GEK1536, Computation and Machine, Tutorial 10 (last)

(For week 13 starting 3 Apr 06)

1. Suppose that we want to use an 8-bit char (a byte) to represent a floating point
number. The 7" bit will be used for sign (O for positive, and 1 for negative). We
use the next 3 bits for the biased exponent E, and the last 4 bits for the fractional
part xxxx of the binary number 1.xxxx x 2°. (a) What bias should be a reasonable
choice for the 3-bit exponent field, E=e+bias? (b) How many different floating
point values can you represent using this system? (c) Enumerate some of the
values (in decimal), particularly those close to 0, 1, and the largest. [No need to
represent the special values such as co and NaN as in IEEE.]

2. Write a C program to compute the value =, using the continued fraction formula:
12
32
52
72
92
2

2+ 1

2+

The number of terms used is given as a user input. It’s good if you can try your
code on your computer, but it is not a requirement.

4/ =1+

2+

2+
2+
2+

Home Work (Since there will be no more tutorial, handing in your work on or before
Friday 14 Apr 06 to Prof. Wang S12-02-17 or Oliver in their offices)

3. (Homework) Implement a simple C program to compute the square root of a

number. The program reads a (double precision) number x, and compute Jx
using the averaging method of Babylonians (c.f. lecture 2). The number of
iterations in the averaging process should not be fixed but determined by a
relative error tolerance ¢ (say with 10 decimal accuracy). It prints out the result
to the user.

Compiling and running of your program is not a requirement. But it does help
you checking if you have made any programming errors (bugs).



