spent by all the processing 
elements. We have    Tall  = p xTP

• Observe that Tall - TS is then the total time spent by all combined 
processors in non-useful work. This is called the total overhead. 
The overhead function (To) is therefore given by  

To = p x TP - TS
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Performance Metrics for Parallel Systems: Speedup 

• What is the benefit from parallelism? After all, what we want is that the 
program execution should be completed at a shorter time. So we need 
to compute the speedup.

• Speedup (S) is the ratio of the time taken to solve a problem on a 
single processor to the time required to solve the same problem on a 
parallel computer with p identical processing elements. 

p

s

T
TS =

pT
TpS 1)( =

• We also express speedup as follows:

• The secondary objective of using more than 1 PEs is to take advantage 
of the larger consolidated amount of cache memory to run a big 
program. Running a big program on a single PE can incur too much
cache  misses thus causing thrashing effect.
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Performance Metrics: ExamplePerformance Metrics: Example

• Consider the problem of adding n numbers by using n processing 
elements. 

• If n is a power of two, we can perform this operation in log n steps 
by propagating partial sums down a logical binary tree of 
processors. 
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In Summation In Summation 
FormForm

Computing the global 
sum of 16 partial sums 
using 16 processing 
elements.  Σj

i denotes 
the sum of numbers 
with consecutive labels 
from i to j. 
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(d)  Fourth communication step

(c)  Third communication step

(b)  Second communication step

(a)  Initial data distribution and the first communication step

(e)  Accumulation of the sum at processing element 0  after the final communication
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Performance Metrics: Example (continued)Performance Metrics: Example (continued)

• If an addition takes constant time, say, tc and communication 
of a single word takes time ts + tw, we have the parallel time 
TP = Θ (log n)

• We know that TS = Θ (n), which can be implemented by a for loop 
as follows:  for (i=0; i<n; i++) sum+= a[i];

• Speedup S is given by                = Θ ( )

• For a given problem, there might be many serial algorithms 
available. These algorithms may have different asymptotic runtimes 
and may be parallelizable to different degrees. What if TS (or T1) is 
not optimal? Do we over represent the speedup?

• For the purpose of computing speedup, we always consider the 
best sequential program as the baseline. 

p

s
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n
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Performance Metrics: Speedup ExamplePerformance Metrics: Speedup Example

• Consider the problem of parallel bubble sort. The 
serial time for bubblesort is 150 seconds. 

• The parallel time for odd-even sort (efficient 
parallelization of bubble sort) is 40 seconds. The 
speedup would appear to be 150/40 = 3.75. Is this 
really a fair assessment of the system? 

• What if serial quicksort only took 30 seconds? In this 
case, the speedup is 30/40 = 0.75. This is a more 
realistic assessment of the system. 
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Performance Metrics: Speedup BoundsPerformance Metrics: Speedup Bounds

• Speedup can be as low as 0 (the parallel program never 
terminates). This happens for infinite loop, dead lock and/or livelock 
situations.

• Speedup, in theory, should be upper bounded by p - after all, we 
can only expect a p-fold speedup if we use p times as many 
resources. 

• A speedup greater than p is possible only if each processing 
element spends less than time TS / p solving the problem. This is 
called super-linear speedup and cannot be guaranteed. Why?
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Performance Metrics: SuperPerformance Metrics: Super--linear Speedupslinear Speedups

One reason for super linearity is 
that the parallel version does less 
work than corresponding serial 
algorithm. 

Processing element 1Processing element 0

S

Searching an unstructured tree for a 
node with a given label, `S', on two 
processing elements using depth-
first traversal. The two-processor 
version with processor-0 searching 
the left subtree and processor-1 
searching the right subtree expands 
only the shaded nodes before the 
solution is found. The 
corresponding serial formulation 
expands the entire tree. It is clear 
that the serial algorithm does more 
work than the parallel algorithm. 

S

T1 = 14c

T2 = 5c

S =

= 2.8 (super-linear as p = 2)

c
c
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Performance Metrics: SuperPerformance Metrics: Super--linear Speedup Due to linear Speedup Due to 
Higher Cache Hit RateHigher Cache Hit Rate

We call it resource-based super-linearity - the higher aggregate 
cache/memory bandwidth can result in better cache-hit ratios, and therefore 
super-linearity. Example: A processor with 64KB of cache yields an 80% hit 
ratio. If cache access time is 2 ns, and DRAM access time is 100 ns, The 
effective memory access time is 2 ns x 0.8 + 100 ns x 0.2 = 21.6 ns.

If the computation is memory bound and perform 
1 FLOP/memory access, the processing rate is             = 46.3 MFLOPS.

Now if two processors are used, since the problem size/processor is smaller, 
the hit ratio goes up to 90%. Of the remaining 10% access, 8% come from 
local memory and 2% from remote memory. If the remote memory access 
time is 400 ns, the effective memory access time is 

2 ns x 0.9 + 100 ns x 0.08 + 400 ns x 0.02 = 17.8 ns.

The processing rate in each processor is             = 56.18 MFLOP. 

The total processing rate for 2 processors is 56.18 x 2 = 112.36 MFLOPS, and 
this corresponds to a speedup of 112.36/46.3 = 2.43 - superlinear!  

ns6.21
1

ns8.17
1
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Performance Metrics: EfficiencyPerformance Metrics: Efficiency

• Efficiency is a measure of the fraction of time for which a 
processing element is usefully employed 

• Mathematically, it is given by          =

• Following the bounds on speedup, efficiency in general can be as
low as 0 and as high as 1. E > 1 can happen but cannot be 
guaranteed.

• The speedup of adding numbers on processors is given by 

and the efficiency is given by 

=

=
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Parallel Time, Speedup, and Efficiency Example 

Consider the problem of edge-detection in images. The problem 
requires us to apply a 3 x 3 template to each pixel. If each multiply-add 
operation takes time tc, the serial time for an n x n image is given by 
TS= tc n2. 

Example of edge detection: (a) an 8 x 8 image; (b) typical 
templates for detecting edges; and (c) partitioning of the image across 
four processors with shaded regions indicating image data that must 
be communicated from neighboring processors to processor 1. 
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Edge Detection Edge Detection 

200

100

231

c = 1x(-1) + 3x(-2) + 2x1 + 0x0 + 0x0 + 1x0 + 0x(-1) + 0x2 + 2x1;

if (c >threshold) edge = true;

else edge = false;
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Parallel Time, Speedup, and Efficiency Example Parallel Time, Speedup, and Efficiency Example 
(continued)(continued)

• One possible parallelization partitioning 
scheme is to divide the image equally into 
vertical segments, each with n2 / p pixels –
which is the number of pixels to be 
processed by each PE.

• The boundary of each segment is 2n pixels 
(n pixels on the left, and n pixels on the 
right). This is also the number of pixel 
values that will have to be communicated. 
This takes time 2(ts + twn). 

• Templates (with 9 values) may now be 
applied to all n2 / p pixels in time 
9 tcn2 / p. 
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Parallel Time, Speedup, and Efficiency Example Parallel Time, Speedup, and Efficiency Example 
(continued)(continued)

• The total time for the edge detection algorithm is therefore given 
by the sum of computation time and communication time: 

• The corresponding values of speedup (       ) and efficiency (  ) 
are given by:

and 

pT
T 1

p
S
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Cost of a Parallel SystemCost of a Parallel System

• Cost is the product of parallel runtime and the number of processing elements 
used (p x TP ). 

• Cost reflects the sum of the timesum of the time that each processing element spends 
solving the problem. 

• A parallel system is said to be cost-optimal if the cost of solving a problem on a 
parallel computer is asymptotically identical to serial cost. 

• Since E =                   =             , for cost optimal systems E =        = O(1). 

• Cost (p x TP) is sometimes referred to as work or processor-time product.

p
))/ (T(T ps  

p
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Cost of a Parallel System: ExampleCost of a Parallel System: Example

• Consider the problem of adding numbers on processors. 

• We have, TP = log n (for p = n). 

• The cost of this system is given by 
p TP = n log n. 

• Since the serial runtime of this operation 
is Θ(n), the algorithm is not cost optimal. 
What is the cause?What is the cause?

Answer:
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Impact of NonImpact of Non--Cost OptimalityCost Optimality

Consider a sorting algorithm that uses n processing elements to sort 
a list in time (log n)2 – eg, Odd-Even Merge Sort.

• Since the serial runtime of a (comparison-based) sort is n log n, the 

speedup and efficiency of this algorithm are given by           and 

respectively. 

• The p TP product of this algorithm is n (log n)2 showing that this algorithm 
is not cost optimal by a factor of log n. 

• If p < n, assigning n tasks to p processors gives TP = n (log n)2 / p .

• The corresponding speedup (T1 / Tp) of this formulation is . This 

speedup goes down as the problem size n is increased for a given p !

n
n

log nlog
1

n
p

log
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Effect of Granularity on Performance 

• Often, using fewer processors improves performance of parallel 
systems. Using fewer than the maximum possible number of 
processing elements to execute a parallel algorithm is called scaling 
down a parallel system. 

• A naive way of scaling down is to think of each processor in the
original case as a virtual processor and to assign (or to cluster) 
these virtual processors equally to scale down the available 
processors. 

• Since the number of processing elements decreases by a factor of
n / p, the computation at each processing element increases by a 
factor of n / p. 

• The communication cost should not increase by this factor since 
some of the virtual processors assigned to a physical processors
might communicate to each other (intra-processor communication). 
This is the basic reason for the improvement from building 
granularity. 



13

25

Scalability of Parallel SystemsScalability of Parallel Systems
How do we extrapolate performance from small problems and small 

systems to larger problems on larger configurations? 
Consider three parallel algorithms for computing an n-point Fast 

Fourier Transform (FFT) on 64 processing elements. Asymptotic effect is 
observed.

64

speedup

problem 
size
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Scaling Characteristics of Parallel Programs 

• The efficiency of a parallel program can be written as: 
(T0 = pTp – Ts Tp = (T0 + Ts)/p substituted into the 

following formula:)

give

• The total overhead function To is an increasing function of p, ie,                
T0 = pTp – Ts.

• For a given problem size (i.e., the value of TS remains constant), 
as we increase the number of processing elements, To or 
overhead increases. Consequently, the overall efficiency of the 
parallel program goes down. This is the case for all parallel 
programs.
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Let f, 0 < f < 1, be the fraction of operations in a computation that must be 
performed sequentially. What is the best speedup if the computation is 
performed in parallel?

We have 

p
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AmdahlAmdahl’’s Laws Law
A small number of sequential 
operations can ultimately limit the 
speedup of a parallel algorithm.

When p is a large number, we have S(p) =      . This imposes an 
upper bound on speedup. f

1
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Change in Speedup when the Change in Speedup when the 
number of PEs is increasednumber of PEs is increased

Speedup tends to saturate and efficiency drops as a 
consequence of Amdahl's law.
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