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PC1221 Fundamentals of 
Physics I

Lectures 17 and 18

Linear Momentum and Collisions

A/Prof Tay Seng Chuan
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Ground RulesGround Rules

 Switch off your handphone and pager
 Switch off your laptop computer and keep it
 No talking while lecture is going on
 No gossiping while the lecture is going on
 Raise your hand if you have question to ask
 Be on time for lecture
 Be on time to come back from the recess break to 

continue the lecture
 Bring your lecturenotes to lecture
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Linear Momentum

 The linear momentumlinear momentum of a particle or 
an object that can be modeled as a 
particle of mass m moving with a 
velocity v is defined to be the product 
of the mass and velocity:
 p = m v

 The terms momentum and linear momentum 
will be used interchangeably in this course, i.e., 
when we say momentum we also means linear 
momentum (which is in a straight line)
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Linear Momentum, cont
 Linear momentum is a vector quantity

 Its direction is the same as the direction of v

 The dimensions of momentum
(mass x velocity) are ML/T

 The SI units of momentum are kg · m / s
 Momentum can be expressed in component 

form (small letter p):
 px = m vx py = m vy pz = m vz

Momentum in 
x direction

Momentum in 
y direction

Momentum in 
z direction
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Newton and Momentum
 Newton called the product mvmv the 

quantity of motionquantity of motion of the particle
 Newton’s Second Law can be used to 

relate the momentum of a particle to 
the resultant force acting on it

with constant mass

 d md dm m
dt dt dt

    
vv pF a
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 The time rate of change of the linear 
momentum of a particle is equal to the 
net force acting on the particle
 This is the form in which Newton 

presented the Second Law
 It is a more general form than the 

one we used previously
 This form also allows for mass 

changes
 Momentum approach can be used to 

analyse the motion in a system of 
particles 

 d md dm m
dt dt dt

    
vv pF a
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Conservation of Linear 
Momentum
 Whenever two or more particles in an 

isolated system interact, the total 
momentum of the system remains 
constant
 The momentum of the system is 

conserved, but the momentum of 
individual particle may not necessarily 
conserved. 

 The total momentum of an isolated 
system equals its initial momentum

8

Conservation of Momentum, 2
 Conservation of momentum can be expressed 

mathematically in various ways
 ptotal = p1 + p2 =  constant
 p1i + p2i= p1f + p2f

 In component form for the various directions, 
the total momentum in each direction is 
independentlyindependently conserved
 pix = pfx piy = pfy piz = pfz

 Conservation of momentum can be applied to 
systems with any number of particles

final 
Sum

Initial 
Sum
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Conservation of Momentum, 
Archer Example
 The archer is standing on a 

frictionless surface (ice). 
We know the mass of the 
archer (with bow) and the 
mass of the arrow, and the 
speed of the arrow. What 
will be the recoil speed of 
the archer?

 Approaches to solve this 
problem:
 Newton’s Second Law – no, 

no information about F or a
 Energy approach – no, no 

information about work or 
energy

 Momentum – yes 10

 Let the system be the archer with 
bow (particle 1) and the arrow 
(particle 2)

 There are no external forces in the 
x-direction, so it is isolated in 
terms of momentum in the x-
direction

 Total momentum before releasing 
the arrow is 0

 The total momentum after 
releasing the arrow is 

p1f + p2f = 0
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 The archer will move in the 
opposite direction of the 
arrow after the release
 Agrees with Newton’s Third 

Law
 Because the archer is much 

more massive than the 
arrow, his acceleration and 
velocity will be much 
smaller than those of the 
arrow 

p1f + p2f = 0, or,

m1v1f + m2v2f = 0
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Impulse and Momentum
 From Newton’s Second Law

 Solving for dp (by cross multiplying) gives dp = Fdt
 By integration, we can find the change in momentum over 

some time interval

 The integral is called the impulseimpulse (I )of the force F acting 
on an object over the time t

 The impulse imparted to a particle by a force is equal to the 
change in the momentum of the particle (impulse-
momentum theorem). This is equivalent to Newton’s 
Second Law.

f

i

t

f i t
dt    p p p F I

= 
1
F
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 Impulse is a vector 
quantity

 The magnitude of the 
impulse is equal to the area 
under the force-time curve

 Dimensions of impulse are 
M (L T-2) T = M L T-1

= M L / T 
([] signs removed for simplicity)

 Impulse is not a property 
of the particle, but a 
measure of the change in 
momentum of the particle

f

i

t

f i t
dt    p p p F I

Force

Time
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If I throw an egg at you, how are you If I throw an egg at you, how are you 
going to catch it without messing out going to catch it without messing out 
yourself? yourself? 
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f

i

t

f i t
dt    p p p F I

Force

Time

If we are to keep the impulse 
to be a constant, i.e., the area 
under the curve is to remain 
unchanged, but we extend the 
interval of (tf - ti), what will be 
the net effect? 

We know:

Here, FF and pp are the samesame for 
both balls! It will take the same same 
amount of timeamount of time to stop them.

p 

p pp =  =  FFav av tt

Example.Example. A bowling ball 
and a Ping-Pong ball are 
rolling toward you with the 
same momentum.  If you 
exert the same force to stop 
each one, which one will 
take a longer time to bring it 
to rest?

av
t

p
F



1)  the bowling ball1)  the bowling ball

2)  same time for both2)  same time for both

3)  the Ping3)  the Ping--Pong ballPong ball

4)  impossible to say 4)  impossible to say 

Answer:Answer:

, so                .



p 

p 

Answer:Answer:

1)  the bowling ball1)  the bowling ball

2)  same distance for both2)  same distance for both

3)  the Ping3)  the Ping--Pong ballPong ball

4)  impossible to say4)  impossible to say

Example.Example. A bowling ball and 
a Ping-Pong ball are rolling 
toward you with the same 
momentum. If you exert the 
same force to stop each one, 
which stopping distancestopping distance is 
longer?

Since the momentum is the same for both 
balls, the ball with lesser masslesser mass has the larger larger 
speedspeed (why?  mv!)(why?  mv!), and thus the larger KElarger KE

vmvmv )(
2
1

2
1 2 (                     ). 

2

2
1 mv

Both rolling balls have velocity thus 
they have kinetic energy of           .

In order to remove that KE, 
work must be done, where W  =  W  =  Fd =         .     Fd =         .     
Because the force is the samesame in both 
cases, the distance needed to stop the less less 
massive ballmassive ball (larger KE) must be longerlonger.

2

2
1 mv
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Answer:
The force exerted by water on the nozzle (thus the man) is

The nozzle will accelerate to the right. Thus, the gardener must
apply a 15.0 N force (to the left) to hold the hose stationary.

Example. A garden hose is held as 
shown.  The hose is originally full of 
motionless water.  What additional force 
is necessary to hold the nozzle stationary 
after the water flow is turned on, if the 
discharge rate is 0.600 kg/s with a speed 
of 25.0 m/s?

Nxvvx
t

mF

t
vvm

t
mvmv

t
pFtFxp

if

ifif

15)025(6.0)(

)(





















(to the right in this diagram)
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 The impulse can 
also be found by 
using the time and
averaged force

 I =   t
 This would give the 

same impulse as the 
time-varying force 
does

F

f

i

t

f i t
dt    p p p F I tF
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Impulse Approximation
 In many cases of collision, one force acting on a particle will be 

much greater than any other force acting on the particle. When 
using the Impulse Approximation, we will assume this is true. 
The force will be called the impulse force. This approximation is 
very useful when the duration of collision is very short as we 
can ignore all other forces. E.g., when a baseball is struck by a 
bat, the time of the collision is about 0.01 second, and the force 
exerted by the bat on the ball is several thousand newtons so 
we can ignore the effect of their weights. This will simply our 
model. pi and pf represent the momenta (momentums) 
immediately before and after the collision respectively

 The particle is assumed to move very little during the collision
(at the short time interval of contact)
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Impulse-Momentum: Crash 
Test Example
 The momenta 

before and after the 
collision between 
the car and the wall 
can be determined 
(p = m v)

 Find the impulse:  
 I = p = pf – pi

 F = p / t
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The Fun FairThe Fun Fair
You have paid $10 to a stall owner at a fun fair. You have to 
knock down 3 pins arranged in a triangle from a distance. If 
you can do it you will be given a teddy bear. The stall owner 
gives you two items before you proceed:

(i) rounded bean bag

(ii) rubber ball

Both of them have same mass and same radius. You are 
allowed to use only one of the items to knock the pins down. 
Which item should you use? Why?

The more effective item to be used to knock down the pins is the rubber 
ball. The bouncy rubber ball will bounce back and continue to exert a 
force on the pin. The impulse (force x time) delivered by the rubber ball 
will be greater than delivered by the bean bag because the rubber ball 
will exert its forward force for a longer time (during contact and 
rebounding). The ball will rebound with its momentum reversed, having 
transferred roughly twice its original momentum to the pins.

Answer:
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Collisions – Characteristics 

 We use the term collision to represent 
an event during which two particles 
come close to each other and interact 
by means of forces

 The time interval during which the 
velocity changes from its initial to final 
values is assumed to be very short

24

Collisions – Example 1 

 Collisions may be the result of direct 
contact

 Its momentum is conserved
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Collisions –
Example 2

 Another type of collision needs not include physical 
contact between the objects. E.g., the collision of a 
proton, and a Alpha particle (the nucleus of a helium 
atom). As both are positively charged, they repel each 
other due to the strong electrostatic force between 
them at close separation and never come into physical 
contact.

 There are still forces between the particles
 This type of collision can be analyzed in the same way 

as those that include physical contact
26

Types of Collisions

 In an inelastic collision, kinetic energy is not 
conserved although momentum is still 
conserved
 If the objects stick together after the collision, it is 

a perfectly inelastic collision

 In an elastic collision, momentum and kinetic 
energy are conserved
 Perfectly elastic collisions occur on a microscopic 

level (eg, atomic or sub-atomic level)
 In macroscopic (eg, what you can see with your 

eyes) collisions (car accident, your friends knock on 
you, etc.), only approximately elastic collisions 
actually occur. E.g., some energy is lost in heat 
(sparks) or sound during collision
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Perfectly Inelastic Collisions 

 Since the objects 
stick together, they 
share the same 
velocity after the 
collision

 m1v1i + m2v2i =
(m1 + m2) vf

vf =
m1v1i   +  m2 v2i 

m1 + m2
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Example. A bullet of mass m is fired into a 
block of mass M initially at rest at the edge 
of a frictionless table of height h. The bullet 
remains in the block, and after impact the 
block lands a distance d from the bottom of 
the table. Determine the initial speed of the 
bullet.
Answer:

 

M 

v i 

m 

h 

d 

vf
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Collisions, cont
 In an perfectly inelastic collision, some 

kinetic energy is still lost, but the 
objects do not stick together

 Elastic and perfectly inelastic collisions 
are two extreme cases, most actual 
collisions fall in between these two 
types 

 Momentum is conserved in any type of 
collisions
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Elastic CollisionsElastic Collisions

 Both momentum
and kinetic energy
are conserved

1 1 2 2

1 1 2 2

2 2
1 1 2 2

2 2
1 1 2 2

1 1
2 2

1 1
2 2

i i

f f

i i

f f

m m
m m

m m

m m

 


 



v v
v v

v v

v v
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m1 (v1i – v1f) = m2 (v2f – v2i)                       …(2)

v1i + v1f = v2f + v2i , or, 
v1i – v2i = - (v1f - v2f)        …(3)

we have

From:

m1(v1i
2 – v1f

2) = m2 (v2f
2 – v2i

2), factoring both sides :

m1 (v1i – v1f)(v1i + v1f) = m2 (v2f – v2i)(v2f + v2i)       …(1)

From:

we have

Divide (1) by (2), we have

Equation (3) shows that the relative velocity of the two 
particles before collision,            , equals the negative of their 
relative velocity after the collision                  . 

v1i – v2i

- (v1f - v2f).
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Final Final velocities v1f , v2f . To solve for v2f, we rearrange 
(3) and obtain: v1f = v2f + v2i - v1i , and substitute it in 
the equation of linear momentum to get v2f.

m2 v2f = m1 v1i + m2 v2i – m1v1f

m2 v2f = m1 v1i + m2 v2i – m1(v2f + v2i - v1i )

(m1 + m2) v2f = (m2 – m1) v2i + 2 m1v1i

(m2 – m1) v2i 2 m1v1i

(m1 + m2) (m1 + m2)
v2f = +

(m1 – m2) v1i 2 m2v2i

(m1 + m2) (m1 + m2)
v1f = +Similarly:



In case 11 the bowling ball will almost remain at rest due 
to its inertia, and the golf ballgolf ball will bounce back with bounce back with 
speed close to speed close to vv (in its opposite direction).
In case 22 the bowling ball will keep going with speed close 
to v also due to its inertia. Hence the golf ballgolf ball will move move 
with speed close to 2with speed close to 2vv.

Example.Example. Consider two elastic collisions: 

1)  a golf ball with speed v hits a
stationary bowling ball head-on.

2) a bowling ball with speed v hits
a stationary golf ball head-on.  

In which case does the golf ball have the 
greater speed after the collision?

The magnitude of the relative velocity has to be equal 
before and after the elastic collision! v1i – v2i = - (v1f - v2f)

Answer：
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Example. Two blocks are free to slide along the frictionless wooden track
ABC shown in Figure. A block of mass m1 = 5.00 kg is released from A.

Answer：

   

2
1 1 1

1

1
2

2 9.80 5.00 9.90 m s

m v m gh

v



 

 1 2
1 1

1 2

1 9.90  m s 3.30 m s3f
m m

v v
m m


    



 21 m ax 1
1 3.302m gh m 

 
 

2

m ax 2
3.30 m s 0.556 m

2 9.80 m s
h


 

Let v1 be the speed of m1
at B before collision.

At the highest point (after collision)

Let v1f be the speed of m1
at B after collision.

Protruding from its front end is the north pole of a strong magnet, 
repelling the north pole of an identical magnet embedded in the 
back end of the block of mass m2 = 10.0 kg, initially at rest.  The 
two blocks never touch.  Calculate the maximum height to which m1
rises after the elastic collision.
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In the drawing on the right for 
Executive Stress RelieverExecutive Stress Reliever, The initial 
total momentum is mv, and the final 
total momentum is  

m(v/2) + m (v/2) = mv. 

This obeys the conservation of linear 
momentum. Explain if the scenario 
shown is possible or not if the 
collision is elastic.

Answer:

Considering the energy aspect based on elastic collision. The
initial energy in the system is    mv2. The final energy in the 

system is   m(v/2)2 +   m(v/2)2 =    mv2 . This has violated 
the conservation of energy in elastic collision. So the above 
scenario is not possible. 

2
1

4
1

2
1

2
1

36

Two-Body Collision with a Spring
Example. A 5.00-g bullet moving with an initial speed 
of 400 m/s is fired into and passes through a 1.00-kg 
block, as in Figure. The block, initially at rest on a 
frictionless, horizontal surface, is connected to a spring 
of force constant 900 N/m.  If the block moves 5.00 cm 
to the right after impact, find (a) the speed at which the 
bullet emerges from the block and (b) the mechanical 
energy converted into internal energy in the collision.

Answer:Answer:
Assume for an approximation that the bullet passes the block at a negligible 
time interval, and after the hit the block quickly reaches its maximum velocity 
Vi , and the bullet keeps going from the block penetration with a constant 
velocity v. The block then compresses the spring for a distance of 5.00 cm. 

Next by conservation of linear momentum, i im v M V m v 

= 100 m/s

m

M

M

Vi

v
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(b) the mechanical energy 
converted into internal energy 
in the collision.

Answer:Answer:

Final energy:

Initial energy (Kinetic energy in bullet):

Final energy - Initial energy: 25 J + 1.125 J – 400 J 

= -373.875 J

Kinetic energy 
in bullet

Potential energy 
in spring

374 J was lost. The lost energy is 
mainly converted to heat.

100 m/s
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Two-Dimensional Collisions
 The momentum is conserved in all 

directions
 Use subscripts for

 identifying the object
 indicating initial or final values
 the velocity components

 If the collision is elastic, use 
conservation of kinetic energy as a 
second equation
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Two-Dimensional Collision, 
example

 Particle 1 is moving at 
velocity v1i and particle 2 is 
at rest

 In the x-direction, the 
initial momentum is m1v1i

 In the y-direction, the 
initial momentum is 0
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Two-Dimensional Collision, 
example cont

 After the collision, the 
momentum in the x-direction is 
m1v1f cos   m2v2f cos 

 After the collision, the 
momentum in the y-direction is 
m1v1f sin   m2v2f sin 

 Let the angle take cares of the 
signs.
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Problem-Solving Strategies –
Two-Dimensional Collisions

 If the collision is inelastic, kinetic 
energy of the system is not conserved, 
and additional information is needed

 If the collision is perfectly inelastic (the 
objects stick together), the final 
velocities of the two objects are equal
(both objects are together).  Solve the 
momentum equations for the 
unknowns.
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ProblemProblem--Solving Strategies Solving Strategies ––
TwoTwo--Dimensional CollisionsDimensional Collisions

 If the collision is elastic, the kinetic 
energy of the system is conserved

 Equate the total kinetic energy before 
the collision to the total kinetic energy 
after the collision to obtain more 
information on the relationship between 
the velocities
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Two-Dimensional Collision 
Example

 Before the collision, the car 
has the total momentum in 
the x-direction only, and the 
van has the total momentum 
in the y-direction only

 After the collision, both have 
x- and y-components

44

Example. Two automobiles of equal mass approach an intersection. One 
vehicle is traveling with velocity 13.0 m/s toward the east and the other is 
traveling north with speed v2i.  Neither driver sees the other.  The vehicles 
collide in the intersection and stick together, leaving parallel skid marks at an 
angle of 55.0° north of east. The speed limit for both roads is 35 mi/h and the
driver of the northward-moving vehicle claims he was within the speed limit 
when the collision occurred. Is he telling the truth?

Answer：

18.6 x3600/1609 = 41.62 mi/h
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A basket ball (Ball A) of 
mass 500g and a table 
tennis ball (Ball B) of 
mass 20g are placed as 
shown in figure. The 
two balls are released 
at a certain height at 
the same time with the 
table tennis ball on top 
of the basket ball. What 
can you observe and 
why?

Ball A

Ball B
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Will this object (pumped 
with high pressure air) 
bounce back with a 
height greater than h? 

Why?Why?

Object

h
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The Center of MassThe Center of Mass

48

The Center of Mass

 There is a special point in a system or 
object, called the center of mass, that 
moves as if all of the mass of the 
system is concentrated at that point

 The system will move as if an external 
force were applied to a single particle of 
mass M located at the center of mass
 M is the total mass of the system
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Center of Mass, Coordinates

 The coordinates of the center of mass  
are

 where M is the total mass of the system

CM CM CM

i i i i i i
i i i

m x m y m z
x y z

M M M
  
  
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Center of Mass, position

 The center of mass can be located by 
its position vector, rCM

 ri is the position of the i th particle, 
defined by

CM

i i
i

m

M

 r

r

ˆ ˆ ˆ
i i i ix y z  r i j k
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Center of Mass, Example
 Both masses are on 

the x-axis
 The center of mass 

is on the x-axis
 The center of mass 

is closer to the 
particle with the 
larger mass
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Center of Mass, Extended 
Object

 Think of the extended object as a 
system containing a large number of 
particles

 The separation of particle is small, so 
the mass can be considered a 
continuous mass distribution
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Center of Mass, Extended 
Object, Coordinates

 The coordinates of the center of mass 
of the object are

CM CM

CM

1 1

1

x x dm y y dm
M M

z z dm
M

 



 


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Center of Mass, Extended 
Object, Position
 The position of the center of mass can 

also be found by:

where r is a vector

 The center of mass of any symmetrical 
object lies on an axis of symmetry and 
on any plane of symmetry

CM
1 dm
M

 r r
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Center of Mass, Example
 An extended object 

can be considered a 
distribution of small 
mass elements, m

 The center of mass 
is located at position 
rCM
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Example.Example. Find the 
center of masscenter of mass of a 
rod of mass M and 
length L.

Let λ (read as “lambda”) denote the linear mass 
density, or the mass per unit length, then λ =     . 
If we divide the rod into elements of length dx, then 

λ =     , or dm = λ dx. 

L
M

dx
dm

M
1 

L

o
xdm M

1 
L

o
dxx

M


2

2x
M
L

2

2

2
L

Xcm =               =                

=    [   ]  =       =   
L

0

Answer:Answer:

Area of triangle

y=x

2

2x

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How to do this?How to do this?

The disc is to roll down-hill from 
left to right, and to roll up-hill from 
right to left when it is released 
from rest. 58

How to do this?How to do this?

59

Motion of a System of Motion of a System of 
ParticlesParticles
 Assume the total mass, M, of the 

system remains constant
 We can describe the motion of the 

system in terms of the velocity and 
acceleration of the center of mass of 
the system 

 We can also describe the momentum of 
the system and Newton’s Second Law 
for the system
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Velocity and Momentum of a 
System of Particles

 The velocity of the center of mass 
of a system of particles is

 The momentum can be expressed 
as

 The total linear momentum of the 
system equals the total mass 
multiplied by the velocity of the 
center of mass

CM
CM

i i
i

m
d

dt M
 

 v
rv

CM toti i i
i i

M m   v v p p
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Acceleration of the 
Center of Mass

 The acceleration of 
the center of mass 
can be found by 
differentiating the 
velocity with 
respect to time

CM
CM

1
i i

i

d m
dt M

  va a
62

Forces In a System of Particles

 The acceleration can be related to a 
force

 If we sum over all the internal forces, 
they cancel in pairs, and the net force 
on the system is caused only by the 
external forces

CM i
i

M F a
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Newton’s Second Law for a 
System of Particles

 Since the only forces are external, the 
net external force equals the total mass
of the system multiplied by the 
acceleration of the center of mass:

 Fext = M aCM

 The center of mass of a system of 
particles of combined mass M moves 
like an equivalent particle of mass M
would move under the influence of the 
net external force on the system 64

Momentum of a System of 
Particles

 The total linear momentum of a system 
of particles is conserved if no net 
external force is acting on the system

 M vCM = ptot = constant when Fext = 0
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Motion of the Center of Mass, 
Example

 A projectile is fired 
into the air and 
suddenly explodes

 With no explosion, 
the projectile would 
follow the dotted line

 After the explosion, the center of mass of the 
fragments still follows the dotted line, the same 
parabolic path the projectile would have  
followed with no explosion 66

Rocket Propulsion Rocket Propulsion (Disk 2)(Disk 2)

 The operation of a rocket depends upon 
the law of conservation of linear 
momentum as applied to a system of 
particles, where the system is the 
rocket plus its ejected fuel
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Example.Example. Image that you are sitting in the Image that you are sitting in the 
middle of a frozen lake with zero velocity and middle of a frozen lake with zero velocity and 
no momentum. Itno momentum. It’’s a warm day and the wet s a warm day and the wet 
ice is remarkably slippery. Try as you like, you ice is remarkably slippery. Try as you like, you 
cancan’’t seem to get moving at all. How do you t seem to get moving at all. How do you 
get off the ice?  get off the ice?  
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Answer:Answer:

(a)(a) A man who is holding a shoe A man who is holding a shoe 
while standing still on ice while standing still on ice 

has zero momentum. has zero momentum. 

(b)(b) Once he has thrown the shoe to Once he has thrown the shoe to 
the right, the shoe has a the right, the shoe has a 
momentum to the right, and the momentum to the right, and the 
man has a momentum to the man has a momentum to the 
left. The total momentum of the left. The total momentum of the 
man and shoe is still zero. man and shoe is still zero. 
Because the man is much more Because the man is much more 
massive than the shoe, the massive than the shoe, the 
shoe moves much faster than shoe moves much faster than 
the man.the man.



69

Rocket Propulsion, 2

 The initial mass of the rocket including the major 
portion of the unburned fuel, plus,  a very very very 
small amount of fuel to be burned immediately is 
M + m at time ti and velocity v

 The initial momentum of the system is 
pi = (M + m) v 70

Rocket Propulsion, 3

 At some time t + t, 
the rocket’s mass has 
been reduced to M
and an amount of 
fuel, m has been 
ejected

 The rocket’s speed 
has then increased by 
v
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Rocket 
Propulsion, 4

 Because the gases are given some 
momentum when they are ejected out of the 
engine, the rocket receives a compensating 
momentum in the opposite direction

 Therefore, the rocket is accelerated as a 
result of the “push” (or thrust) from the 
exhaust gases

 In free space, the center of mass of the 
system (rocket plus expelled gases) moves 
uniformly, independent of the propulsion 
process

72

If the fuel is ejected with a speed ve relative to rocket, the 
velocity of the ejected fuel with respect to the Earth is v – ve.

By equating the total initial momentum of the system to the 
total final momentum, we have

(M + Δm)v = M(v+ Δv) + Δm(v - ve)
Simplifying the equation, we have   M Δv = ve Δm

But the increase in exhaust mass m is equal to the decrease  
mass M. So we have Δm = - ΔM. This give M Δv = ve (- ΔM).

Let v be the initial speed of the 
rocket with its initial amount of 
fuel (M + Δm), where M is the 
mass of the rocket with unburned fuel, 
and Δm is the mass of the fuel that is going to be burned and 
ejected. Over a short time of Δt, the rocket ejects fuel of 
mass Δm, and the speed is increased to  v + Δv, where Δv is 
the change in the speed of rocket.
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By integrating  M Δv = ve (- ΔM), we have

M dv = -ve dM

=  - ve dv  M
dMvf

vi Mi

Mf

vf – vi = - ve [ ln M]

ln i
f i e

f

Mv v v
M

 
    

 

Mi

Mf
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 The increase in rocket speed is proportional 
to the speed of the escape gases (ve)
 So, the exhaust speed should be very high

 The increase in rocket speed is also proportional to 
the natural log of the ratio Mi /Mf
 So, the ratio should be as high as possible, meaning the 

mass of the rocket should be as small as possible and it 
should carry as much fuel as possible, i.e., its payload (total 
weight – fuel weight) should  be as small as possible.

 What if What if MMii //MMff is close to 1?is close to 1?
 What if What if vvee is decreasing?is decreasing?

ln i
f i e

f

Mv v v
M

 
    

 

75

M dv = -ve dM

 The thrust on the rocket is the force exerted 
on it by the ejected exhaust gases

Thrust =

 The thrust increases as the exhaust speed 
increases

 The thrust increases as the rate of change of 
mass increases
 The rate of change of the mass is called the 

burn rate

e
dv dMM v
dt dt


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Example.Example. A size C5 model rocket engine has an average 
thrust of 5.26 N, a fuel mass of 12.7 grams, and an initial 
(total) mass of 25.5 grams. The duration of its burn is 1.90 s.  
(a) What is the average exhaust speed of the engine?  
(b) If this engine is placed in a rocket body of mass 53.5 
grams, what is the final velocity of the rocket if it is fired in 
outer space? Assume the fuel burns at a constant rate.
Answer:Answer:
(a)

(b)
787


