
GEK1536, Computation and Machine, Tutorial 10 (last)

(For week 13 starting 3 Apr 06)

1. Suppose that we want to use an 8-bit char (a byte) to represent a floating point

number. The 7th bit will be used for sign (0 for positive, and 1 for negative). We
use the next 3 bits for the biased exponent E, and the last 4 bits for the fractional
part xxxx of the binary number 1.xxxx × 2e. (a) What bias should be a reasonable
choice for the 3-bit exponent field, E=e+bias? (b) How many different floating
point values can you represent using this system? (c) Enumerate some of the
values (in decimal), particularly those close to 0, 1, and the largest. [No need to
represent the special values such as ∞ and NaN as in IEEE.]

2. Write a C program to compute the value π, using the continued fraction formula:
2

2

2

2

2

2

14 / 1
32

52
72

92
112

2

π = +
+

+
+

+
+

+

The number of terms used is given as a user input. It’s good if you can try your
code on your computer, but it is not a requirement.

Home Work (Since there will be no more tutorial, handing in your work on or before

Friday 14 Apr 06 to Prof. Wang S12-02-17 or Oliver in their offices)

3. (Homework) Implement a simple C program to compute the square root of a
number. The program reads a (double precision) number x, and compute x
using the averaging method of Babylonians (c.f. lecture 2). The number of
iterations in the averaging process should not be fixed but determined by a
relative error tolerance ε (say with 10 decimal accuracy). It prints out the result
to the user.

Compiling and running of your program is not a requirement. But it does help
you checking if you have made any programming errors (bugs).

 1

