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PC1221 Fundamentals of 
Physics I

Lectures 13 and 14

Energy and Energy Transfer

A/Prof Tay Seng Chuan
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Ground RulesGround Rules

 Switch off your handphone and pager
 Switch off your laptop computer and keep it
 No talking while lecture is going on
 No gossiping while the lecture is going on
 Raise your hand if you have question to ask
 Be on time for lecture
 Be on time to come back from the recess break to 

continue the lecture
 Bring your lecturenotes to lecture
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Introduction to Energy

 The concept of energy is one of the most 
important topics in science while it is not the 
only important topic

 Every physical process that occurs in the 
Universe involves energy and energy transfers 
or energy transformations

 Giving a lecture now is an example of the 
transfer and transform of energy but it is more 
complicated (chemical energy from the food I 
ate this morning is used to create the sound 
energy in my voice now)
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Energy Approach to Problems

 The energy approach to describing 
motion is particularly useful when the 
force is not constant

 An approach will involve Conservation 
of Energy
 This could be extended to biological 

organisms, technological systems and 
engineering situations
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Systems
 A system is a small portion of the 

Universe
 A valid system may

 be a single object or particle
 be a collection of objects or particles
 be a region of space
 vary in size and shape

 Energy in a system is conserved.
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WorkWork

 The work, W, done on a 
system by an agent exerting a 
constant force on the system 
is the product of the 
magnitude, F, of the force, the 
magnitude r of the 
displacement of the point of 
application of the force, and 
cos  where  is the angle 
between the force and the 
displacement vectors. 
W = F r cos 


F

F cos
r
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Work, cont.

 W = F r cos 
 The displacement is that of the point of 

application of the force
 A force does no work on the object if the 

force does not move through a 
displacement

 The work done by a force on a moving 
object is zero when the force applied is 
perpendicular to the displacement of its 
point of application


F

F cos
r
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Did you do any work if you were repelling 
along a rope down a helicopter? Did the 
gravity do work on you?
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
F

F cos
r

Did you do any work if you 
were running on a level 
ground?

Why did you feel tired after the run?
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Answer:

Example. In a baseball game, the catcher stops a 
90-mph pitch.  What can you say about the work 

done by the catcher on the ball?

1. catcher has done
positive work

2. catcher has done
negative work

3. catcher has done 
zero work

The force exerted by the catcher is opposite in direction opposite in direction 
to the displacement of the ball, so the work is negativeto the displacement of the ball, so the work is negative.   
Or using the definition of work (WW = = F (F (ΔΔr)cos  r)cos  ), 
because = = 180180ºº, then W < W < 00.   Note that because the 
work done on the ball is negative, its speed decreases.




FF
ΔΔrr

180180ºº

N

f

T

mg

displacement
Any force not perpendicular
to the motion will do work:

N   does   no workno work

T   does   positivepositive work

f   does   negative work

mg sin does negative work

Example. A box is being pulled up a 
rough incline by a rope connected to 
a pulley.  How many forces are doing 
work on the box?

Answer:





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Work in Pushing a Block
 The normal force, n, 

and the gravitational 
force, m g, do no 
work on the object
 cos  = cos 90° = 0

 The force F does do 
work on the object
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More About Work
 The system and the environment must be 

determined when dealing with work
 The environment does work on the system

 Work by the environment on the system

 The sign of the work depends on the 
direction of F relative to r
 Work is positive when projection of F onto r is in 

the same direction as the displacement
 Work is negative when the projection is in the 

opposite direction
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Units of Work

 Work is a scalar quantity
 The unit of work is a joule (J)

 1 joule = 1 newton . 1 meter
 J = N · m 
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Work Is An Energy Transfer
 If the work is done on (by) a system and it is 

positive, energy is transferred to the system
 If the work done on (by) the system is negative, 

energy is transferred from the system
 If a system interacts with its environment, this 

interaction can be described as a transfer of 
energy across the system boundary (e.g., heat 
generated due to friction)
 This will result in a change in the amount of energy 

stored in the system
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Scalar Product of Two Vectors
 The scalar product 

of two vectors is  
written as A . B
(read as A dot B)
 It is also called the 

dot product

 A . B = A B cos 
 is the angle 

between A and B
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Scalar Product, cont

 The scalar product is commutative
 A . B = B . A

 The scalar product obeys the 
distributive law of multiplication

 A .  (B + C) = A . B + A . C
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Dot Products of Unit Vectors



 Using component form with A and B:

0k̂ĵk̂îĵî

1k̂k̂ĵĵîî





zzyyxx

zyx

zyx

BABABABA

k̂BĵBîBB

k̂AĵAîAA






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Work Done by a Varying Force

 Assume that during a very 
small displacement, x, F
is constant

 For that displacement, W
~ F x

 For all of the intervals,
f

i

x

x
x

W F x 

Force

Displacement
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Work Done by a Varying 
Force, cont



 Therefore,

 The work done is 
equal to the area 
under the curve of 
force versus 
displacement

lim
0

f
f

i
i

x
x

x x xx
x

F x F dx    
f

i

x

xx
W F dx 

Force

Displacement



21

Work Done By Multiple Forces

 If more than one force acts on a system 
and the system can be modeled as a 
particle, the total work done on the 
system is the work done by the net 
force

 f

i

x

net xx
W W F dx  
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Work Done by Multiple Forces, 
cont.

 If the system cannot be modeled as a 
particle, then the total work is equal to 
the algebraic sum of the work done by 
the individual forces

net by individual forcesW W 
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Example. Example. Four forces are acting 
on an object along a horizontal 
plane. The force with 2 N is 
acting along the plane, 4 N with 
30º from the horizontal line, 5 N 
perpendicular to the plane, and 
3 N 60º from the horizontal line. 
What is the net work done of all 
these forces for the ball to travel 
a horizontal distance of 5 m 
shown in the figure?
Answer:

The net horizontal force is 2 + 4 cos 30º - 3 cos 60º = 3.96 N
The net work done = 3.96 N x 5 m = 19.82 J

The net work done is the sum of the workdone by the 
individual forces:

2 x 5 + 4 cos 30º x 5 - 3 cos 60º x 5 = 19.82 J

Or:

2 N

4 N 3 N

5 N

5 m
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Hooke’s Law

 The force exerted by the spring is 
Fs = - kx

 x is the position of the block with respect to the equilibrium 
position (x = 0)

 k is called the spring constant or force constant and 
measures the stiffness of the spring

 This is called HookeHooke’’s Laws Law
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Hooke’s Law, cont.
 When x is positive 

(spring is stretched), 
F is negative

 When x is 0 (at the 
equilibrium position), 
F is 0

 When x is negative 
(spring is 
compressed), F is 
positive
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Hooke’s Law, final
 The force exerted by the spring is 

always directed opposite to the 
displacement from equilibrium

 F is called the restoring force
 If the block is released it will oscillate 

back and forth between x and –x

Spring Combination 
A spring can be stretched a distance of 60 cm with 
an applied force of 1 N.  If an identical spring is 
connected in series with the first spring, how much 
force will be required to stretch this series 
combination a distance of 60 cm?

Here, the springs are in series, so each spring is only 
stretched 30 cm thus only half the force is needed.   
But also, because the springs are in a row, the force 
applied to one spring is transmitted to the other 
spring (like tension in a rope).  So the overall 
applied force of 0.5 N is all that is needed. The 
combination of two springs in series behaves like a 
weaker spring!!

Answer:
60 cm 60 cm

Spring Combination 
What if the two springs are arranged in parallel?

Each spring is still stretched 60 cm, so each spring 
requires 1 N of force.  But because there are two 
springs, there must be a total of 2 N of force!  Thus, 
the combination of two parallel springs behaves like 
a stronger spring!!

Answer:

60 cm
60 cm
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Work Done by a Spring
 Identify the block as the 

system
 Calculate the work as the 

block moves from 
 xi = - xmax to xf = 0, or

xi = xmax to xf = 0

 The total work done as the 
block moves from
–xmax to xmax is zero

 
max

0 2
max

1
2

f

i

x

s xx x
W F dx kx dx kx


    
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Spring with an Applied Force
 Suppose an external 

agent, Fapp, stretches 
the spring

 The applied force is 
equal and opposite to 
the spring force

 Fapp = -Fs = -(-kx) = kx
 Work done by Fapp is 

equal to ½ kx2
max
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Example. If it takes 4.00 J of work to stretch a 
Hooke's-law spring 10.0 cm from its unstressed 
length, determine the extra work required to 
stretch it an additional 10.0 cm. 
Answer:

To stretch the spring to 0.2 m from 0.1 m 
requires an additional work of

 214.00 J 0.100 m2k

800 N mk 

   21 800 0.200 4.00 J 12.0 J2W   
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Kinetic Energy Kinetic Energy 

 Kinetic Energy is the energy of a particle due 
to its motion
 K = ½ mv2

 K is the kinetic energy
 m is the mass of the particle
 v is the speed of the particle
 the expression ½ mv2 can be derived using F = ma, and 

 A change in kinetic energy is one possible 
result of doing work to transfer energy into a 
system
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Kinetic Energy, cont
 Calculating the work

by integration:

2 21 1
2 2

f f

i i

f

i

x x

x x

v

v

f i

W F dx ma dx

W mv dv

W mv mv

 



 

 



 ma dx = m        dx = mv dv
dt
dv
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Work-Kinetic Energy Theorem
 The Work-Kinetic Energy Principle 

states W = Kf – Ki = K
 In the case in which work is done on 

a system and the only change in the 
system is in its speed, the work done 
by the net force equals the change 
in kinetic energy of the system.

 Kinetic energy possessed by an 
object of mass m and velocity v is
K = ½ mv2
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Work-Kinetic Energy Theorem

 The normal and 
gravitational forces do no 
work since they are 
perpendicular to the 
direction of the 
displacement
W = F x = K

= ½ mv2 – 0
(the vertical normal force 
has no effect)
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Nonisolated System
 A nonisolated system is one that interacts with 

or is influenced by its environment, e.g., push a 
block on a rough surface
 An isolated system would not interact with its 

environment (e.g., push a block on a friction-less 
surface.)

 The Work-Kinetic Energy Theorem can also be
applied to nonisolated systems. In that case 
there will be a transfer of energy across the 
boundary of an object (e.g., from the block to 
the surface where heat is generated.)
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Internal Energy

 The energy associated 
with an object’s 
temperature is called 
its internal energy, Eint

 In this example, the 
surface is the system

 The friction does work 
and increases the 
internal energy of the 
surface
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Potential Energy
 Potential energy is energy related to the 

configuration of a system in which the 
components of the system interact by 
forces

 Examples include:
 elastic potential energy – stored in a spring
 gravitational potential energy, e.g., you 

stand on top of Bukit Timah Hill
 electrical potential energy, e.g., you switch 

on electricity to iron your shirt
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Example. A 2.00-kg block is attached to a spring of force 
constant 500 N/m as shown in figure.  The block is pulled 5.00 
cm to the right of equilibrium and released from rest.  Find the
speed of the block as it passes through equilibrium if (a) the 
horizontal surface is frictionless and (b) the coefficient of friction
between block and surface is 0.350.

Answer:

(a) When the block is pulled back to 
equilibrium position, the potential energy 
in spring will be fully converted to the 
kinetic energy in the block when the 
spring returns to original length, i.e., 

½ k x2 = ½ m v2. 

So, v =      x x   =         x 0.05 = 0.79 m/s
m
k

2
500
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(b) If there is fiction on the surface, the 
potential energy on the spring is first 
wasted on the work done by friction. 
The remaining energy is converted to 
the kinetic energy in the block, i.e.,             
½ k x2 - μmg x = ½ m v2. 

In terms of initial sum and final sum 
of energies, you can also treat it as 

½ k x2 = μmg x + ½ m v2

½ x 500 x 0.052 = 0.35 x 2 x 9.8 + ½ x 2 x v2

v = 0.53 m/s
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Example. The ball launcher in a pinball machine has a spring 
that has a force constant of 1.20 N/cm. The surface on which the
ball moves is inclined 10.0° with respect to the horizontal. If the 
spring is initially compressed 5.00 cm, find the launching speed of 
a 100-g ball when the plunger is released.  Friction and the mass 
of the plunger are negligible.

Answer:

Initial energy stored in the spring 

= ½ k x2 =  ½ x 1.20 N/(10-2m) x (5 cm x 10-2)2 = 0.15 J

V

This 0.15 J is used to (i) move the ball up the slope of 10°
for a vertical distance of  5 cm x              = 0.87 cm, and 

(ii) provide the ball with a muzzle speed of v. So we have

0.1 kg x 9.8 m/s2 x 0.0087 m +  ½ x 0.1 kg x v2 = 0.15 J

v = 1.68 m/s

)10sin( 
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When pushing the crate with a force parallel to the ground, the force of friction 
acting to impede its motion is proportional to the normal force acting on the 
crate—in this situation, the normal force is equal to the crate’s weight. When 
pulling the crate with a rope angled above the horizontal, the normal force on the 
crate is less than its weight—the force of friction is therefore reduced. To keep 
the crate moving across the floor, the applied force in the parallel direction must 
be greater than or equal to the force of friction—pulling on the rope therefore 
requires a smaller parallel applied force. The work done in moving an object is 
equal to the product of the displacement through which it has been moved and 
the force component parallel to the direction of motion. The applied force 
component parallel to the ground is smaller when pulling the crate with the rope    
- thus, the work done to move the crate with the rope must be lesser, regardless 
of the weight of the crate or the displacement.

Example. You need to move a heavy crate by sliding it across a flat floor with a 
coefficient of sliding friction of 0.2. You can either push the crate horizontally or pull the 
crate using an attached rope. When you pull on the rope, it makes 30° angle with the 
floor. Which way should you choose to move the crate so that you will do the least 
amount of work? How can you answer this question without knowing the weight of the 
crate or the displacement of the crate?

Answer:

Normal 
forceNormal 

force
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To overcome the friction: 
F1 = µmg

Work done = F1 x d

Normal 
force

Normal 
force

F1

F2

mg

mgPushPush

PullPull

What if you pull at 0 What if you pull at 0 °°, i.e., in , i.e., in 
parallel with the surface?parallel with the surface?

µ = 1

µ = 1

The mechanical advantage is

37.1
1732.0

1
2
1


F

F
F
F

F2 cos 30° = µ (mg – F2 sin 30°)

F2 cos 30° + µ F2 sin 30° = µ mg

F2 (0.866 + 0.5) = µ mg

F2 = 0.732 µmg = 0.732 F1

Work done = (F2 cos 30°) x d

= 0.732 F1 x 0.866 x d

= 0.634 F1 x d

1

1

30°

To overcome 
the friction:
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Conservation of Energy

 Energy is conserved
 This means that energy cannot be 

created or destroyed
 If the total amount of energy in a 

system changes, it can only be due 
to the fact that energy has crossed 
the boundary of the system by some 
method of energy transfer
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PowerPower

 The time rate of energy transfer is 
called power

 The average power is given by

when the method of energy transfer is 
work

WP
t



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Instantaneous Power

 The instantaneous power is the 
limiting value of the average power as 
t approaches zero

 This can also be written as

lim
0t

W dWP
t dt  



dW drP F F v
dt dt

    

Power = force  x  velocity

Both exerted the same forcesame force over the 
same displacementsame displacement.  Therefore, both 
did the same amount of worksame amount of work.  Time Time 
does not matter for determining the does not matter for determining the 
work donework done.

Example. Mike applied 10 N of force 
over 3 m in 10 seconds.  Joe applied the 
same force over the same distance in 1 
minute.  Who did more work?

1.  Mike           2. Joe 
3.  Both did the same work

Answer: Because power  =  work / time, we see that 

Mike produced 0.5 WMike produced 0.5 W and Joe produced 0.6 WJoe produced 0.6 W of 

power.  Thus, even though Mike did more work, 

he required twice the time to do the work, and 

therefore his power output was lower.

Answer:Answer:

Example.Example. Mike performed 

5 J of work in 10 secs.  Joe 

did 3 J of work in 5 secs.   

Who produced the greater 

power?

1)   Mike produced more power 

2)   Joe produced more power 

3)   both produced the same               

amount of power



Example.Example. Engine #1 
produces twice the power 
of engine #2.   Can we 
conclude that engine #1 
does twice as much work 
as engine #2?

No!!No!! We cannot conclude anything about how much We cannot conclude anything about how much 
work each engine does.work each engine does. Given the power output, the 
work will depend upon how much time is usedwork will depend upon how much time is used. 
There are three possibilities: less, equal, more. less, equal, more. 

Answer:Answer:
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Example. A typical 10-year-old pitcher can 
throw a baseball at 70 km/h, but only a few 
professional athletes have the extraordinary 
strength needed to throw a baseball at twice 
that speed. Why is it so much harder to 
throw the baseball only twice as fast?

2

2
1 mv

Kinetic Energy =           . 

Answer:

So the baseball requires quadrupling (              ) 

the energy transferred to it by the professional pitcher. 

2

2
1 mv

2)2(
2
1 vm

The time require to deliver this energy is in one-half the time 
because the velocity of the ball is doubled. So the professional
pitcher needs to produce eight times as much power as 

that from the 10-year-old kid (                        ). lim
0t

W dWP
t dt  


X 4
X 0.5
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Units of Power
 The SI unit of power is called the watt

 1 watt = 1 joule / second 
= ((kg x m/s2) x m ) / s = 1 kg . m2 / s3

 A unit of power in the US Customary system 
is horsepower
 1 hp = 746 W

 Units of power can also be used to express 
units of work or energy
 1 kWh = (1000 W)(3600 s) = 3.6 x106 J

Energy transferred in 
1 hr at a constant rate

Not 1 kilo-watt 
per hour

Example.Example. When you 
pay the electric 
company by the 
kilowatt-hour, what 
are you actually 
paying for?

1)  current

2)  Voltage

3) energy

4)  power

5)  none of the   

above

Answer:Answer:
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Example. An energy-efficient light bulb, taking in 28.0 W of power, can produce 
the same level of brightness as a conventional bulb operating at power 100 W.

The lifetime of the energy efficient bulb is 10 000 h and its purchase price is 
$17.0, whereas the conventional bulb has lifetime 750 h and costs $0.420 per 
bulb. Determine the total savings obtained by using one energy-efficient bulb 
over its lifetime, as opposed to using conventional bulbs over the same time 

period. Assume an energy cost of $0.080 per kilowatt-hour.Answer:

kWh

kWh
(Energy efficient bulb)

(Conventional bulb)


