GEK1536, Computation and Machine, Tutorial 9

(For week 12 starting 27 March 06)

1. Computers mostly use 32-bit two’s complement to represent signed integers. For
simplicity, we use 8-bit two’s complement numbers in this exercise instead (it
actually exists as a “char” in the programming language C). Work out the 8-bit
two’s complement representation of the following integers:

(@1, (b) -2, (c) 123, (d) -27, (e) 226.
What will happen to the last value (e)?

2. Consider arithmetic of the binary numbers worked out in problem 1. Calculate in
binary bits the following:
(@ 1+ (-2), (b) 123 - 27, (c) 123 + 123
(d) (-2) x (-27), (e) 123 + 27 (give quotient and remainder).
What will happen to (c)? Is two’s complement representation convenient for
multiplication and division?

3. The floating-point numbers (numbers with decimal point) in computers are
presented according to the IEEE 754 standard. In single precision, it uses 1 bit for
sign (the 31-th bit), 8 bits for the biased exponent (E=e+127), and 23 bits for the
fractional part xxxx... of the binary number 1.xxxx.... x2° (the leading 1 is
assumed, but not represented explicitly in the bit pattern). What values do the
following bit patterns represent? These are given in hexadecimal (base-16)
notation.

(@“00000000~

(b)“3F80 00007,
(c)*4124 00007,
(d) “3 E AA AAAB”.

Home Work (hand in the following week tutorial)

4. (Homework) What do the following 32-bit patterns represent, if they are
interpreted as (a) unsigned integer, (b) signed integer, (c) IEEE floating point
number? [That is, each pattern can have three possible interpretations]

() 0000 0000 1000 0000 0000 0000 0000 0000
() 11111111111111111111111111111110
(1) 0000 0000 0000 0000 0000 0000 0000 0000

5. (Homework) Give the bit patterns for the following floating point numbers in 32-
bit single precision IEEE format:
(@ 1.0, (b) 128.0, (c) 0.30.

