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PC1221 Fundamentals of 
Physics I

Lectures 7 and 8
Motion in Two Dimensions

A/Prof Tay Seng Chuan
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Ground RulesGround Rules

 Switch off your handphone and pager
 Switch off your laptop computer and keep it
 No talking while lecture is going on
 No gossiping while the lecture is going on
 Raise your hand if you have question to ask
 Be on time for lecture
 Be on time to come back from the recess break to 

continue the lecture
 Bring your lecturenotes to lecture
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Position and Displacement

 The position of an object is 
described by its position 
vector, r

 The displacement of the 
object is defined as the 
change in its position
 Δr = rf - ri

 In two- or three-
dimensional kinematics, 
everything is the same as 
in one-dimensional motion 
except that we must now 
use full vector notation Plane View
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Average Velocity
 The average velocity is the 

ratio of the displacement to the 
time interval for the 
displacement

 The direction of the average 
velocity is the direction of the 
displacement vector, Δr

 The average velocity between 
points is independent of the 
path taken
 It is dependent on the 

displacement

t



rv

Plane View
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Instantaneous Velocity

 The instantaneous velocity is the limit 
of the average velocity as Δt
approaches zero

0
lim

t

d
t dt 


 


r rv

The direction of small displacement (change 
in positions) tells the direction that the 
particle is heading at the moment.

=
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Instantaneous Velocity, cont

 The direction of the instantaneous 
velocity vector at any point in a 
particle’s path is along a line 
tangent to the path at that point 
and in the direction of motion

 The magnitude of the 
instantaneous velocity vector is 
the speed
 The speed is a scalar quantity
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Average Acceleration

 The average acceleration of a particle 
as it moves is defined as the change in 
the instantaneous velocity vector 
divided by the time interval during 
which that change occurs.

f i

f it t t
 

 
 

v v va
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Average Acceleration, cont
 As a particle moves, 
Δv can be found in 
different ways

 The average 
acceleration is a 
vector quantity 
directed along Δv

Plane View
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Instantaneous Acceleration

 The instantaneous acceleration is the 
limit of the average acceleration as Δt
approaches zero

0
lim

t

d
t dt 


 


v va

xThe direction of small 
change in velocities tells the 
direction of accelerationacceleration.

=
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Producing An Acceleration

 Various changes in a particle’s motion 
may produce an acceleration, such as:
 The magnitude of the velocity vector may 

change
 The direction of the velocity vector may 

change
 Even if the magnitude remains constant

 Both may also change simultaneously
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Kinematic Equations for Two-
Dimensional Motion

 When the two-dimensional motion has 
a constant acceleration, a series of 
equations can be developed that 
describe the motion

 These equations will be similar to those 
of one-dimensional kinematics
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Kinematic Equations, 2

 Position vector

 Velocity

 Since acceleration is constant, 
we can also find an expression 
for the velocity as a function of 
time: vf = vi + at

ˆ ˆx y r i j

ˆ ˆ
x y

d v v
dt

  
rv i j
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Kinematic Equations, 3
 The velocity vector 

can be represented 
by its components

 vf is generally not 
along the direction 
of either vi or at

vf = vi + at
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Kinematic Equations, 4

 The position vector can also be 
expressed as a function of time:
 rf = ri + vit + ½ at 2

 This indicates that the position vector is 
the sum of three other vectors:
 The initial position vector ri

 The displacement resulting from vi t
 The displacement resulting from ½ at 2
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Kinematic Equations, 5
 The vector 

representation of 
the position vector

 rf is generally not in 
the same direction 
as vi or as ai

 rf and vf are 
generally not in the 
same direction

rf = ri + vit + ½ at 2
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Kinematic Equations, 
Components

 The equations for final velocity 
and final position are vector 
equations, therefore they may 
also be written in component 
form

 This shows that two-dimensional 
motion at constant acceleration 
is equivalent to two independent 
motions
 One motion in the x-direction and 

the other in the y-direction
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Kinematic Equations, 
Component Equations

 vf = vi + at becomes
 vxf = vxi + axt and 
 vyf = vyi + ayt

 rf = ri + vi t + ½ at 2 becomes
 xf = xi + vxi t + ½ axt 2 and 
 yf = yi + vyi t + ½ ayt 2
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Projectile Motion

 An object may move in 
both x and y directions 
simultaneously

 The form of two-
dimensional motion we 
will deal with is called 
projectile motion

Front View
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Assumptions of Projectile 
Motion
 The free-fall acceleration g is constant 

over the range of motion
 g is directed downward

 The effect of air friction is negligible
 With these assumptions, an object in 

projectile motion will follow a parabolic 
path
 This path is called the trajectory
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Verifying the Parabolic 
Trajectory

 Reference frame chosen
 y is vertical with upward positive

 Acceleration components
 ay = -g and ax = 0

 Initial velocity components
 vxi = vi cos  and vyi = vi sin 

vi

Θ
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Verifying the Parabolic 
Trajectory, cont

 Displacements
 xf = vxi t = (vi cos  t
 yf = vyi t + ½ay t 2 = (vi sin t - ½ gt 2

 Combining the equations and removing 
t gives:

 This is in the form of y = ax – bx2 which is 
the standard form of a parabola

  2
2 2tan

2 cosi
i i

gy x x
v




 
   

 
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Range and Maximum Height 
of a Projectile

 When analyzing 
projectile motion, two 
characteristics are of 
special interest

 The range, R, is the 
horizontal distance of 
the projectile

 The maximum height 
the projectile reaches is 
h
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Height of a Projectile, 
equation

 The maximum height of the projectile 
can be found in terms of the initial 
velocity vector:

 This equation is valid only for 
symmetric motion

2 2sin
2

i ivh
g



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Range of a Projectile, equation

 The range of a projectile can be 
expressed in terms of the initial velocity 
vector:

 This is valid only for 
symmetric trajectory

2 sin 2i ivR
g




We will derive them.



Projectile FormulationProjectile Formulation

Let the initial velocity be u. Let the angle 
subscripted by u and x-axis be θ.

Along the x-direction,

 





cos

cos

u
xt

tux





1

Along the Y-direction,

  2

2
1sin gttuy  

2

Substitute (1) into (2):

x

y

u

θ

g
ut

gtu
gtuv






sin
0sin

0sin





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Substitute (3) into (2):

g
uh

g
u

g
uh

g
ug

g
uuhy

2
sin

2
sinsin

sin
2
1sinsin
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2222

2





























g
vor ii

2
sin22 

Maximum occurs when the y-component of 
the velocity is equal to 0, i.e. the object is at 
the moment of coming down.

h

To derive the maximum range 
(R) along the x-direction, we 
let y = 0 in equation 2. 

Why?

 

g
ut

ugt

gtut

gttu









sin2

sin
2

0
2

sin

0
2
1sin 2











 


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The distance travelled in x-direction

for

 

 

 

g
uR

g
ux

g
uux

tux

g
ut











2sin

cossin2

sin2cos

cos

:is seconds sin2

2

2



















  2

2
1sin gttuy   R

y

sin (A+B) = sin A cos B + cos A sin B 

 45902 i.e., 1,2sin 

 whenmaximum a is   ,12sin  Since
 





 R

  

 

g
uR

g
uR

g
uR

2

2

2

90sin

452sin

,45When 















What is the maximum value of R , and 
the corresponding    ?
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Range of a Projectile, final

 The maximum range occurs at 
i = 45o

 Complementary angles will 
produce the same range
 But the maximum height will be 

different for the two angles
 The times of the flight will be 

different for the two angles
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Projectile Motion – Problem 
Solving Hints
 Select a coordinate system
 Resolve the initial velocity into x and y

components
 Analyze the horizontal motion using constant 

velocity techniques
 Analyze the vertical motion using constant 

acceleration techniques
 Remember that both directions share the 

same time
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Non-Symmetric Projectile 
Motion
 Follow the general rules 

for projectile motion
 Break the y-direction 

into parts
 up and down or
 symmetrical back to 

initial height and then 
the rest of the height

 May be non-symmetric 
in other ways
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Example. One strategy in a snowball fight is to throw a 
snowball at a high angle over level ground. Then, while 
your opponent is watching that snowball, you throw a 
second one at a low angle timed to arrive before or at the 
same time as the first one. Assume that both snowballs 
are thrown with a speed of 25.0 m/s. The first is thrown 
at an angle of 70.0° with respect to the horizontal. The 
release point of snowball and the hit point of the 
opponent are at the same level. (a) At what angle should 
the second snowball be thrown to arrive at the same point 
as the first? (b) How many seconds later should the 
second snowball be thrown after the first in order for both 
to arrive at the same time? 
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Answer:

g
uR 2sin2



R

We have derived

Since R, u, g are constant, sin      will 
also be a constant. Let the solution of      

be      , where         90 °. We have

or                          .

So,              or 

 21802 

 207090

2 2 2
,22  

2

  90, 

(a) The second snowball  
should be thrown at 

20
70
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(b)




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Uniform Circular Motion

 Uniform circular motion occurs 
when an object moves in a circular 
path with a constant speed

 An acceleration exists since the 
direction of the motion is changing 
 This change in velocity is related to an 

acceleration

 The velocity vector is always tangent 
to the path of the object

Plane View
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Changing Velocity in Uniform 
Circular Motion
 The change in the 

velocity vector is 
due to the change in 
direction

 The vector diagram 
shows v = vf - vi
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Centripetal Acceleration

 The acceleration is always 
perpendicular to the path of 
the motion

 The acceleration always points 
toward the center of the circle 
of motion

 This acceleration is called the 
centripetal acceleration
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Centripetal Acceleration, cont
 The magnitude of the centripetal 

acceleration vector is given by

 By the use of same ratio, this can 
be derived as follows:

 v
2

C
va
r



Δv     Δr
v       r

Δv      v
Δr       r

Δv      v       Δr
Δt       r       Δt

=

=

= x
2

C
va
r


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Period
 The period, T, is the time required for one 

complete revolution (one complete cycle)
 As one complete cycle is the distance of the 

circumference. The speed of the particle would 
be the circumference of the circle of motion 
divided by the period. Speed = distance/time,
so time = distance/speed

 Therefore, the period is 
2 rT

v


=
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Example. The astronaut orbiting the 
Earth in Figure is preparing to dock with a 
Westar VI satellite. The satellite is in a 
circular orbit 600 km above the Earth's 
surface, where the free-fall acceleration is 
8.21 m/s2. Take the radius of the Earth as 
6400 km. Determine the speed of the 
satellite and the time interval required to 
complete one orbit around the Earth.
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Speed of satellite in 
order to maintain the 
orbit

Time to complete 1 
cycle of orbit

so

and

8.21 m/s2
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Tangential Acceleration

 The magnitude of the velocity could 
also be changing

 In this case, there would be a 
tangential acceleration

 Observe what happens at the 
center (my hand) when I make 
the ball to rotate faster Circular 

motion on 
my hand
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Total Acceleration
 The tangential 

acceleration causes the 
change in the speed of 
the particle

 The radial acceleration 
comes from a change in 
the direction of the 
velocity vector. 

(In the textbook by 
Serway, the direction or 
radial acceleration is 
away from center – not 
important.)

a = at + ar

a
at

ar
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Total Acceleration, equations
 The tangential acceleration:

 The radial acceleration:

 The total acceleration:
 Magnitude 

r
v 2

2 2
r ta a a 

Why the string does not slack and 
the ball does not fly towards the 
center?

ar = ac = 

dt
dvat = 
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Relative Velocity
 Two observers moving relative to each other 

generally do not agree on the outcome of an 
experiment

 For example, observers A and B below see different 
paths for the ball
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Relative Velocity, generalized
 Reference frame S is 

stationary
 Reference frame S ’

is moving at v0
 This also means that 

S moves at –v0
relative to S ’

 Define time t = 0 as 
that time when the 
origins coincide
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Relative Velocity, equations
 The positions as seen from the two 

reference frames (r is the position seen 
from stationary frame, r’ seen from 
moving frame) are related through the 
velocity
 r’ = r – v0 t

 The derivative of the position equation 
will give the velocity equation
 v’ = v – v0

 These are called the Galilean 
transformation equations 
(d1-9)
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Acceleration in Different 
Frames of Reference

 The derivative of the velocity equation 
will give the acceleration equation

 The acceleration of the particle 
measured by an observer in one frame 
of reference is the same as that 
measured by any other observer 
moving at a constant velocity relative 
to the first frame. Why?

r’ = r – v0 t
v’ = v – v0

v0 is a constant, so v0
has no effect on the 
change in velocity, ie, 
a’ = a.
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Example.Example. Two swimmers, Tom and Jerry, start together at the same point on 
the bank of a wide stream that flows with a speed v.  Both move at the same 
speed c (c > v), relative to the water. Tom swims downstream a distance L and 
then upstream the same distance.  Jerry swims so that his motion relative to the 
Earth is perpendicular to the banks of the stream.  He swims the distance L and 
then back the same distance, so that both swimmers return to the starting point.  
Which swimmer returns first? 

.c v

2
2

2
1 1

L
c

v
c

L L
t

c v c v
  

  

For Tom, his speed downstream is c + v, while his speed upstream is 

Therefore, the total time for Tom is 

Answer:

v

c

50

2 2c v

2
2

2
2 2 2

2
1

L
c

v
c

L
t

c v
 

 
2

21 1v
c

  1 2t t

For Jerry, his cross-stream speed (both ways) is

Thus, the total time for Jerry is 

Since                 , ,  or Jerry, who swims cross-stream, returns first.

v
c

v

2 2c v 2
2

2
1 1

L
c

v
c

L L
t

c v c v
  

  

2
2

2
1 1

L
c

v
c

L L
t

c v c v
  

  

vv

2 2c v
c

2 2c v
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Example.Example. A Coast Guard cutter detects an 
unidentified ship at a distance of 20.0 km  in 
the direction 15.0 east of north.  The ship is 
traveling at 26.0 km/h on a course at 40.0
east of north.  The Coast Guard wishes to 
send a speedboat to intercept the vessel 
and investigate it.  If the speedboat travels 
50.0 km/h, in what direction should it head?  
Express the direction as a compass bearing 
with respect to due north.

     
1

26 km h sin 40 15 50 km h sin
11.0sin 12.7 .50

t t 

 

   

  

15 12.7 27.7  east of north    
The speedboat should head

.

Answer:
Choose the x-axis along the 20-km distance. 
The y-components of the displacements of 
the ship and the speedboat must agree:

26
 k

m
/h

50
 k

m
/h
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Answer: The bumpers are 
initially 100 m apart (0.1 km). 
After time t the bumper of the 
leading car travels 40.0t km, 
while the bumper of the chasing 
car travels 60.0t km. Since the 
cars are side by side at time t
we have

0.1 + 40t = 60t

t = 0.1/20 = 0.005 hr
= 0.005 x 3600 sec
= 18 s

Example. How long does it take an automobile 
traveling in the left lane at 60.0 km/h to pull alongside 
a car traveling in the right lane at 40.0 km/h if the 
cars' front bumpers are initially 100 m apart? (Disk 2)

0.1 km

40 km/h

60 km/h

40
 t

60
 t
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Examples.     

Constant speed

(A) Horizontal Track

(B) Tilted Track 54

Examples.     

Point X

This time the car will be pulled along the horizontal track by 
a string and a weight hanging over a pulley, and will be 
accelerating constantly. The ball is fired at point X. Where 
will the ball land this time? (The horizontal track is long 
enough for the car not to fall off when the ball lands.)

(C) The car is pulled along by a
string and a weight hanging
over a pulley.


