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Abstract

Semiconductors, superconductors, conductive polymers and many other advanced

materials have deeply affected modern society. Every special property of these

materials is a macroscopic reflection of the microscopic interactions in them. Among

such interactions, electron-phonon interaction (EPI) is ubiquitous in solids, indicating

the interaction between the electrons and the lattice vibrations, i.e. the phonons.

This thesis studies the electron and phonon dynamics within EPI, respectively.

For electron dynamics, we explore the electron charge transport in one-dimensional

organic polymer treated as an open system with a two-terminal phonon bath. The

approach is based on nonequilibrium Green’s function (NEGF), generalized quantum

Langevin equation and molecular dynamic (MD) simulation. We employ a semi-

classical one-dimensional model to let one single electron evolve and calculate its

mean squared displacement as well as the diffusion constant. The simulation results

demonstrate that the charge transport behavior is bandlike when temperature is

increasing. By combining deformation potential approximation with Boltzmann

transport theory, we implement an analytical calculation to predict the diffusion

constant and find that it drastically disagrees with our MD simulation. As an exten-

sion, we implement the same approach to simulate a quasi one-dimensional organic

polymer and also compare the results with previous work which uses Boltzmann

transport theory. For this more complicated polymer, we do not succeed to draw a

convincing conclusion about the validity of Boltzmann transport theory due to the

size limit.

vii



For phonon dynamics, we focus on the phonon Hall effect (PHE). Since the first

experimental observation of the PHE in 2005, its physical origin and theoretical

explanation have been extensively investigated. While spin-orbit interactions are

believed to play important roles under external magnetic fields, nonmagnetic effects

are also possible. Here, we propose a mechanism of PHE which is induced by

electric current in a nonequilibrium system through EPI. The influence of the drift

electrons to the phonon degrees of freedom, as a correction to the Born-Oppenheimer

approximation, is represented by an antisymmetric matrix which has the same form

as in a typical phonon Hall model. We demonstrate the idea with a graphene-like

hexagonal lattice having a finite phonon Hall conductivity under a driven electric

current.

Although PHE has attracted a lot of attention in recent years with many

experimental explorations published, theoretical studies are still hovering around

phenomenon-based models. Moreover, previous microscopic theory was found unable

to explain large thermal Hall conductivity obtained by experiments in strontium

titanate (STO). Therefore, in an attempt to bridge this gap, we implement first-

principles calculations to explore the PHE in real materials. Our work provides a

benchmark of the PHE in sodium chloride (NaCl) under a large external magnetic

field. Moreover, we demonstrate our results in Barium titanate (BTO), and discuss

the results of STO in detail about their deviation from experiments. As a possible

future direction, we propose that the inner electronic Berry curvature and cubic

nonlinear potential play important roles in PHE in STO.

viii
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Electron-Phonon Interaction

The electron-phonon interaction determines the temperature dependence of

the transport behaviors such as electron mobility in semiconductors, induces the

conventional low-temperature superconductivity, and can play a role in topological

materials [1]. Moreover, the electron-phonon interaction can also affect phonons’

dynamics by a Berry phase term coming from electrons, which finally could result

in the so-called phonon Hall effect [2]. Straightforwardly, the electron-phonon

interaction can be understood that when there are phonons excited in a crystal, local

charge imbalance caused by this lattice distortion will drag the moving electrons. In

contrast, from phonons’ perspective, the moving electrons are also dragging phonons

at the same time, they are competing with each other to arrive at a dynamic

balance. Therefore, electrons and phonons are coupled to each other all the time

posing difficulty to solve their equations of motions rigorously. Translating this

naive description into contemporary language, a standard form of the Hamiltonian

1



CHAPTER 1. INTRODUCTION

including the electron-phonon interaction up to lowest order is [2]

Ĥ =
∑
nk

εnkc
†
nkcnk +

∑
qν

~ωqν(a†qνaqν + 1
2)

+ 1√
N

∑
k,q,mnν

gmnν(k, q)c†mk+qcnk(aqν + a†−qν).
(1.1)

In this Hamiltonian, εnk is the eigenvalue of an electron with crystal momentum

k and band number n, ωqν is the eigenfrequency of a lattice vibration with crystal

momentum q in the ν-th branch. c†nk and cnk (a†qν and aqν) are the creation and

annihilation operators of electron (phonon), respectively. gmnν(k, q) represents the

coupling matrix element of the electron-phonon interaction.

To analyze the electron-phonon interaction, a generally accepted way is to make

appropriate approximations. The best-known approximation is Born-Oppenheimer

approximation handling electrons and phonons separately based on the fact that

electrons are much lighter than nuclei. Equipped with this approximation, equations

of motion for electrons and phonons can be solved formally by eliminating each

other. With the elimination, the effect of phonons (electrons) in the equations of

motion for electrons (phonons) is replaced with a phonon (electron) self-energy term

using the Green’s functions formalism. In this way, we can explore the electron and

phonon dynamics within the electron-phonon interaction, respectively.

1.2 Trans-polyacetylene and SSH Model

Trans-polyacetylene has a dimerized structure illustrated in Fig. 1.1. It consists

of conjugate (CH) groups with alternating single and double chemical bonds. In

1977, Shirakawa, Heeger, and MacDiarmid discovered high electrical conductivity

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Ball-and-stick model of trans-polyacetylene.

−π
a − π

2a π π
2a

π
a

k

ε

Figure 1.2: Electronic band structure of the SSH model with perfect dimerization.
a is the length between two nearest (CH) group.

upon doping in the polyacetylene [3]. Inspired by their work, a new field of organic

conductive polymers was launched in physics. Therefore, to explore the charge

transport behavior in trans-polyacetylene, SSH model, the abbreviation of the

authors Su, Schrieffer, and Heeger, was firstly proposed in 1979 [4]. There are

3



CHAPTER 1. INTRODUCTION

some assumptions made in this model to simplify the description. Firstly, the

interchain electron hybridization was ignored, therefore, SSH model is a quasi one-

dimensional (1-D) model. Secondly, the σ electrons are treated adiabatically due to

the large gap between the σ bonding and antibonding states compared to the phonon

energies, while the π electrons are approximately described by a tight-binding model.

Moreover, each (CH) group is forced moving only along the bond (carbon-carbon

bond) direction, which again indicates it lies in 1-D space. The original Hamiltonian

[4] is given as follows:

Ĥ =−
∑
ns

[t0 − α(un+1 − un)](c†n+1,scns + c†nscn+1,s)

+ 1
2
∑
n

K(un+1 − un)2 + 1
2
∑
n

Mu̇2
n,

(1.2)

where c†ns and cns are the creation and annihilation operator of π electrons with

spin s on the n-th group, respectively, un is the displacement of n-th group, K

and M are the effective spring constant matrix and mass matrix, respectively, t0 is

the hopping integral for the undimerized 1-D chain, and α is the electron-phonon

coupling constant. For the perfectly dimerized system, the displacements can be

described by a general formula: un = ±(−1)nu0. In this case, the effective hopping

integral only has two different values, t0 − t1 and t0 + t1 with t1 = 2αu0 , which

represent the single bond and double bond, respectively. As Fig. 1.2 shows, the

dimerization will induce a band gap in the electronic band structure indicating

the system becomes lower in energy due to the distortion. Therefore, previous

equally spaced one-dimensional system with one electron per site is unstable, which

is the so-called Peierls instability. Moreover, the dimerization introduces non-trivial

4



CHAPTER 1. INTRODUCTION

topological properties into the system so that SSH model becomes the simplest 1-D

model with non-trivial topology.

1.3 Berry Phase Effect

Geometric phase did not appear in physical research until Aharonov and Bohm

proposed their famous A-B effect in 1959 [5]. Subsequently, in 1984, Michael Berry

systematically described the adiabatic evolution of an eigenstate around a loop

in the parameter space with parameters varying slowly [6]. During the evolution,

if no degeneracies in the parameter space, besides the usual dynamic factor, the

eigenstate will accumulate an extra phase factor which will not be cancelled even

when it reaches its starting point. This extra phase factor, therefore, will play a

role in determining and relating observables. Berry’s work has greatly influenced

different fields of physics including the quantum chemistry so that people named

this geometric phase as the Berry phase [7].

The derivation of the Berry phase and its associated quantities has already been

written in many textbooks, therefore, we just briefly introduce the general formalism.

Consider a time-varying Hamiltonian H(R) in the parameter space spanning by a

set of parameters R = (R1, R2, ...), where Ri = Ri(t) varies in time very slowly. The

parameters set moves along a closed path C so that R(T ) = R(0). Since the motion

is adiabatic, for each R(t) point, we have following equation:

H(R)|n(R)〉 = En(R)|n(R)〉, (1.3)

where |n(R)〉 is an orthonormal basis of the corresponding eigenstates at that point.

5



CHAPTER 1. INTRODUCTION

This equation is still valid if we multiply a phase factor, also called a gauge, on

both sides whether it is dependent on R. Constant factor is trivial, therefore, it is

natural to choose a smooth and single valued time-dependent function along the

path C. Assume the gauged eigen basis is |ψ(t)〉 = e−iθ(t)|n(R(t))〉, then according

to quantum theory, the time evolution of the system is

En(R(t))|n(R(t))〉 = ~
(
dθ(t)
dt

)
|n(R(t))〉+ i~

d|n(R(t))〉
dt

→ θ(t) = 1
~

∫ t

0
En(R(t′))dt′ − i

∫ t

0
〈n(R(t))| d

dt′
|n(R(t′))〉dt′.

(1.4)

The first term is the conventional dynamical phase. The extra second term is the

Berry phase. We can rewrite the second term as follows:

γn = i
∫ t

0
〈n(R(t′))| d

dt′
|n(R(t′))〉dt′

≡
∫
C
dR ·An(R),

(1.5)

where An(R) ≡ i〈n(R)|∇R|n(R)〉 is named as Berry connection, or Berry vector

potential due to its similarity to the vector potential of magnetic filed. Obviously,

the Berry connection is gauge-dependent. If we apply a gauge transformation

|n(R)〉 → eiξ(R)|n(R)〉, the Berry connection becomes An(R) → An(R) − ∂ξ(R)
∂R

.

After evolving along the path C, the difference is just ξ(R(0)) − ξ(R(T )). Since

we have assumed the phase factor is single-valued, ξ(R(0))− ξ(R(T )) must be an

integer multiple of 2π. Therefore, the Berry phase cannot be removed and is a

gauge-invariant quantity. Although there is an imaginary sign in Eq. (1.5), the Berry

phase is real because 〈n(R)|n(R)〉 = 1→ 〈n(R)|∇R|n(R)〉 = −〈n(R)|∇R|n(R)〉∗.

Therefore, γn = −Im
∫
C dR · 〈n(R)|∇R|n(R)〉. With the application of Stokes
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theorem, the Berry phase can be further rewritten as

γn = −Im
∫
dS ·

(
∇× 〈n(R)|∇R|n(R)〉

)
= −Im

∫
dS ·

(
〈∇Rn(R)| × |∇Rn(R)〉

)
≡
∫
dS · Ω(R),

(1.6)

where the integral is over the area enclosed by the path C, and

Ωµν(R) ≡ −Im
[
〈∇µn(R)|∇νn(R)〉 − (µ↔ ν)

]
(1.7)

is the Berry curvature.

Going through the derivation, we can conclude that the Berry phase has three

key properties. First, Berry phase cannot be cancelled by gauge transformation.

This gauge invariance makes it physical and possible to be measured directly through

interference phenomena [7]. Second, it is geometrical. It is not only a line-integral

of the Berry connection over a closed path, but also a surface integral of the Berry

curvature over an area suspending the path. Third, the Berry phase is closely related

to gauge field theories and differential geometry [8]. The integral of its associated

Berry curvature over an enclosed surface is quantized as integers which is known

as the Chern numbers. Due to these properties, the Berry phase effects have been

successfully applied to explain electrical transport behaviours such as quantum Hall

effect [9, 10], anomalous Hall effect [11, 12], anomalous thermoelectric transport [13],

quantum spin Hall effect [14, 15], and electron polarization [16]. These applications

elegantly connect mathematics and physics, which greatly boost our understanding

of condensed matter.
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Berry phase not only can attend the electrical transport, but also the phonon

transport. In recent years, many physicists have started to relate the phonon

transport with the Berry phase, such as the Berry-phase-induced heat pumping [17],

the Berry phase effect in molecular vibration [18], and the phonon Hall effect [19,

2]. However, since phonons and electrons obey different statistics, the respective

Berry phase effects are not the same. Moreover, in phonon system, there may

be non-Hermitian effective Hamiltonian, therefore, the corresponding Berry terms

should be slightly modified. Berry phase effect in non-Hermitian system is also

another intriguing field in physics.

1.4 Phonon Hall Effect

In general belief, Hall effect under magnetic field always appear in electrical

transport. However, in 2005, Strohm, Rikken, and Wyder observed the counterpart

in phonon transport, the phonon Hall effect. In their observation, the applied

magnetic field bends part of the heat current to the direction perpendicular to

both the temperature gradient and the magnetic field, which finally results in a

temperature difference. The experiment was performed on samples of paramagnetic

terbium gallium garnet (TGG), and the measured transverse temperature difference

has 10−4 order of magnitude in kelvin with the magnetic field being about 4 T

at an average temperature 5.45 K. The PHE was found linearly dependent on

the magnetic field in the range 0 to 4 T. Subsequently, more experiments have

confirmed the PHE [20, 21]. To understand this effect, in the past decade, several

theoretical explanations have been proposed [22, 23, 24, 25, 2]. Currently, the most

8
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successful microscopic theory was developed by Qin et al. in which the PHE is

related to the Berry phase of the phononic structure [2]. Their theory introduces a

correction to the traditional linear response theory, called the energy magnetization

[26]. This correction successfully cancels the divergence in previous theory [25] at zero

temperature which is inconsistent with thermodynamics. Inspired by these studies,

the PHE can be generalized that parallel to the Hall effect in electrical transport, as

long as there is a gauge potential playing a similar role as the vector potential in a

magnetic field, there will be PHE. This net vector potential could come from the inner

electron structure of an atomic system itself combined with an external magnetic

field [27], or other more complicated interactions like magnon-phonon interaction

[28]. All of the present PHEs, either experimental or theoretical, need external

[29] or internal magnetic field to induce the observable phonon Hall conductivity.

However, in principle, the magnetic field is not really necessary, therefore, there may

be some mechanisms of the PHE without the significant magnetic field.

Furthermore, with more experiments published, it is evident that we have not

reached the end of the story yet. In 2020, an experimental group found a large

PHE in a perovskite, STO [21]. Their setup for the experiment is illustrated in

Fig. 1.3(a) and (b) extracted from their publication. By their measurement, the

transverse temperature difference is about several mK with the magnetic field

in the range 0-12 T at an average temperature 24 K, and the corresponding Hall

conductivity has 10−2 order of magnitude in the unit of W/(K-m). Linearity between

the conductivity and the magnetic field is also showed in Fig. 1.3(c) and (d). The

authors thought their observations can be explained by Qin’s theory. However,
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Figure 1.3: (a) Setup for measuring longitudinal and transverse temperature differ-
ence. (b) Sample. (c) Longitudinal and transverse temperature difference against
the magnetic field. (d) Extracted phonon Hall conductivity κxy and field-induced
change in conventional conductivity δκ = κ(µ0H) − κ(0) against the magnetic
field. Reprinted figure with permission from [21]. Copyright 2021 by the American
Physical Society.

subsequently, a theoretical group pointed out that Qin’s theory cannot explain the

large values in experiments and they used Boltzmann transport theory to successfully

predict the ratio between the longitudinal thermal conductivity and the phonon

Hall conductivity [30]. Moreover, another experimental work found that if 16O in

STO is replaced with its isotope 18O, the phonon Hall conductivity will become

two orders of magnitude smaller [31]. This is a very bizarre behavior challenging

all current theories. The authors concluded that the PHE in STO with 16O is

more like an enhancement compared with SrTi18O3, and therefore they attributed

the reason most likely to the behavior of the transverse optical phonon modes in

STO at low temperature. All these recent experiments are performed on complex

materials, therefore, it is difficult to understand them with simplified models, and
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more accurate and persuasive first-principles calculations are needed.

1.5 Spin-Phonon Interaction

For a particle with spin, when it moves inside a potential, its spin will interact

with its orbital quantities. A famous example resulted from the spin-orbit interaction

is the shift of atoms’ energy level. With the help of the electromagnetic interaction

between the spin of the electrons and the magnetic field of nuclei from electrons’

perspective, the spin-orbit interaction can be detected through the energy split.

Similarly, for phonon transport, the vibrating ions could also interact with their

spins or the local magnetization, which is called spin-phonon interaction (SPI).

In the past century, the SPI has been widely studied [32, 33, 34, 35, 36, 37].

In its phenomenological description, the coupling raises between the pseudo-spin

representing the Kramers doublet of ions and the lattice vibrations. It can be

assumed that only the lowest Kramers doublet keeps degenerate within the crystal

fields, and as a result, the energy required to jump to excited states is greater than

the Debye energy [36, 37]. Therefore, as an approximation, we use a pseudospin-1/2

operator sn to represent the doublet for n-th ion. The Raman-type SPI without

external magnetic field is [25]:

HSPI = g
∑
n

sn · (un × pn), (1.8)

where g is a coupling constant related to the charge and mass of the ions, un and

pn are the displacement and momentum of the n-th ion, respectively. With external

magnetic field, the time-reversal symmetry is broken, therefore, the Kramers doublet
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is not degenerate any more and there will be a magnetizationM . Assuming isotropy

in the SPI, the mean-field approximation gives 〈sn〉 = cM . Thus the SPI can be

rewritten as:

HSPI = h ·
∑
n

un × pn. (1.9)

Here, h = gcM .

SPI was mostly applied to study the magnetic properties and longitudinal thermal

transport behaviors of the system previously. In the last decade, it was noticed

that SPI could also play a role in the PHE [25]. Although the SPI itself is not

particularly small, its induced PHE in the proposed theoretical model was somehow

weak compared with the experiments. One of the possible reasons is the isotropic

assumption. In real ionic materials, there are no free charges, instead, the charge

properties are described by Born effective charge tensor. Therefore, the form of the

SPI should be modified according to the real charge distribution. We also note STO

is not magnetic, so we cannot expect SPI in STO.

1.6 Perovskite

Perovskite, named in honor of the Russian mineralogist Lev Perovski, originally

refers to calcium titanium (CaTiO3). With more minerals similar to the CaTiO3

found, perovskite now refers to this fascinating family of materials with many

fantastic properties. All the compounds in this family have the same general formula

ABO3 and orthorhombic crystal structure shown in Fig. 1.4. In the formula, trivalant

cation A at eight corner positions usually is a rare earth ion such as Pr, La, Gd,

or divalent alkaline earth, e.g. Ca, Sr, Ba, etc. Cation B at the central position
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Figure 1.4: Crystal structure of general perovskite.

typically is a transition metal ion, e.g. Mn, Ti, Co, Fe, etc. O locating at the face

center usually is the oxygen anion and six of them form an octahedral cage. The

octahedron in the center could be easily distorted, and the distortions will greatly

affect the properties of the material, which is the main reason that perovskite has

that diversity in electrical, magnetic, and optical properties. Therefore, perovskite

has been widely studied in various applications especially in solar cells [38, 39].

1.6.1 Barium Titanate and Strontium Titanate

Alkaline earth titanate is one of the important subfamilies in the perovskite due

to their electrical properties. In this thesis, we mainly focus on two of them: BaTiO3

(BTO) and SrTiO3 (STO). One of the important properties of these two materials

is that they both go through phase transitions during temperature decreasing

13



CHAPTER 1. INTRODUCTION

Figure 1.5: Dielectric constant of STO versus temperature. Reprinted figure with
permission from [40]. Copyright 2021 by the American Physical Society.

process. Above 400 K for BTO, and above 105 K for STO, both of them are cubic.

When temperature decreases to lower than those critical value, they will experience

a phase transition. In this transition, the TiO6 octahedron will be distorted so

that they transform to tetragonal structure. Moreover, if the temperature keeps

decreasing, further transition sequence could happen: tetragonal→ orthorhombic→

rhombohedral. In cubic phase, BTO and STO are paraelectric, while in tetragonal

phase, they become ferroelectric. Both BTO and STO has large dielectric constant

in ferroelectric phase, however, dielectric constant of the BTO decreases to 0 when

temperature goes to 0 [41] while the STO’s dielectric constant remains to be an

almost constant large value (around 104 in SI units) when temperature < 4 K, which

is shown in Fig. 1.5. The surprising behavior of STO at extremely low temperature,

called quantum paraelectric, was attributed to the quantum fluctuation [40].

Due to the complex structures, BTO and STO are highly anharmonic so that we

cannot use the traditional harmonic oscillators to describe their lattice vibrations. To
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overcome the shortage of the harmonic potential, a quartic potential was introduced

to address the instability of the system [42], which is called the polarizability

model. With the extra quartic term, the Hamiltonian is fairly like the free energy in

Ginzburg–Landau theory. Applying the mean-field approximation, this model can

be solved self-consistently. Although the polarizability model could qualitatively

explain the ferroelectricity in perovskite and discover soft optical modes, it is rather

parameters-dependent. First-principles calculations have also been implemented

in recent years [43, 44, 45, 46] trying to match the measurements. However, the

computational results are still not good enough so far. Besides, the large dielectric

constants in STO raised by the soft optical modes could also contribute to its large

PHE [30]. Therefore, even current first-principles calculations are not perfect, it

deserves to try to combine it with the microscopic theory for PHE.

1.7 Objectives

The objectives of this thesis can be divided into two parts, one for the electron

dynamics, and the other for the phonon dynamics, which are coupled through

electron-phonon interaction. To calculate the transport quantities, one usual method

is the non-equilibrium Green’s function method (NEGF), which has been developed

very well so far [47]. However, NEGF can only deal with small open system, to

overcome this shortage, we can combine it with MD method. It has been showed

that as long as the electron density is low, it is valid [48]. Therefore, the first

objective of this thesis is to numerically calculate the charge transport behaviors in

organic polymers using the combined method. Boltzmann transport equation (BTE)
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method is another widely used one once the electron and phonon structure of the

materials is obtained from first-principles calculations. However, the validity of this

method for one dimensional case has not been strictly proved. Thus comparing with

the BTE method is the second objective of this thesis.

For phonon dynamics, the thesis focuses on the PHE. Current proposed mech-

anisms of the PHE all requires significant magnetic field, while according to the

general theory for PHE [2], magnetic field is not necessary. Therefore, The third

objective of this thesis is to propose a mechanism of PHE induced by electric current

and explore its properties. Moreover, there is still a gap between the experiments

and theoretical research for PHE. To bridge this gap, this thesis implements a

further exploration with the first-principles calculations trying to understand the

PHE observed in complex materials, which is the final objective of the thesis.

The thesis may provide insights to understand the electron and phonon dynamics

within the electron-phonon interaction. The rest of this thesis is organized as follows.

In Chapter 2, NEGF and other methods used in this thesis are provided. Chapter 3

explores the charge transport behaviors in organic polymers. Chapter 4 gives a

general description and derivation for the PHE, with which a current-induced PHE

is proposed. Based on the research in Chapter 4, first-principles calculations are

implemented in Chapter 5. At last, a conclusion of this thesis and an outlook are

given in Chapter 6.
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Chapter 2

Methods

In this thesis, to explore transport properties in electron and phonon dynamics,

NEGF, BTE method and Green-Kubo formula are employed. To figure out the

topological structure of an eigensystem, explicit and geometric formulas for Berry

curvatures are applied. Moreover, we borrow the density functional theory to

implement first-principles calculations for complex materials.

2.1 Nonequilibrium Green’s Function Method

The Nonequilibrium Green’s Function method, an elegant method handling the

nonequilibrium transport problems, was firstly introduced by Schwinger in 1951

[49, 50], and initially applied to solve the Brownian motion problem for a quantum

oscillator [51]. Subsequently, Kadanoff and Baym [52], and Keldysh [53] developed

equation of motion method and diagrammatic approach, respectively. With the

foundation built by them, the NEGF method has been applied in electrical and

thermal transport problems [54, 55, 56, 57, 58, 59]. The NEGF method for electron

and phonon are similar except for different statistics they obey. Since in this thesis,

phonon matters most, we briefly introduce the NEGF method for phonon following
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the discipline in the review by Wang et al. [60].

2.1.1 Green’s Functions for Harmonic Oscillator in Equilib-
rium

We start with a quantum harmonic oscillator to introduce the definitions of

the six Green’s functions. By second quantization, a harmonic oscillator can be

expressed as follows:

H = 1
2 u̇

2 + 1
2Ω2u2 = ~Ω(a†a+ 1

2), (2.1)

where u ≡
√
mx =

√
~

2Ω(a+ a†) with m and x being the mass and the displacement,

respectively. a† and a are the creation and annihilation operators having [a, a†] = 1.

The Heisenberg equation determines the evolution of a:

ȧ(t) = 1
i~

[a(t), H] = −iΩa(t), (2.2)

which has the simple solution a(t) = ae−iΩt. In statistical mechanics, we use the

canonical ensemble to describe the equilibrium system where there are many states

with corresponding probabilities. The probabilities are given by the density operator

ρ = eβH/Tr(e−βH), β = 1/(kBT ). Here kB is the Boltzmann constant, T is the

temperature. With |n〉 representing the orthonormal basis of the energy eigenstates,

we have the typical results in many textbooks,

a|n〉 =
√
n|n− 1〉, a†|n〉 =

√
n+ 1|n+ 1〉,

〈aa〉 = 0, 〈a†a†〉 = 0,

〈a†a〉 = n, 〈aa†〉 = 1 + n,

(2.3)

where 〈· · · 〉 = Tr(ρ · · · ) is the ensemble average, and n = 1/[eβ~Ω − 1] is the

Bose-Einstein distribution function.
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Usually, Green’s functions are defined with the creation and annihilation opera-

tors, but in phonon system, for convenience, we can define the six Green’s functions

using the u operator directly as follows:

G>(t, t′) = − i
~
〈u(t)u(t′)T 〉, G< = − i

~
〈u(t′)u(t)T 〉T ,

Gt(t, t′) = θ(t− t′)g>(t, t′) + θ(t′ − t)g<(t, t′),

Gt̄(t, t′) = θ(t′ − t)g>(t, t′) + θ(t− t′)g<(t, t′),

Gr(t, t′) = − i
~
θ(t− t′)〈[u(t), u(t′)T ]〉, Ga(t, t′) = i

~
θ(t′ − t)〈[u(t), u(t′)T ]〉.

(2.4)

Here G>, G< are called greater and lesser Green’s functions, respectively. Combining

the greater and lesser Green’s functions with a time step function θ(t) = 1 if t > 0

else 0, we obtain time-ordered Green’s function Gt and anti-time-ordered Green’s

function Gt̄. Furthermore, the commutator between u(t) and u(t′) together with the

step function forms retarded Green’s function Gr and advanced Green’s function

Ga. T as a superscript indicates matrix transpose, and 〈[u(t), u(t′)T ] should be

interpreted as 〈u(t)u(t′)T 〉 − 〈u(t′)u(t)T 〉T . We can easily discover that these six

Green’s functions are related to each other:

Gr −Ga = G> −G<,

Gt +Gt̄ = G> +G<,

Gt −Gt̄ = Gr +Ga.

(2.5)

These relations hold in both time domain and frequency domain with a Fourier

transform defined as G[ω] =
∫∞
−∞G(t)eiωtdt. Moreover, in frequency domain, we
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have the following relations:

Gr[−ω] = Gr[ω]∗, Ga[ω] = Gr[ω]†,

G<[ω]† = −G<[ω], G<[ω] = G>[ω]T = −G<[ω]∗ +Gr[ω]T −Gr[ω]∗.
(2.6)

These relations can be easily checked by substituting the definitions of the Green’s

functions.

As an example, we apply these formulas to the harmonic oscillator in equilibrium.

With the solution of a(t), the Green’s functions are

G<(t, t′) = − i

2Ω
[
ne−iΩ(t−t′) + (1 + n)eiΩ(t−t′)

]
,

Gr(t, t′) = −θ(t− t′)sin(Ωt− Ωt′)
ω

.

(2.7)

The reason they are called the Green’s functions is that the retarded Green’s function

is the solution of the equation

G̈r(t) + Ω2Gr(t) = −δ(t), (2.8)

where δ(t) is the Dirac δ function. This is coincident with the original definition of

the Green’s functions in mathematics. Switching into frequency domain, the Green’s

functions become

G<[ω] = −iπΩ
[
nδ(ω − Ω) + (n+ 1)δ(ω + Ω)

]
,

Gr[ω] = 1
(ω + iη)2 − Ω2 , η → 0+,

(2.9)

where η is a positive damping factor to force the integral converge. With the help of

the Plemelj formula, which is

1
x+ iη

= P
1
x
− iπδ(x), (2.10)
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Figure 2.1: Schwinger-Keldysh contour.

where P means the Cauchy principle value, we can further relate the Gr[ω], Ga[ω]

with the G<[ω] that

G<[ω] = (Gr[ω]−Ga[ω])n(ω). (2.11)

Therefore, in equilibrium system, there in fact is only one independent Green’s

function and usually, we choose the retarded one.

2.1.2 Nonequilibrium Contour-ordered Green’s Functions

Nonequilibrium simply means the density operator of the system is not propor-

tional to the canonical distribution e−βH any more, therefore, the corresponding

six Green’s functions have the same forms as we defined in equilibrium. In the

six Green’s functions, evolution direction in time plays an important role in distin-

guishing them. Therefore, a new type of Green’s functions, contour-ordered Green’s

functions, is proposed. Since the quantum evolution, represented by the evolution

operator U(t, t′), can either go forward or backward, we can always treat it as a

segment of the contour from −∞ to ∞, then back to −∞ from ∞ [60], as Fig. 2.1

shows. In this way, we define the contour-ordered Green’s function as follows:

G(τ, τ ′) = − i
~

Tr
[
ρ(t0)Tτu(τ)u(τ ′)T

]
, (2.12)
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where t0 is a reference time which could be −∞, τ stands for combination of two

indices (t, σ), σ = +(−) indicates the upper branch (lower branch) of the Schwinger-

Keldysh contour shown in Fig. 2.1. Tτ is a contour-order operator ordering the

operators along the contour. There are several special rules for calculus and derivative

along the contour which should be noted in application [60]:

d

dτ
→ d

dt
,
df(τ)
dτ

→ dfσ(t)
dt

,∫
C
dτ =

∫ ∞
−∞+

dt+ +
∫ −∞−
∞

dt− =
∑
σ=±

∫ ∞
−∞

σdt,

δ(τ, τ ′) = ∂θ(τ, τ ′)
∂τ

→ σδσσ′δ(t− t′).

(2.13)

Exhausting the four combinations of τ , we can map the contour-ordered Green’s

functions to previously defined Green’s functions:

G =

G
t G<

G> Gt̄

 . (2.14)

With this map, the convolution including contour-ordered Green’s functions, for

example,

C(τ, τ ′) =
∫
dτ1A(τ, τ1)B(τ1, τ

′), (2.15)

can be treated as matrix multiplication so that C<,> = ArB<,> + A<,>Ba. More

general results are known as the Langreth theorem [61].

2.1.3 Equation of Motion Method

Equation of motion method is an efficient method to start NEGF calculation in

coupled system comparing with diagrammatic method. The idea can be illustrated

in a coupled harmonic system with a standard Hamiltonian

H = 1
2p

Tp+ 1
2u

TKu, (2.16)
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where u is the stack of the displacement of each harmonic oscillator, p is the conjugate

momentum vector, and K is the spring constant matrix which is symmetric and

positive definite. The first-order equation of motion can be derived according to the

previous derivative rules:

∂G(τ, τ ′)
∂τ

= − i
~
〈Tτ u̇(τ)u(τ ′)T 〉 − i

~
δ(τ, τ ′)〈[u(τ), u(τ ′)T ]〉. (2.17)

The u̇(τ) cannot be determined, therefore, we apply one more derivative to both

sides, which results in

∂2G(τ, τ ′)
∂τ 2 = − i

~
〈Tτ ü(τ)u(τ ′)T 〉 − i

~
δ(τ, τ ′)〈[u̇(τ), u(τ ′)T ]〉. (2.18)

According to the Heisenberg equation ü = −Ku and the commutator [u(τ), p(τ ′)T ] =

i~δ(τ, τ ′)I, the second-order equation of motion can be simplified to be

∂2G(τ, τ ′)
∂τ 2 +KG(τ, τ ′) = −δ(τ, τ ′)I. (2.19)

To solve this equation of motion, we treat the system as an open system: a central

region with left and right leads. Moreover, we extract the decoupled harmonic

oscillators so that the spring constant matrix can be rewritten as follows:

K =



KL V LC 0

V CL KC V CR

0 V RC KR


, (2.20)

where V represents the coupling. We label the contour-ordered Green’s functions of

the decoupled harmonic oscillators as g(τ, τ ′) = diag{gL, gC , gR}, which satisfies the

equation of motion,

∂2gL,C,R(τ, τ ′)
∂τ 2 +KL,C,Rg(τ, τ ′) = −δ(τ, τ ′)I. (2.21)
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It is easy to derive the following Dyson equation:

G(τ, τ ′) = g(τ, τ ′) +
∫
dτ1

∫
dτ2g(τ, τ1)Σ(τ1, τ2)G(τ2, τ

′), (2.22)

where Σ is the off-diagonal part of the K [60].

2.2 Boltzmann Transport Equation

Boltzmann transport equation (BTE) is a semi-classical equation proposed by

Ludwig Boltzmann in 1872 to describe the statistical behaviors in nonequilibrium

thermodynamics [62]. Although it is semi-classical, it is rather powerful which is

still widely used in exploring electron and phonon dynamics in various materials.

The kernel idea of the BTE is to greatly reduce the enormous degrees of freedom

in analyzing the positions and momenta of each particle by employing probability

distributions of particles. In this way, the effect of uncountable collisions among

particles can be described by some macroscopic values, e.g. the relaxation time.

Consider a distribution fk(r) measuring the amount of particles in the infinitesi-

mal neighbourhood of r with state k, when the system is in nonequilibrium, obviously

the distribution varies in time. There are three mechanisms that can affect the dis-

tribution [62]: drift, external fields and scattering. Drift refers to particles’ entering

to state r from adjacent regions and particles’ leaving from current position at the

same time. Therefore, this mechanism must be related to the velocities of particles,

ḟk|drift = −vk ·
∂fk
∂r

. (2.23)

External fields can change the state k of particles by the electromagnetic interaction,
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and the rate of the change is

k̇ = e

~
(E + vk ×B). (2.24)

Due to k̇, the distribution will change at the rate

ḟk|field = − e
~

(E + vk ×B) · ∂fk
∂k

. (2.25)

Scattering, labelled as ḟk|scatt, is a net effect containing all the microscopic collisions in

the system, and we cannot rigorously address it without appropriate approximations.

Combining all the three terms, we obtain the general BTE,

∂fk
∂t

+ vk ·
∂fk
∂r

+ e

~
(E + vk ×B) · ∂fk

∂k
= ∂fk

∂t
|scatt. (2.26)

In the steady state, the first term must vanish. In equilibrium, the distribution

function fk → f 0
k is the Bose-Einstein or Fermi-Dirac distribution.

2.2.1 Linearized BTE and Single-mode Relaxation-time Ap-
proximation

The difficulty to solve the BTE is the complexity of the scattering term. If we

assume the deviation from equilibrium is small, we may only keep the lowest order

of the change (fk − f 0
k) in the scattering term while replace fk with f 0

k for all other

terms. In this way, the scattering can be simplified to be the integrated probability

of the particles jumping from one state to another,

ḟk|scatt =
∫

[fk′(1− fk)− fk(1− fk′)]P (k→ k′)dk′

≈
∫

(fk′ − fk)P (k→ k′)dk′,
(2.27)
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where we have used the principle of microscopic reversibility P (k→ k′) = P (k′ → k).

Therefore, the linearized BTE is

vk ·
∂f 0

k

∂r
+ e

~
(E + vk ×B) · ∂f

0
k

∂k
=
∫

(fk′ − fk)P (k→ k′)dk′. (2.28)

Moreover, with further assumptions, linearized BTE could have explicit solutions.

First, we assume the distribution may only rely on the energy of particles εk and

the energy surface is spherical, i.e. εk ∝ k2. Second, the probability should only

depend on the angle between two vectors so that the integral can be extracted out

to be a mode-dependent value, labelled as 1/τ(k), the single-mode relaxation time.

Thereafter, the BTE becomes

vk ·
[∂f 0

k

∂r
+ e(E + vk ×B) · ∂f

0
k

∂εk

]
= −fk − f

0
k

τ(k) . (2.29)

Once we have solved the BTE, we can calculate many transport observables, for ex-

ample, the electrical conductivity. The electric current J , by definition, is
∫
evkfkdk.

Substituting the solution of fk, we obtain [62]

J = −e2
∫
vkvk ·

∂f 0
k

∂εk
Eτ(k)dk. (2.30)

Since J = σE, the electrical conductivity tensor can be extracted out.

2.3 Berry Curvature

Berry curvatures contain information of the parameter space and determine

its topological structure. Moreover, Berry curvatures are closely related some

physical observables, for example, electrical conductivity in quantum Hall effect

where σxy = − e2

~ Ωxy. In PHE, Berry curvatures are also the key ingredients to
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calculate the phonon Hall conductivity. Therefore, in this section, two methods to

calculate Berry curvatures are given.

The first one is by explicit derivation starting from the eigen equation. Recall

our introduction for Berry phase in Chapter 2, the Berry curvatures are defined as

follows:

Ωµν = −Im
[
〈∂n(R)
∂Rµ

|∂n(R)
∂Rν

〉 − (µ↔ ν)
]
. (2.31)

Since H(R)|n(R)〉 = En|n(R)〉, applying partial derivative to both sides, we obtain

∂H(R)
∂Rν

|n(R)〉+H(R)|∂n(R)
∂Rν

〉 = ∂En(R)
∂Rν

|n(R)〉+ En(R)|∂n(R)
∂Rν

〉. (2.32)

Afterwards, we multiply 〈m(R)| to the left on both sides so that

〈m(R)|∂H(R)
∂Rν

|n(R)〉 = (En − Em)〈m(R)|∂n(R)
∂Rν

〉+ ∂En(R)
∂Rν

δmn. (2.33)

Inserting the identity∑
m
|m(R)〉〈m(R)| = I into the Eq. (2.31), the Berry curvatures

becomes

Ωµν = −Im
[∑
m

〈∂n(R)
∂Rµ

|m(R)〉〈m(R)|∂n(R)
∂Rν

〉 − (µ↔ ν)
]

= −Im
[ ∑
m6=n

〈n(R)|∂H(R)
∂Rµ
|m(R)〉〈m(R)|∂H(R)

∂Rν
|n(R)〉

(En(R)− Em(R))2 − (µ↔ ν)
]
.

(2.34)

The m = n case is excluded because it is real: 〈n(R)|n(R)〉 = 1→ 〈n(R)|∂n(R)
∂Rν
〉 =

−(〈n(R)|∂n(R)
∂Rν
〉)∗. In this way, the partial derivative now is applied to the Hamilto-

nian, which is much easier to calculate in practice.

The second method is a geometric method, which is usually used in lattice system.

The definition of the Berry phase is the net phase in the evolution of a state through

a closed loop, therefore, we can split the loop into infinitesimal segments and extract
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the Berry phase from a sequence of the inner products [16],

γn = −Im
[
ln
(
〈n0|n1〉〈n1|n2〉 · · · 〈nN−1|n0〉

)]
, (2.35)

where the subscript i = 0, 1, · · · , N − 1 represents R0, R1, · · · , RN−1. This

expression can be easily related to the continuum formula of the Berry phase by

Taylor expansion up to the first order,

ln〈n(R)|n(R+ dR)〉 = ln〈n(R)|
(
|n(R)〉+ ∂|n(R)〉

∂R
· dR+ · · ·

)
= ln

(
1 + 〈n(R)|∂R|n(R)〉 · d(R) + · · ·

)
= 〈n(R)|∂R|n(R)〉 · d(R) + · · · .

(2.36)

After taking the continuum limit, the higher order terms can be discarded so that

γn = −Im
∫
C〈n(R)|∂R|n(R)〉 · d(R). Since Berry phase can also be regarded as a

surface integral of the Berry curvatures over the area enclosed by the loop path

C using the Stokes’ theorem, the Berry curvatures can be approximated to be the

Berry phase through an infinitesimal loop divided by the area it suspends,

Ωn(R) ≈ γn
dS

, (2.37)

where vector dS points to the direction of the normal vector of the area dS. In the

continuum limit, it has been proved this simple formula can produce correctly the

Berry curvatures [63].

The explicit formula is elegant enough to be used in calculation for simple models,

while for more complicated Hamiltonian or a numerical one, it could be troublesome

and inefficient. Therefore, geometric method is more suitable in complex system.

28



CHAPTER 2. METHODS

2.4 Green-Kubo formula

Green-Kubo formula is a widely used formula to study transport phenomena

which generally describes the response of a system to an external perturbation up

to the first order. Since it only considers the first order perturbation, it is named

as the linear response theory and not rigorous. However, it is proven to be rather

convincing in a large number of applications, for example, the calculation of thermal

conductivity. This formula was developed by Melville Green in 1954 [64] and Royogo

Kubo in 1957 [65].

Consider a system with a time-dependent perturbation: H(t) = H0+H ′(t), where

H ′(t) is an adiabatic perturbation turned on at time 0. Under this perturbation,

the expectation of an observable A will vary from its value in equilibrium:

∆〈A〉t = 〈A〉t − 〈A〉0 = Tr[ρ(t)A]− Tr(ρ0A), (2.38)

where ρ0 = 1
Z e
−βH is the density matrix in equilibrium, ρ(t) is the density matrix

at time t, β = 1/kBT , T is the temperature, and H = H(t)− µN in general if the

system has a chemical potential µ. We define ρ(t) = ρ0 + δρ(t), then according to

its equation of motion within the Schrödinger picture,

dδρ(t)
dt

= 1
i~
(
[H0, ρ0] + [H0, δρ(t)] + [H ′(t), ρ0] + [H ′(t), δρ(t)]

)
, (2.39)

where H0 = H0 − µN . Note that [H0, ρ0] = 0 and [H ′(t), δρ(t)] is a second order

correction. Therefore, if we keep only the terms up to first order, the equation

becomes

i~
dδρ(t)
dt

− [H0, δρ(t)] = [H ′(t), ρ0]. (2.40)
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For convenience, we switch to interaction picture such that

δρI(t) = e
i
~H0tδρ(t)e− i

~H0t, H ′I(t) = e
i
~H0tH ′(t)e− i

~H0t. (2.41)

Then the equation is further simplified to be

i~
dδρI(t)
dt

= [H ′I(t), ρ0], (2.42)

with the solution δρI(t) = − i
~
∫ t

0 dt
′[H ′I(t′), ρ0]. If we switch back to Schrödinger

picture, and assume the perturbation is H ′(t) = Bf(t), where f(t) is a real function,

the deviation of the expectation of the observable A is

∆〈A〉t = − i
~

∫ t

0
dt′Tr{e i~H0(t′−t)[B, ρ0]e− i

~H0(t′−t)A}f(t′). (2.43)

Defining A(t) ≡ e
i
~H0tAe−

i
~H0t, B(t) ≡ e

i
~H0tBe−

i
~H0t and applying the identity of

the commutator, Tr{[B, ρ0]A} = Tr{ρ0[A,B]}, we obtain

∆〈A〉t = − i
~

∫ t

0
dt′Tr{ρ0[A(t), B(t′)]}f(t′). (2.44)

Furthermore, we can define a response function,

χAB(t− t′) ≡ − i
~
θ(t− t′)Tr{ρ0[A(t), B(t′)]} (2.45)

so that

∆〈A〉t =
∫ t

0
dt′χAB(t− t′)f(t′). (2.46)

2.4.1 Kubo Identity

Define the canonical correlator as follows:

〈A(t);B(t′)〉 ≡ 1
β

∫ β

0
dλTr

[
ρ0e

λH0A(t)e−λH0B(t′)
]
. (2.47)
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Then the Kubo identity says

〈Ȧ(t);B(t′)〉 = 1
β

Tr{ρ0

∫ β

0
dλeλH0Ȧ(t)e−λH0B(t′)}

= i

~β
Tr{ρ0

∫ β

0
dλeλH0 [H0, A(t)]e−λH0B(t′)}

= i

~β
Tr{ρ0

∫ β

0
dλ

d

dλ
[eλH0A(t)e−λH0 ]B(t′)}

= i

~β
Tr{ρ0[eβH0A(t)e−βH0 − A(t)]B(t′)}

= i

~β
Tr{[A(t), ρ0]B(t′)}

= 1
β

(
− i

~
Tr{ρ0[A(t), B(t′)]}

)
,

(2.48)

where we have used the fact that Ȧ(t) = i
~ [H0, A(t)]. Therefore, the response

function can be rewritten as

χAB(t− t′) = β〈Ȧ(t);B(t′)〉. (2.49)

2.5 Density Functional theory

Density functional theory (DFT) is a remarkable theory that make it possible

to calculate complicated structures in various real materials. Instead of solving the

Schrödinger equation of the N -electron wave function, DFT follows a new scheme

handling the electron density n(r) where r is the coordinates of electrons.

Generally, the non-relativistic Hamiltonian for a molecule is

H = TN(R) + Te(r) + UeN(r,R) + Uee(r) + UNN(R)

= −
∑
i

~2

2Mi

∇2
Ri
− ~2

2me

∇2
ri
−
∑
i

∑
j

Zie
2

4πε0
|Ri − rj|

+
∑
i

∑
j>i

e2

4πε0|ri − rj|
+
∑
i

∑
j>i

ZiZje
2

4πε0|Ri −Rj|
,

(2.50)
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where i, j label the electrons and nuclei,R and r are the coordinates for electrons and

nuclei, respectively,Mi refers to the mass of each nucleus with Zi being the associated

charge. TN and Te are the kinetic energies of electrons and nuclei. UNN and Uee

are the corresponding potential energies. UeN represents the Coulombic attraction

among electrons and nuclei, which mixes the electronic and nuclear coordinates so

that we can not use the product of electronic and nuclear wavefunction to obtain

the total wavefunction. To separate the mixed coordinates, the Born-Oppenheimer

approximation is assumed under the fact that a nucleus is much heavier than an

electron. Therefore, with this approximation, the nuclear coordinates R could be

regarded as parameters in electronic wavefunction, i.e. the total wavefunction can

be separated as Ψtotal = ψe(r;R)ψN(R). In this way, nuclei are just parametrically

distributed in the space with electrons moving around.

Having made the Born-Oppenheimer approximation, from the electrons’ per-

spective, the Tn can be neglected and the Unn can also be excluded since it only

contributes a constant. Therefore, the Schrödinger equation for electrons can be

written as

Heψe(r;R) = [Te(r) + UeN(r,R) + Uee(r)]ψe(r;R) = Eeψe(r;R). (2.51)

The total eigen equation is

HΨtotal(r,R) = [TN + UNN + Ee]Ψtotal(r,R)

−
∑
i

~2

2Mi

[2∇Riψe(r;R) ·∇RiψN(R) + ψN(R)∇2
Ri
ψe(r;R)].

(2.52)

If we assume the electronic wavefunctions do not vary with respect to the nuclear
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coordinates, the nuclear wavefunctions satisfies

HψN(R) = [TN + UNN + Ee]ψN(R) ≡ EtotalψN(R). (2.53)

This equation can be interpreted as the nuclei evolve in an effective potential

including the electronic contribution.

Although the Born-Oppenheimer approximation has simplified the total eigen

equation, it is still impossible to solve the Eq. (2.51) in general. Therefore, Hartree

made a great progress with a self-consistent field method by assuming electrons are

independent from each other and the original interacting terms are included in a

mean field [66]. In the Hartree’s method, the electronic Schrödinger equation can

be rewritten as

Heψe(r) =
∑
i

[Te(ri) + Uext(ri) + UH(ri)]ψe(r) = Eeψe(r). (2.54)

Here Uext(ri) is the potential from ions and UH(ri) is the Hartree potential from

averaging all other electrons. Since each electron is independent, the electronic

wavefunction should be a sequence of product,

ψe(r1, r2, · · · , rn) = φe(r1)φe(r2) · · ·φe(rn). (2.55)

Each one-electron wavefunctions φe(ri) will satisfy corresponding Schrödinger equa-

tion: He,iφe(ri) = Ee,iφe(ri), where
∑
i
He,i = He. Obviously, Hartree’s method has

greatly reduced the complexity of the original many-body problem by converting it

into a collection of one-body problems.
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2.5.1 Hohenberg-Kohn Theorems

In Hartree’s pioneer work, two basic principles in quantum physics, the anti-

symmetry principle and the Pauli’s exclusion principle, are completely excluded.

Therefore, the associated exchange and correlation energies are not considered. Fock

came up with a solution to include the missing terms [67]. In the final formulation,

the electronic wavefunction is elegantly expressed by Slater determinant containing

all possible linear combinations of one-electron wavefunctions. The updated method

is called the Hartree-Fock method.

Although the Hartree-Fock method has already succeeded in handling the ex-

change energy, the method itself is still limited by the number of electrons in

practice. Ways to deal with electronic wavefunctions did not achieve great success,

new methodology should be considered. Inspired by the earliest scheme proposed

by Thomas and Fermi, who dealt with the electron density and energy functional,

Hohenberg and Kohn made a great breakthrough in 1964 [68].

The Hohenberg-Kohn theorems redefine the electronic Hamiltonian He as the

sum of two terms: F ≡ Te + Uee only accounting for electrons, and the external

potential vext accounting for the electron-ion interaction. For simplicity, we ignore

the subscript and all items we discussed in this section are for electrons. The

expectation value of the energy and the electron density are obtained as follows:

E = 〈Ψ|H|Ψ〉

n(r) = 〈Ψ|n(r)|Ψ〉,
(2.56)

where E contains the external potential vext(r).There are two theorems in the
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Hohenberg-Kohn theorems, one is about the uniqueness of vext(r) as a functional of

n(r), the other is the variational principle.

2.5.1.1 The First Hohenberg-Kohn theorem

The first Hohenberg-Kohn theorem says: the external potential vext(r), and hence

the total energy, is a unique functional of the ground state electron density n(r).

We can prove this theorem by contradiction. Assuming two different external

potentials v1
ext(r) and v2

ext(r) produce the same electron density n0(r), the corre-

sponding Hamiltonian H1 and H2 will have two different ground states, Ψ1 and Ψ2.

Ground states have lowest energy, therefore,

E1
0 = 〈Ψ1|H1|Ψ1〉 < 〈Ψ2|H1|Ψ2〉 = 〈Ψ2|H2|Ψ2〉+ 〈Ψ2|(H1 −H2)|Ψ2〉

E1
0 < E2

0 +
∫
n0(r)[v1

ext(r)− v2
ext(r)]dr.

(2.57)

Equivalently, we also have

E2
0 < E1

0 +
∫
n0(r)[v2

ext(r)− v1
ext(r)]dr. (2.58)

Combining the Eq. (2.57) and Eq. (2.58), we obtain a contradiction: E1
0 + E2

0 <

E1
0 + E2

0 . Therefore, the external potential vext(r) is indeed uniquely determined by

the ground state density.

2.5.1.2 The Second Hohenberg-Kohn theorem

The second Hohenberg-Kohn theorem says: the ground state energy can be

obtained variationally: the density that minimizes the total energy is the exact

ground state density.

The first theorem indicates the ground state wavefunction Ψ and the expectation

value of the Hamiltonian E are functional of n(r). A density that is the ground-state
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of some external potential is known as v-representable. If there is another density

n(r) with which the energy reaches the minimum and it is different from the ground

state density n0(r), then one has

E0 = Evext [n0] > Evext [n] = 〈Ψ|H0|Ψ〉. (2.59)

However, according to the Rayleigh-Ritz variational principle, 〈Ψ|H0|Ψ〉 >= E0 for

any trial wavefunction Ψ. Therefore, the second Hohenberg-Kohn theorem is valid.

For any given vext(r), we have

Eext[n] = FHK[n] +
∫
n(r)Uext(r)dr, (2.60)

where FHK[n] = 〈Ψ0(n)|F |Ψ0(n)〉. Minimizing the energy by varying the density, we

can approach the ground state energy.

2.5.2 Kohn-Sham Equation

Although Hohenberg-Kohn theorems enable us calculate the ground state energy

by varying the electron density to minimize the energy, they do not provide a

practical method. Subsequently, Kohn and Sham constructed a fictitious system of

non-interacting particles generating the same density as any interacting system [69].

In this system, they map the interactions into an effective single-particle potential

Ueff , the Kohn-Sham potential, to obtain the one-electron Schrödinger equation,

which is known as the Kohn-Sham Equation. This equation greatly boosts the

numerical calculations for real materials.

Kohn-Sham method regroups the Hamiltonian in the Eq. (2.60) to form an
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exchange-correlation energy Exc:

Eext[n] = FHK[n] +
∫
n(r)Uext(r)dr

= Tnon[n] + EH[n] + Exc[n] +
∫
n(r)Uext(r)dr.

(2.61)

Here the exchange-correlation energy Exc[n] is defined as follows:

Exc[n] = T [n]− Tnon[n] + Eee[n]− EH[n]

≡ Tint[n] + Ex[n] + Eint[n]

≡ Ex[n] + Ec[n],

(2.62)

where the kinetic energy T [n] is divided into the non-interacting Tnon[n] and in-

teracting Tint[n], Ex and Eint[n] represent the exchange energy and correlations

among different electrons, respectively, Ec contains all the correlation energies. The

extracted EH[n] is the Hartree (electrostatic) energy of the electrons,

EH[n(r)] = 1
2

∫ ∫ n(r)n(r′)
|r − r′|

drdr′. (2.63)

For a system with the total number of the electrons fixed as N , according to the

second Hohenberg-Kohn theorem, we need to solve a variational problem which is

δ
[
F [n] +

∫
Uext(r)n(r)dr − µ

( ∫
n(r)dr −N

)]
= 0, (2.64)

where µ is the chemical potential. The associated Euler-Lagrange equation is

µ = δF [n(r)]
δn(r) + Uext(r) ≡ δTnon[n(r)]

δn(r) + Ueff(r). (2.65)

Here the Kohn-Sham potential, Ueff(r) ≡ Uext(r) + UH(r) + Uxc(r). The Hartree

potential and the exchange-correlation potential can be written as

UH(r) = δEH[n(r)]
δn(r) =

∫ n(r′)
|r − r′|

dr′,

Uxc(r) = δExc[n(r)]
δn(r) .

(2.66)
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Then the effective non-interacting Schrödinger equation for the orthonormal single-

electron states φi is [
− 1

2∇
2 + Ueff(r)

]
φi(r) = εiφi(r), (2.67)

where εi are the corresponding Lagrange multipliers. The density can be constructed

by summing over all the states up to Fermi energy:

n(r) =
N∑
i

|φ(r)|2, (2.68)

and the total ground state wavefunction of this system is constructed by a Slater

determinant of φi(ri):

ΨKS = 1√
(N !)

det[φ1(r1)φ2(r2) · · ·φN(rN)]. (2.69)

So far we have built up the base of the DFT. The only left problem is that the

exact form of the exchange-correlation potential Uxc is unknown and approximations

must be applied. There are many successful approximations, such as the local

density approximation (LDA) [69] made by Kohn-Sham themselves, generalized

gradient approximation (GGA) [70], and other complex approximations. Although

they are still approximations, the obtained results are in good agreement with

experiments for many materials making the DFT a powerful method in modern

physics. Moreover, many textbooks and developed software packages focusing on

the practical applications of the DFT have greatly deepen our understanding in

condensed mater physics.
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Chapter 3

Charge Transport in Organic Poly-
mers

In this chapter, we combine the NEGF method with the MD method to nu-

merically calculate the charge transport behaviors in the organic polymer, and as

an initial proof of concept, we apply it to a famous one-dimensional (1-D) model,

the Su-Schrieffer-Heeger (SSH) model [4], which describes trans-polyacetylene, one

kind of organic polymer. Besides, we follow the standard routine to explicitly

calculate the diffusion constant for the SSH model based on the BTE method and

compare the two results. Furthermore, based on the first-principles calculations

[71], we implement a similar simulation for another kind of polymer, poly(nickel-

ethylenetetrathiolate), i.e. poly(Ni-C2S4), which is treated as a quasi 1-D chain with

phonons being three-dimensional and electrons being one-dimensional.

3.1 Nonlinear Schrödinger Equation

Let us consider a typical Left-Central-Right (L-C-R) structure with electrons and

phonons coupled in central part and two semi-infinite phonon baths (no electrons)

on the two ends. These two leads are in equilibrium which can be characterized
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by temperature. Under this assumption, the Hamiltonian of this system is, Htot =

He +Hph +Hepi. The electron part is

He = c†Tc, (3.1)

which is a traditional tight-binding model with transferring matrix T . The phonon

part is

Hph =
∑

α=L,C,R

1
2(u̇α)Tuα + 1

2(uα)TKαuα

+ (uL)TV LC
ph uC + (uC)TV CR

ph uR,

(3.2)

where uα is a column vector of atom displacements which are multiplied by square

root of the atom mass, uα =
√
mxα (therefore all other quantities should be adjusted

accordingly), u̇α is the corresponding momentum, Kα is the spring constant matrix

of this phonon system (we assume all three parts share a same spring constant

matrix), and V LC
ph , V CR

ph are the coupling matrices between baths and central part

with V LC
ph = (V CL

ph )T , V RC
ph = (V CR

ph )T . For the EPI, we assume it is in the form of

Hepi =
∑
i,j,k

c†iM
k
ijcjuk, (3.3)

where Mk
ij is the coupling tensor. Working in the Heisenberg picture, we can

obtain the equations of motion for electrons and phonons, respectively, through the

Heisenberg equation. For electrons,

i~ċ = Tc+
∑
k

Mkukc. (3.4)

For phonons,

üC = −KCuC − c†Mc− V CL
ph uL − V CR

ph uR

üα = −Kαuα − V αC
ph uC , α = L,R

(3.5)
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The solution of the leads’ phonons is

uα(t) =
∫ t

t0
Dr
α(t, t′)V αC

ph (t′)dt′ + ∂Dr
α(t, t0)
∂t0

uα(t0)

−Dr
α(t, t0)u̇α(t0), α = L,R

(3.6)

where Dr
α(t, t0) = −iθ(t − t0)〈[uα(t), uα(t0)T ]〉 is the retarded Green’s function of

leads’ phonons, and it satisfies the following equation:

∂2Dr
α(t, t′)
∂t′2

+Dr
α(t, t′)Kα = −δ(t− t′)I. (3.7)

Based on this solution, we can obtain the equation of motion for central phonons,

üC =−KCuC − c†Mc−
∫ t

t0

[
V CL

ph Dr
L(t, t′)V LC

ph

+ V CR
ph Dr

R(t, t′)V RC
ph

]
uC(t′)dt′ + ξ,

(3.8)

where

ξ =
∑

α=L,R
ξα,

ξα(t) ≡ V Cα
ph

[
Dr
α(t, t0)u̇α(t0)− Ḋr

α(t, t0)uα(t0)
]
.

(3.9)

For simplicity, we define the self energy of phonon baths as follows:

Πr
α(t, t′) ≡ V Cα

ph Dr
α(t, t′)V αC

ph , α = L,R,

Πr ≡ Πr
L + Πr

R.

(3.10)

Then the solution can be rewritten as

üC = −KCuC − c†Mc−
∫ t

t0
Πr(t, t′)uC(t′)dt′ + ξ (3.11)

We can prove that the noise ξ satisfies the fluctuation-dissipation relation,

〈ξα(t)ξα(t′)T 〉 = i~Πα(t, t′) (3.12)

where Πα(t, t′) = 1
2V

Cα
ph (D>

α (t, t′) +D<
α (t, t′))V αC

ph .
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In normal mode space, we have

Dr
α(t, t0) = −θ(t− t0)Uα

sin
(
Ωα(t− t0)

)
Ωα

UT
α ,

uα(t0) =
√

~
2Ωα

(ae−iΩαt0 + a†eiΩαt0),
(3.13)

where Ωα and Uα are the normal mode eigenvalue and eigenvector matrices, re-

spectively, and UαUT
α = I. At time t0, leads are in equilibrium, therefore, 〈a†a〉 =

n(Ωα) = 1/[e~Ωα/kBTα − 1], the Bose-Einstein distribution, Tα is the temperature of

leads. Substituting these formulas into the correlation 〈ξα(t)ξα(t′)T 〉, we obtain

〈ξα(t)ξα(t′)T 〉 = V Cα
ph Uα

[ ~
2Ωα

cos
(
Ωα(t− t′)

)(
2n(Ωα) + 1

)
− i~

2Ωα

sin
(
Ωα(t− t′)

)]
UT
α V

αC
ph .

(3.14)

Note that the greater Green’s function in normal mode space can be expressed as

D>
α = Uα

[
− i

2Ωα

cos
(
Ωα(t− t′)

)(
2n(Ωα) + 1

)
− 1

2Ωα

sin
(
Ωα(t− t′)

)]
UT
α . (3.15)

Therefore, 〈ξα(t)ξα(t′)T 〉 = i~V Cα
ph D>

αV
αC

ph . Similarly, 〈ξα(t′)ξα(t)T 〉 = i~V Cα
ph D<

αV
αC

ph .

We define the symmetrized correlation function as

〈ξα(t)ξα(t′)T 〉 ≡ 1
2〈ξα(t)ξα(t′)T + ξα(t′)ξα(t)T 〉. (3.16)

Then we obtain the fluctuation-dissipation relation: 〈ξα(t)ξα(t′)T 〉 = iΠα(t, t′).

Now we have obtained the equations of motion for both the central electrons and

phonons, and this approach is borrowed from Lü and Wang [72]. For convenience,

we can just drop the superscript identifying the central part. As for now, what

we have done is accurate in quantum level. However, it is difficult to numerically

simulate a totally quantum many-body system, so we have to make some classical
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approximations: we interpret the operators c and u as complex wave function

and real variable respectively. If there is only one electron in the central part,

regarding c as a complex wave function is not an approximation, but replacing u

with real variable is indeed a classical approximation. Under this assumption, we

can implement a molecular dynamic simulation right away. In addition, we can also

try to solve the phonons’ equation of motion formally:

u(t) = −
∫ t

−∞
Dr(t, t′)

[
ξ(t′)− c†(t′)Mc(t′)

]
dt′, (3.17)

where Dr(t, t′) is the central phonons’ retarded Green’s function, and it satisfies

( ∂
2

∂t2
+K)Dr(t, t′) +

∫ t

−∞
Πr(t, t′′)Dr(t′′, t′)dt′′ = −δ(t− t′)I. (3.18)

In the frequency domain, it becomes: D̃r[ω] =
(
(ω+iη)2−K−Π̃r[ω]

)−1
. Substituting

the Eq. (3.17) back to the Eq. (3.4), we obtain:

i~ċ = Tc−
(∑
k,k′

∫ t

−∞
MkDr

kk′(t, t′)ξk′(t′)
)
c(t)

+
(∑
k,k′

∫ t

−∞
MkDr

kk′(t, t′)
∑
ij

[
c†i (t′)Mk′

ij cj(t′)
])
c(t)

(3.19)

It is similar to a Schrödinger equation except that it is nonlinear, so we call it the

nonlinear Schrödinger equation. However, the cost of eliminating phonons from

single electron’s equation of motion is much more expensive than solving the coupled

equations of motion, therefore in our MD simulation, we still solve the Eq. (3.4)

and Eq. (3.11) directly.
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3.2 Numerical Simulation for the SSH Model

3.2.1 Model and simulation details

As an illustration, we apply our method to the SSH model with the L-C-R

structure. The Hamiltonian of this model is

He = −
∑
j

γc†jcj+1 + h.c.,

Hph = 1
2
∑
j

K(uj+1 − uj)2 + 1
2
∑
j

u̇2
j ,

Hepi =
∑
j

αc†jcj+1(uj+1 − uj) + h.c.,

(3.20)

where γ is the hopping constant of the electron tight binding model, K is the

spring constant, and α is the electron-phonon coupling constant. Compared with

the original SSH model, there is no dimerization in our model for we only put one

electron into the system, which can not be dimerized. Based on the Hamiltonian,

we can derive its equations of motion. The time-dependent Schrödinger equation for

the electron is

iċj = [−γ + α(uj+1 − uj)]cj+1 + [−γ + α(uj − uj−1)]cj−1, (3.21)

and for phonons,

üj = −K(2uj − uj+1 − uj−1) + α(c†jcj+1 + c†j+1cj)− α(c†j−1cj + c†jcj−1). (3.22)

We use the 4th-order Runge-Kutta method to solve the time-dependent Schrödinger

equation, and use the central difference method to solve phonons’ equation of motion.

The size of the central part is chosen to be 999 unit cells in our simulation, and the

single electron locates at the center of the central part initially. We do not allow
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the electron to move into the two leads or the other end point, thus it is a hard

wall boundary condition and it will cause a size effect, which should be eliminated

correctly. The initial displacements of phonons can be obtained using the Eq. (3.17)

with no electron, which is

u(t) = −
∫ t

−∞
Dr(t, t′)ξ(t′)dt′ = −

(
F−1

(
D̃r[ω]ξ̃[ω]

))
(t), (3.23)

where the convolution theorem is applied, and we only pick some initial values.

To generate the noise from the baths, we use the Box-Muller method to produce

the distribution we want in the frequency domain, then we switch it into the time

domain by the Fourier transform.

Transferring into the frequency domain, the Eq. (3.12) becomes

〈ξ̃α(ω)ξ̃α(ω′)†〉 = 2πδ(ω − ω′)Π̃α[ω] = −i~πδ(ω − ω′)
[
2n(ω) + 1

]
ImΠr

α[ω], (3.24)

where

ξ̃α[ω] =
∫ ∞
−∞

ξα(t)eiωtdt,

Π̃α(ω) =
∫ ∞
−∞

Πα(t)eiωtdt.
(3.25)

We split the ξ̃α(ω) to be: ξ̃α(ω) = a(ω) + ib(ω), and demand that

〈a(ω)a(ω′)〉 = 〈b(ω)b(ω′)〉 = πδ(ω − ω′)Π̃α(ω),

〈a(ω)b(ω′)〉 = 〈b(ω)a(ω′)〉 = 0,
(3.26)

i.e., a(ω) and b(ω) are two independent variables obeying a normal distribution

with mean 0 and variance πΠ̃α(ω). The Box-Muller transform is a random number

sampling method to generate a pair of independent, normally distributed variables.

Consider a pair of continuous variables (x, y) which satisfy the following normal
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distribution:

p(x, y)dxdy = 1
2πσ2 e

−x
2+y2

2σ2 dxdy

= 1
2πσ2 e

− r2
2σ2 drdθ,

≡ 1
2πdθe

−zdz,

(3.27)

where r and θ are corresponding polar variables, z ≡ r2

2σ2 . The mean of the two

variables is 0, and the variance is σ2. Given two uniformly distributed variables U1

and U2, we can generate the θ and z by 2πU1 and −lnU2, respectively. Thereafter,

the original variables are obtained as follows:

x = σ
√
−2lnU2 cos2πU1,

y = σ
√
−2lnU2 sin2πU1.

(3.28)

Besides the noise, retarded Green’s functions of phonons are required. Generally,

the Green’s functions for an open system can be calculated with the help of the

surface Green’s functions, labeled as gr0 in this subsection, which can be obtained

numerically by a recursive method developed by M.P. Lopez Sancho et al.[73]. To

illustrate this method, let us consider a harmonic L-C-R leads system with the

spring constant matrices,

K̃ =



KL V LC 0

V CL KC V CR

0 V RC KR


, (3.29)
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where

KL =



. . .

k10 k00 k01

k10 k00


,

KC =



k00 k01

k10 k00 k01

. . .

k10 k00


,

KR =



k00 k01

k10 k00 k01

. . .


.

(3.30)

Here we assume k00 = k11 = · · · , k01 = k12 = · · · , k10 = k21 = · · · for simplicity (not

necessary), and k00, k01, k10 can be block matrices. For simplicity, we temporarily

write the right lead’s retarded Green’s function in the frequency domain as gR, and

it satisfies

(ω2 −KR)gR = I. (3.31)

We restrict the couplings between the leads and the central part are only nonzero for

corner elements (nearest neighbors) so that we only need gR00. For the first column

47



CHAPTER 3. CHARGE TRANSPORT IN ORGANIC POLYMERS

elements in gR, the sequence of equations are

(ω2 − k00)gR00 − k01g
R
10 = I,

−k10g
R
00 + (ω2 − k11)gR00 − k01g

R
20 = I,

· · ·

−k10g
R
n−10 + (ω2 − knn)gRn0 − k01g

R
n+10 = I, n >= 1.

(3.32)

Eliminating all odd indices, we obtain

[
(ω2 − εs1

]
gR00 = I + α1g

R
20,

· · ·

[
(ω2 − ε1

]
gRn0 = β1g

R
n−20 + α1g

R
n+20, n >= 2,

(3.33)

where we define

α1 ≡ k01(ω2 − k00)−1k01,

β1 ≡ k10(ω2 − k00)−1k10,

εs1 ≡ k00 + k01(ω2 − k00)−1k10,

ε1 ≡ k00 + k10(ω2 − k00)−1k01 + k01(ω2 − k00)−1k10.

(3.34)

This operation effectively doubles the lattice constant. If we keep applying this

operation, we can construct an iterative sequence as follows:

αl = αl−1(ω2 − εl−1)−1αl−1,

βl = βl−1(ω2 − εl−1)−1βl−1,

εsl = εsl−1 + αl−1(ω2 − εl−1)−1βl−1,

εl = εl−1 + αl−1(ω2 − εl−1)−1βl−1 + βl−1(ω2 − εl−1)−1αl−1,

(3.35)
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with ε0 = εs0 = k00, α0 = k01, β0 = k10. Repeating this iteration until αl and βl are

small enough so that εl ≈ εl−1 and εsl ≈ εsl−1, we obtain

gR00 ≈ (ω2 − εsl )−1. (3.36)

This Green’s function is known as the surface Green’s function gr0R. We can obtain

gr0L in the same way. With the left and right surface Green’s functions, the self

energy is simply:

Π̃r[ω] = V CLgr0LV
LC + V CRgr0RV

RC . (3.37)

Fortunately, exact solutions are feasible for a uniform and harmonic1-D chain

[74]. In the frequency domain, the retarded Green’s function satisfies

ω2D̃r[ω]−



. . .

−K 2K −K

−K 2K −K

. . .


∞×∞

D̃r[ω] = I. (3.38)

In elements, it is

(ω2 − 2K)D̃r
jj′ [ω] +KD̃r

j−1j′ [ω] +KD̃r
j+1j′ [ω] = δjj′ . (3.39)

We assume the solution is: D̃r
jj′ [ω] = Cλ|j−j

′|, and j > j′ without loss of generality.

|λ| < 1 must be required to make sure the D̃r
jj′ [ω] goes to zero when |j − j′| → ∞.

This solution also satisfies the translational symmetry. If j 6= j′, the λ can be easily

obtained,

λ1,2 =
−(ω2 − 2K)±

√
(ω2 − 2K)2 − 4K2

2K ,

λ1λ2 = 1,
(3.40)
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with |λ1| < 1 and |λ2| > 1. If j = j′, the constant C can be determined,

C = 1
ω2 − 2K + 2Kλ = 1

K(λ1 − λ2) . (3.41)

Therefore, the complete solution is

D̃r
jj′ [ω] = λ

|j−j′|
1

K(λ1 − λ2) . (3.42)

We can also obtain this solution by breaking the chain into three parts. Since it is a

uniform chain, the leads’ Green’s functions just satisfy the same equations except the

indices are semi-infinite, and we only need one surface Green’s function. Therefore,

the corresponding surface Green’s function and self energy are

gr0[ω] = −λ1

K
, Π̃[ω] = 2K2gr0. (3.43)

For the parameters, we use the typical SSH model parameter sets: γ = 2.5 eV,

α = 4.1 eV/Å, K = 21.0 eV/Å2, m = 1349.14 eVfs2/Å2, lattice constant a = 1.22 Å.

For simplicity, in this section, every time when we say α and K, it means α/
√
m

and K/m in atomic units, i.e., γ = 0.09 hartree, α/
√
m = 0.00052 hartree/a0,

K/m = 9.1 ∗ 10−6 hartree/a2
0, a = 2.3 a0, where a0 is the Bohr radius. As for the

time step, we choose it to be 1.0 a.u., which is about 0.0242 fs.

3.2.2 Results and Discussions

To check the validity of the noise we generate, we can calculate the energy of a

pure phonon system according to the Eq. (3.23). The energy of the 1-D chain can
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Figure 3.1: Energy of the 1-D lattice vibration with 99 sites. Black dots are numerical
results averaged over 1000 time points with 100 ensembles for each time point. Red
solid line and blue solid line are quantum and classical equipartition predictions,
respectively.

be derived theoretically.

〈E〉 = 〈
∑
j

1
2 u̇

2
j +

∑
j

1
2K(uj+1 − uj)2〉

= 〈
∑
j

K(uj+1 − uj)2〉

=
N−1∑
l=0

~ωq
(
n(ωq) + 1

2
)
, ωq = 2

√
K|sinqa2 |, q = 2πl

Na

≈ NkBT + 1
2

N−1∑
l=0

~ωq, kBT � ~ωq.

(3.44)

From the first line to the second, we have used the viral theorem, and the formula in

the second line can be used to evaluate the energy in our numerical simulation. The
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Figure 3.2: (a) Evolution of the charge density with central size 99 and total
simulation time 1000 in atomic units (about 24.2 fs). α is set to be 0.00052
hartree/a0. (b) Plot of the ensemble averaged squared displacement versus time at
T = 300 K with central size 999 and total simulation time 10000 in atomic units
(about 242 fs).

third line is the standard result of the 1-D lattice vibration. n(ωq) = 1/[e~ωq/kBT − 1]

is the Bose-Einstein distribution. If the temperature is high enough, we obtain the

classical equipartition result plus a quantum correction, which is the fourth line. We

have performed a comparison in Fig. 3.1, from which we can conclude our simulation

is consistent with the quantum predictions.

The electron stays at the center initially, then its wave function will spread to

both ends due to the hopping terms. The evolution of charge density can be observed

in Fig. 3.2(a), and obviously, there is a size effect. To study the electron’s motion

more quantitatively, we calculate the mean squared displacement of the electron

〈(r − r0)2〉(t) =
∑
j

(j − j0)2|c(j, t)|2, (3.45)

and take the ensemble average over 10000 ensembles. In Fig. 3.2(b), we illustrate

the comparison between two cases, with EPI and without. From this figure, we
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Figure 3.3: Electron’s movement for different coupling constant α value at T = 300
K. The unit of the α is hartree/a0, and the total simulation time is 10000 in atomic
units (about 242 fs).

can conclude that EPI indeed slows down the movement of the electron, but its

effect is not strong enough to go into a diffusive region. Naturally, we increase the

value of the coupling constant α to explore the electron’s behavior further, which

is given in Fig. 3.3. The increased coupling constant causes a further decrease of

the displacement of the electron, and as expected, we observe diffusive behavior for

suitable large α.

However, there is one issue that if the α is too large, 〈(r − r0)2〉(t) will have

a sudden increase, which is unreasonable. After analyzing our simulation results,
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Figure 3.4: (a) Different slope of 〈r2〉 versus time for different temperature When
α = 0.00156 hartree/a0 (3 times of the original α). (b) The relation between diffusion
constant and temperature (in SI units) based on Fig. 3.4(a) when α = 0.00156
hartree/a0.

we find that it can be understood that even in the diffusive region, there is still

a ballistic part whose velocity is not affected by the EPI, but determined by the

hopping parameter. Therefore, when the ballistic part hits two ends, it will be

trapped in the vicinity of the ends due to our boundary condition, while the diffusive

part is far from the ends at the same time. Although the ballistic part is very weak,

the cumulation of this trapping effect will result in a sudden increase in the ensemble

averaged squared displacement when α is large. To eliminate this size effect, we

separate the 〈(r − r0)2〉(t) into two parts:

〈(r − r0)2〉(t) = Pends〈(r − r0)2〉(t) + Pmiddle〈(r − r0)2〉(t), (3.46)

where Pends and Pmiddle represent the corresponding proportions which should be

determined through numerical tests. This separation is only applicable for those

situations in which the diffusive part takes much longer time to reach the ends than
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the ballistic part. In our simulation, the middle part occupies eighty percent of the

length and we only use the middle part to study the diffusive behavior. Figure 3.4(a)

shows the behavior of 〈(r − r0)2〉 at different temperature, and the corresponding

diffusion constants are given in Fig. 3.4(b). The diffusion constant fluctuates at

low temperatures, and then keeps decreasing for increasing temperatures. Using the

Einstein relation µ = eD
kBT

, we can immediately know that the increase of temperature

will result in a decrease of mobility, which is the feature of bandlike charge transport.

In 2006, Troisi and Orlandi published a paper where they did a similar work

as ours but with a slightly different model [75]. In their model, they just treated

phonons as independent harmonic oscillators, and they observed diffusive behaviors.

Therefore, we have tried to modify the SSH model to be close to Troisi’s one by

adding an onsite term which is much larger than the off-diagonal terms in phonons’

Hamiltonian, and using the same parameters. The results are completely different

from theirs, and the electron is almost ballistic under the EPI. However, this

difference is expected. In our model, the off-diagonal terms represent the couplings

among harmonic oscillators, and as a consequence, there are only acoustic phonons,

while in Troisi’s model, there are only optical phonons. Even small off-diagonal

terms can decrease the scattering rate between the electron and phonons remarkably.

3.2.3 Comparison with Boltzmann Theory

According to the Boltzmann transport theory, the electron states in solids can

be described by a distribution function f(r,k, t), which satisfies the BTE,

∂f

∂t
+ v · ∂f

∂r
+ F · ∂f

∂(~k) = ∂f

∂t

∣∣∣∣∣
scatt

, (3.47)
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where v is the velocity, and F is the external force. The scattering part usually is

very complicated, therefore, we invoke the relaxation time approximation,

∂f

∂t

∣∣∣∣∣
scatt

= −f(k)− f0

τk
(3.48)

We can also evaluate the scattering term by the Fermi’s golden rule,

P (k′ → k) = 2π
~
∑
k′
|M(k,k′)|2δ(εk − εk′), (3.49)

where M(k,k′) = 〈k|δU |k′〉 is the scattering matrix, and δU is the interacting

potential. Combining these two evaluations, we obtain

1
τk

= 2π
~
∑
k′
|M(k,k′)|2δ(εk − εk′)(1− cos θkk′), (3.50)

in which the θkk′ is the angle between k and k′ [76]. Therefore, the key point is to

work out the scattering matrix M(k,k′). In the SSH model, there are only acoustic

phonons, so we can use deformation potential method to carry out the scattering

matrix, which was firstly developed by Bardeen and Shockley in 1950 [77]. In the

deformation potential theory, the shift of the electron band edge caused by the

EPI can be attributed to a perturbative effect of a deformation potential. The

deformation potential, induced by the lattice distortion, can be written as follows:

δU = E1∆V, (3.51)

where E1 is the deformation potential constant, ∆V is the lattice deformation. We

assume the displacement of each atom in our model is uj ≡
√
mεja with strain

constant ε , and lattice constant a. Thus the electronic energy dispersion relation is

E = −2[γ − α(uj+1 − uj)] cos ka

= −2(γ −
√
maαε) cos ka.

(3.52)
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Here k is the lattice wave vector. Comparing with the original energy dispersion

relation E = −2γ cos ka, we can find the E1,

E1 = 2
√
maα cos ka. (3.53)

With the second quantization, the displacement of an atom in this 1-D chain is

uj =
∑
q

√√√√ ~
2ωqNm

(aqeiqja + a†qe
−iqja),

ωq = 2
√
K|sinqa2 |.

(3.54)

The dilation ∆V is defined as ∂uj
∂(ja) , and the eigenstates of non-interacting tight-

binding model is |k〉 = ∑
j

1√
N
eikja. Therefore, the scattering element 〈k|δU |k′〉 can

be written as

〈k|δU |k′〉 = iE1q

√√√√ ~
2ωqNm

(aq + a†−q)
∣∣∣∣∣
q=k−k′

. (3.55)

Taking the thermal average of its modular square, we obtain

〈
|〈k|δU |k′〉|2

〉
= ~E2

1q
2

2ωqNm
(2nq + 1), (3.56)

where nq = 1
eβ~ωq−1 is the Bose-Einstein distribution function. Since the deformation

potential theory is only applicable for long wave limit, i.e., only for acoustic phonons,

we take q → 0 forcing nq → kBT
~ωq � 1 and ωq →

√
Kqa ≡ cq. Thereafter, the

scattering matrix (in this 1-D case, it is just a number) becomes

|M(k, k′)|2 =
〈
|〈k|δU |k′〉|2

〉
= kBTE

2
1

cii
, (3.57)
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where cii ≡ Nmc2 and c is the lattice wave velocity. Substituting the scattering

matrix into the Eq. (3.50), we obtain the explicit formula for the relaxation time,

1
τk

=
∑
k′

2π
~

kBTE
2
1

NmKa2 δ(εk − εk′)(1− cos θkk′)

→ a
∫ dk′

2π
2π
~

kBTE
2
1

NmKa2
1

~|vk|
δ(k − k′) · 2

= 8aα2kBT cos2 ka

~2K|vk|
.

(3.58)

Here the factor 1− cosθkk′ is replaced with 2 because in 1-D, only when k = −k′,

this factor equals to 2 with the constraint εk = εk′ , otherwise it is 0. With the

relaxation time, the diffusion constant can be worked out [78],

D ≡

∑
k
v2
kτke

−βεk∑
k
e−βεk

→
∫ π
a

0 dkv2
kτke

−βεk∫ π
a

0 dke−βεk
(3.59)

We further simplify the formula to be

D = Ka2γ2

2~α2

∫ b
−b

(b2−x2)ex
x2 dx∫ b

−b
ex√
b2−x2dx

, (3.60)

where b ≡ 2βγ.

Since the BTE method always predicts diffusive behavior, immediately, we are

aware that it contradicts with our simulation results for SSH parameters. Therefore,

to make further comparison, we calculate the D−T relation using the Eq. (3.60) with

α = 0.00156 hartree/a0, which is shown in Fig. 3.5. Compared with our simulation

results, values in Fig. 3.5 are much smaller and is monotonically increasing, which

implies the relation that the BTE method predictions are not only quantitatively,

but also qualitatively inconsistent with our MD simulation results. In 1987, Jeyadev

and Conwell calculated polaron mobility in trans-polyacetylene [79] based on the

BTE and deformation potential method. They added a velocity limit to the polaron
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Figure 3.5: D-T relation predicted by Boltzmann transport theory under deformation
potential theory for α = 0.00156 hartree/a0.

so that the diffusion constant starts to decrease when temperature is above certain

value. When temperature is lower than that value, the diffusion constant still

increases as temperature is increasing. Their results are qualitatively similar to our

MD simulation, but quantitatively smaller. Moreover, their results are obtained

using the original SSH parameter, with which we cannot observe a diffusive behavior

in our simulation. Therefore, BTE method, even with a velocity limit, cannot explain

our results. This inconsistency may originate from that Boltzmann transport theory

predicts more scattering events than there really are in this 1-D non-dimerized SSH

model.
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Figure 3.6: Structure of the poly(Ni-C2S4). The upper one is viewed from a side,
and the lower one is from the top. Grey, yellow, blue, and white balls represent
carbon, sulphur, nickel, and hydrogen atoms, respectively. Reprinted figure with
permission from [71]. Copyright 2021 American Chemical Society.

3.3 Numerical Simulation for Poly(Ni-C2S4)

3.3.1 First-principles Calculations

The poly(Ni-C2S4) has a quasi 1-D structure with polymer backbones lie along

the x axis as shown in Fig. 3.6. In each monomer, there are one nickel, two carbons,

and four sulfurs, and they can move in three-dimensional space, which means there

are 21 phonon modes. According to our collaborator, Tianqi Deng, who is one of

the authors of the published work cited as [71], the B3LYP exchange correlation

functional [80] in Gaussian 09 program [81] with LanL2DZ basis set [82] for Ni atom

and 6-31G(d) basis set [83] for other atoms are employed to optimize the structure,

and the lattice constant turns to be a = 6.113 Å.

We use H i to represent the electron hopping integrals obtained form the first-

principles calculations, where i is to locate relative positions between two monomers.

The value of i ranges from -8 to 8 (8 is the chosen cutoff based on the first-principles
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Figure 3.7: (a) Electron band. (b) Phonon dispersion. Both plots are along the
high-symmetry path Γ→ X, where Γ = (0, 0, 0) and X = (0.5, 0, 0).

calculations) indicating we not only consider onsite and nearest neighbors, but also

further neighbors. The extracted spring constant matrix between any two monomers

is labeled as Ki
ll′ , where i still represents the relative positions with the range [−8, 8],

and l, l′ = 1, 2, 3, · · · , 21 refer to the normal modes. With these numerical results,

we can easily calculate the corresponding electron band and phonon dispersion.

Since we want to simulate single electron’s motion, only the first conduction band

of the poly(Ni-C2S4) as shown in Fig. 3.7(a) is considered. Twenty-one phonon

branches are plotted in Fig. 3.7(b), from which we can determine the frequency

range used in calculating the phonons’ Green’s functions.

The EPI in this polymer can be expressed by a tensor Mkl
ij . We use the index

l to declare the phonon normal modes from 1 to 21, the index k to address the

phonons in k-th supercell, and the indices i, j to locate the electron wavefunctions in

i-th and j-th supercell interacting with the phonons in k-th supercell. Based on the

results of the first-principles calculations, we truncate the EPI accordingly so that
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|i− j| <= 8, and min(|k − i|, |k − j|) <= 8. For simplicity, we can take an index

transformation: i→ i− j, j → j− k, k → (k− 1)× 21 + l so that the transformed i

represents the relative position between two electron wavefunctions ranging from −8

to 8, j represents the relative position between one of the electron wavefunction and

the phonons, which is in the range [−16, 16], and k merges the location of phonons

and their normal modes with a new range from 1 to N × 21, where N is the number

of supercells. The updated indices i, j should satisfy the restriction |i− j| <= 8.

3.3.2 MD Simulation Details, Results and Comparison

In our MD simulation, there is still only one electron, and we only allow the

electron to hop between monomers. Therefore, compared with previous simulation

for the SSH model, the only difference is the degrees of freedom of the phonons.

Since the phonons’ Green’s function can be easily extended to three dimension using

the same algorithms as before, it is not a big problem. Recall the Sancho’s iterative

method we introduced previously, the ingredients k00, k01, k10 for the phonons’

Green’s functions are block matrices in this case,

k00 =



K0 K1 · · · K8

K−1 K0 · · · K7

... . . . . . . . . .

K−8 K−7 · · · K0


, k01 =



0 0 · · · 0

K8 0 · · · 0

... . . . . . . . . .

K1 K2 · · · 0


, k10 = kT01. (3.61)

The real issue is how to generate the noise in this case. The noise still satisfies the

fluctuation-dissipation relation, except that the self energy Πr[ω] is a block matrix
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Figure 3.8: Ensemble averaged squared displacement versus time at T = 300 K for
the poly(Ni-C2S4). The step length of the time is chosen to be 2 in atomic units,
and the total simulation time is 2000 in atomic units (about 48.4 fs).

now,

Πr[ω] =



k10g
r
L[ω]k01 0 0

0 0 0

0 0 k01g
r
R[ω]k10


(N×21)×(N×21)

, (3.62)

where we have assumed the leads-center couplings are only non-zero for corner block

elements. The surface Greens’ functions are also block matrices. To generate the

noise, we can use the algorithm discussed by Fishman in his book [84] using the

Cholesky decomposition. If a random vector Z has a mean vector µ and a covariance
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Figure 3.9: Ensemble averaged squared displacement against time at T = 300 K for
different strength of the EPI with time step length 2 and total simulation time 2000
in atomic units.

matrix Σ which is positive definite, it can be generated by following equation:

Z = cX + µ, (3.63)

where c is the lower triangular matrix of the Cholesky decomposition of Σ, i.e.,

ccT = Σ, and X is a vector obeying standard uncorrelated Gaussian distribution

N (0, I).

Due to the complexity of this three-dimensional case, we only put 99 monomers

in the central part with total simulation time 2000 in atomic units (about 48.4 fs).

We still let the electron locate at the middle site initially. The ensemble averaged
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mean square displacement of the electron against time with and without EPI are

illustrated in Fig. 3.8. It can be seen that the two cases are almost coincident. The

slope in this log-scaled plot is about 1.99 meaning that the electron’s motion is in

the ballistic region. After reviewing the original data, we find that the EPI tensor

is several orders of magnitude smaller than the electron hopping term. Therefore,

we can conclude that in this polymer, the EPI is too weak to affect the electron’s

hopping, which implies there should be high conductivity. In the limit of low

concentration of charge carriers we can reach, the BTE method predicts that the

diffusion constant D is about 66 cm2s−1 [71], which is already very high. According

to our simulation, D can reach 90 cm2s−1, although it does not converge due to

the size limit. Moreover, if we manually enlarge the EPI, the electron’s motion gets

slowed down and can be localized when the EPI is strong enough as indicated in

Fig. 3.9. The EPI effectively contributes a random onsite terms to the electron’s

Hamiltonian making it similar to the Anderson tight-binding model, which results

in the Anderson localization [85]. However, the original EPI in the polymer is rather

weak that the localization length is too large to reach in our simulation.

3.4 Summary

In summary, we have developed a MD method to explore single electron’s

transport behavior in 1-D among a phonon system with phonon leads at two ends.

In our approach, although we have made some classical assumptions, the bath effect

is treated quantum mechanically at least, and it has the advantage that it can

deal with large system where fully quantum-mechanical treatment is not applicable.
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Based on our results, the motion of single electron in the 1-D SSH model with

parameters for trans-polyacetylene does not lie in the diffusive region, but in a super

diffusive region. When we increase the coupling constant α, it becomes diffusive.

However, even in the diffusive range, the diffusion constant is much larger than the

prediction of the BTE method. Therefore, the BTE method is inapplicable to the

1-D SSH model. Furthermore, the simulation for poly(Ni-C2S4) tells us that the EPI

in this polymer is so weak that we need to simulate a large size for a long time to

observe a small effect on electron’s motion, which is not acceptable. Nonetheless, at

least we can conclude that for both the SSH model and poly(Ni-C2S4), our simulation

gives higher diffusion constant than what the BTE method predicts.
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Chapter 4

Phonon Hall effect

Phonon Hall effect, as a phonon analog to the quantum Hall effect of electrons,

was not discovered until last decade. However, a hint of this effect can be traced

back to a pioneer study by Mead and Truhlar in 1979 [86]. Consider a system with

a Hamiltonian as follows:

Htotal = Hph(R) +Hel(r) +HEPI(r,R),

Hph =
3N∑
n=1

(−i~∇Rn)2

2Mn

+ U(R),
(4.1)

where the three terms represent the phonons’ Hamiltonian, electrons’ Hamiltonian,

and electron-phonon interaction, respectively. R locates the ions, and r locates the

electrons. Mn is the mass of n-th ion, N is the total number of ions, and U(R) is

the total potential among them. If we apply the Born-Oppenheimer approximation

to this system, the total wave function is

Ψ(r,R) = ψ(R)|αi(R)〉, (4.2)
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where ψ is the nuclear wave function, and αi(R) is the i-th member of the set of

orthonormal eigenstates of the electronic Hamiltonian satisfying

(Hel +HEPI)|αi(R)〉 = εi(R)|αi(R)〉,

〈αi(R)|αi′(R)〉 = δii′ ,

(4.3)

where εi is the electronic energy. It can be seen that under the Born-Oppenheimer

approximation, electrons’ degrees of freedom are not considered in the total wave

function. Therefore, the total wave function satisfies

[ 3N∑
n=1

((−i~∇Rn)2

2Mn

) + U(R) + εi(R)
]
ψ(R)|αi(R)〉 = Eψ(R)|αi(R)〉, (4.4)

where E is the total energy. The second-order derivative of the first term in the left

hand site can be expanded to be

∇2
Rn

(
ψ(R)|αi(R)〉

)
= ∇Rn ·

[(
∇Rnψ(R)

)
|αi(R)〉+ ψ(R)∇Rn|αi(R)〉

]

=
(
∇2
Rnψ(R)

)
|αi(R)〉+ 2

(
∇Rnψ(R)

)
∇Rn|αi(R)〉

+ ψ(R)∇2
Rn|αi(R)〉.

(4.5)

Multiplied by 〈αi(R)|, the Eq. (4.4) becomes

3N∑
n=1

[(−i~∇Rn)2

2Mn

− ~2

Mn

〈αi(R)|∇Rn|αi(R)〉∇Rn −
~2

2Mn

〈αi(R)|∇2
Rn|αi(R)〉

]
ψ(R)

+
(
U(R) + εi(R)

)
ψ(R) = Eψ(R).

(4.6)

For convenience, we define An(R) ≡ i~〈αi(R)|∇Rn|αi(R)〉, which currently is

difficult to compute in first-principles calculations and needs further investigations.

Moreover, if we insert the completeness ∑
i
|αi(R)〉〈αi(R)| = I into the second-order

derivative on |αi(R)〉, and use the Born-Oppenheimer approximation again so that
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other electronic states do not couple to each other, i.e., 〈αi(R)|∇Rn|αi′(R)〉 = δii′ ,

we obtain

~2〈αi(R)|∇2
Rn|αi(R)〉 = ~2∑

i′
〈αi(R)|∇Rn|αi′(R)〉〈αi′(R)|∇Rn|αi(R)〉

= ~2〈αi(R)|∇Rn|αi(R)〉2

= −A2
n

(4.7)

Therefore, the Eq. (4.4) can be further simplified:

[ 3N∑
n=1

(P n −An)2

2Mn

+ Veff(R)
]
ψ(R) ≡ Heffψ(R) = Eψ(R), (4.8)

where we have used the definition P n = −i~∇Rn , and define Veff(R) ≡ U(R)+εi(R)

as an effective potential term. The An(R) is just the Berry phase of the electronic

structure in this system. Moreover, this effective Hamiltonian has the same form as

the Hamiltonian under a magnetic field indicating that the Berry phase here plays a

similar role as the vector potential of a magnetic field.

Although this derivation has been known for a long time, the effect of the Berry

phase is usually ignored due to the difficulty to calculate it. Since it is similar to a

magnetic field, applying an external magnetic field to the system should have the

same effect, which is exactly what experiments did in recent years. More generally,

it is natural to think that if there is any other kind of interaction contributing a

Berry-phase-like term, we should observe the same effect.
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4.1 Phonon Hall Effect under Non-zero Vector
Potential

What is the most general form of a Hamiltonian for phonons that can result in

a Hall effect? Let us consider a very general system described by 2N Hermitian

variables yj, j = 1, 2, · · · , 2N , for a system of N degrees of freedom (2-D case).

In column vector notation, we denote this by y, where x components come first,

then followed by y components for each degree of freedom. We assume that the

Hamiltonian takes a quadratic form of Ĥ = 1
2y

THy, here we assume H is real and

symmetric, superscript T is the matrix transpose. The operators yj are completely

characterized by their commutation relations, [yj, yj′ ] = i~Jjj′ . We assume that Jjj′

is a complex number. Since y is Hermitian, we can show that the matrix J is real

and antisymmetric. The Heisenberg equation of motion is simply

dy

dt
= JHy. (4.9)

Two common choices of y appear in the literature, that of Zhang et al. use

conjugate pairs of displacement coordinates u and momenta p, while Qin et al. use

the displacements u and velocities v = du/dt = p − Au. Here in this paper, we

follow Qin’s convention. Then the matrix J takes the following form:

J =

 0 I

−I −2A

 , with y =

u
v

 , (4.10)

here the matrix A is antisymmetric and it is related to the vector potential A(R)

discussed in last subsection. The vector potential can come from the electronic

Berry phases but can also be the effect of other interactions such as Raman-type
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spin-phonon interaction, external magnetic fields [25], or spin-orbit interaction within

electronic structure [2]. Through out this subsection, index j for bold symbol stands

for atom sites, for unbold symbol, j also includes Cartesian components. In a

periodic lattice system with a harmonic approximation, we can transform the system

into the reciprocal space, and use a combined coordinate and velocity variable yq so

that Ĥ = 1
2
∑
q y
†
qH(q)yq. Here q is the wavevector sampling over the first Brillouin

zone. Note that yq is not a Hermitian operator; it is a vector of smaller dimension

varying over twice the degrees of freedom per unit cell for each q. Elements of the

H(q) matrix are determined by yq. The commutation relation in q space is [28]

[yjq, y†j′q′ ] = i~Jjj′(q)δqq′ . (4.11)

Next by assuming yq = ψqe
−iωt, the corresponding eigensystem of the equation

of motion will be

iJ(q)H(q)ψq ≡ Heffψq = ωψq. (4.12)

Since the effective Hamiltonian is non-Hermitian, the left eigenvector is not related

by Hermitian conjugate to the right eigenvector. We can choose the left eigenvector

as ψ̄q = ψ†qH(q). The normalization condition is then ψ†qH(q)ψq ≡ ψ̄qψq = 1. This

eigen equation is general to any possible source of the non-zero vector potential. For

example, we can choose yq = (uq,vq)T where vq = u̇q,ujq =
√
Mj/N

∑
l xlje

−iq·R0
l

with R0
l being the real space lattice vector, xlj being the deviation from equilibrium

positions of atom j in cell l. N is the total number of unit cells. We write uq

without the index j as a column vector consisting of the degrees in a unit cell.
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4.1.1 Phonon Hall Conductivity

In last subsection, we have written the general form of a 2-D phonon system with

a non-zero vector potential in its Hamiltonian, now we can study the heat transport

in this system based on the traditional linear response theory [87] and a correction

to it which is called energy magnetization [26].

4.1.1.1 General derivation

Consider a general Hamiltonian H =
∫
drε(r), where ε is the energy density.

Applying an external gravitational field ψ(r) [88] to this system, we obtain the new

energy density εψ(r) =
(
1 + ψ(r)

)
ε(r). The continuity relation requires

∂εψ(r)
∂t

= 1
i~

[εψ(r), H] = −∇ · Jψ(r), (4.13)

where Jψ(r) is the heat current. Then we assume there is a simple scaling law

between the perturbed and unperturbed heat current that: Jψ(r) =
(
1+ψ(r)

)2
J(r).

This assumption is consistent with the energy scaling. When in equilibrium, we can

always define the heat current as the curl of a vector M describing a circulating

current due to the property that the divergence of a curl is always zero,

J eq
ψ (r) ≡ ∇×Mψ(r) =

(
1 + ψ(r)

)2
J eq(r) ≡

(
1 + ψ(r)

)2
∇×M(r). (4.14)

Therefore,Mψ(r) =
(
1+ψ(r)

)2
M (r)+∇φ(r), where φ(r) is an arbitrary function.

Of course, this circulating current can exist even not in equilibrium, which is usually

ignored. In equilibrium, the density matrix is: ρ0 = 1
Z0
e−β0H , where β0 = 1/kBT0,

T0 is the corresponding temperature. When not in equilibrium, to be consistent
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with the thermodynamics that

ρψ = 1
Zψ

exp
[
−
∫
dr

(
1 + ψ(r)

)
ε(r)

kBT (r)

]
, (4.15)

we define β(r) ≡
[
kB
(
1 + ψ(r)

)
T (r)

]−1
with the conjugate force X = ∇β(r).

The nonequilibrium density matrix can be approximately divided into two parts:

ρψ = ρleq + δρψ. ρleq is the local equilibrium density matrix determined by the local

temperature T (r) [26],

ρleq = 1
Z

exp
[
−
∫
dr

ε(r)
kBT (r)

]
. (4.16)

The second term is the linear response correction to ρleq which is determined by

i~∂ρψ/∂t = −[Hψ, ρψ]. With the help of the density matrix, we can calculate the

expectation value of the heat current:

Jψ(r) = Tr[ρleqJψ(r)] + Tr[δρψJψ(r)]. (4.17)

With no doubt, the second term is the standard Kubo contribution JKubo. The extra

contribution is due to the inhomogeneous temperature field. To handle it, we assume

1/T (r) ≈ 1/T0 + δ
(
1/T (r)

)
, and define the perturbation as x(r) = −T0δ

(
1/T (r)

)
.

Using the linear response theory, we obtain

J leq = Tr[ρleqJψ(r)] ≈ Tr[ρ0Jψ(r)] +
∫
dr′χ(r, r′)x(r′), (4.18)

where χ(r, r′) = β0〈ε(r′);J(r)〉0. Let us calculate the divergence of this response

function,

∇ · χ(r, r′) = −β0〈ε(r′); ε̇(r)〉0

= 1
i~
〈[ε(r′), ε(r)]〉0,

(4.19)
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where we have used the equations: ∇ ·J(r) = −ε̇(r), and −i~β0〈A; Ḃ〉0 = 〈[A,B]〉0.

Define the response function in q space as follows:

χq(r) ≡
∫
dr′χ(r, r′)e−iq·(r−r′). (4.20)

Then the divergence of χq(r) is

∇ · χq(r) = −iq · χq(r) + 1
i~

∫
dr′〈[ε(r′), ε(r)]〉0e−iq·(r−r

′) (4.21)

If we set 1 + ψ(r) = eiq·r, the right hand side becomes

1
i~

∫
dr′〈[εψ(r′), εpsi(r)]〉0e−2iq·r =∇ ·

(
e2iq·rJ(r)

)
e−2iq·r

= 〈∇ · J(r)〉0 + 2iq · 〈J(r)〉0

= 2iq ·
(
∇×M (r)

)
,

(4.22)

where we have used [Hψ, εψ(r)] = i~∇ · Jψ(r), ∇ · J eq(r) = 0, and J eq(r) =

∇×M (r). Therefore, the response function χq(r) satisfies

∇ · χq(r) + iq · χq(r)− 2iq ·
(
∇×M (r)

)
= 0. (4.23)

This equation has a formal solution: χq(r) = −2iq ×M(r) + e−iq·r∇ × Λq(r),

where Λq(r) is an arbitrary function.

In the Eq. (4.18), the linear response term can be related to Λq=0(r),

δJ eq(r) ≈ −
∫
dr′χ(r, r′)T0δ(1/T0)

= −χq=0(r)T0δ(1/T0)

= −∇×
[
Λq=0(r)T0δ(1/T0)

]
.

(4.24)

Meanwhile, this deviation can be defined as δJ eq(r) ≡ ∇ × δM(r). Therefore,

comparing these two equations, we obtain

Λq=0(r) = − δM

T0δ(1/T0) = T0
∂M (r)
∂T0

. (4.25)
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To pick out the Λq=0(r) from χq(r), with the help of the cross product rule

∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B ·∇)A− (A ·∇)B and ∇× (φA) =

(∇φ)×A+ φ∇×A for any scalar φ and vector A,B, we apply ∇q× to χq(r):

∇× χq(r) =∇q ×
{
− iq ×

[
2M (r)− e−iq·rΛq(r)

]}
+∇q ×∇×

[
e−iq·rΛq(r)

]
= (−iq)

{
∇q ·

[
2M (r)− e−iq·rΛq(r)

]}
+
[
2M (r)− e−iq·rΛq(r)

]
∇q · (iq)

−
{[

2M(r)− e−iq·rΛq(r)
]
·Λq

}
(−iq) + iq ·∇q

[
2M (r)− e−iq·rΛq(r)

]
+∇q ×∇×

[
e−iq·rΛq(r)

]
.

(4.26)

Since A(∇q · q) = 3A and (A ·∇q)q = A, if we take q → 0, we obtain

∇q × χq(r)|q→0 = 4iM (r)− 2iΛq=0(r) +∇q ×∇×
[
e−iq·rΛq(r)

]∣∣∣
q→0

. (4.27)

By defining U(r) ≡ i
2∇q ×

[
e−iq·rΛq(r)

]∣∣∣
q→0

, it becomes

i

2∇q × χq(r)|q→0 = −2M (r) + Λq=0 −∇×U(r). (4.28)

Finally, to obtain the global circulating current M ≡
∫
drM (r), we integrate over

r on both sides so that

2M − T0
∂M

∂T0
= 1

2i∇q × χq|q→0

= β0

2i∇q × 〈ε−q;Jq〉0|q→0,

(4.29)

where we have assumed that
∫
dr∇ × U(r) = 0 for it is an integral of a total

derivative of a well behaved function. ε−q,Jq are the Fourier transform of ε(r),J(r),

respectively.
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Let us go back to the Eq. (4.18), with the inverse Fourier transformation of

χ(r, r′),

χ(r, r′) =
∫ dq

(2π)3

[
− 2iq ×M(r) + e−iq·r∇Λq(r)

]
eiq·(r−r

′), (4.30)

the local equilibrium current can be rewritten as follows:

J leq ≈ J eq(r) +
∫
dr′

∫ dq

(2π)3

{
− 2[∇(eiq·r)]×M(r) + Λq(r)

}
x(r′)e−iq·r′

= J eq(r) + 2M (r)×∇x(r) +∇×
∫
dr′Λ(r, r′)x(r′),

(4.31)

where we have used

∫
dr′

∫ dq

(2π)3 e
iq·(r−r′)x(r′) =

∫
dr′δ(r − r′)x(r′) = x(r), (4.32)

and defined Λ(r, r′) ≡
∫ dq

(2π)3 Λq(r)e−iq·r′ . Recall that x(r) = −T0δ
(
1/T (r)

)
,

and δ
(
1/T (r)

)
=
(
1/T (r) − 1/T0

)
. Therefore, ∇x(r) = −T0∇(1/T ). Moreover,

J eq =
(
1 + ψ(r)

)2
∇×M(r). Combining all these formulas, the local equilibrium

current is

J leq ≈
(
1 + ψ(r)

)2
∇×M (r)− 2M(r)× T0∇

( 1
T (r)

)
. (4.33)

Furthermore, the derivative of the inverse of local temperature can be related to the

external filed ψ and predefined β(r):

∇
( 1
T (r)

)
=∇

[
kBβ(r)

(
1 + ψ(r)

)]

= 1
β(r)T (r)X(r) + 1(

1 + ψ(r)
)
T (r)
∇ψ(r)

=
(
T0δ

( 1
T (r)

)
+ 1

)[ 1
β(r)X(r) + 1(

1 + ψ(r)
)∇ψ(r)

]
.

(4.34)
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Substituting this formula into J eq(r), we obtain

J leq ≈
(
1 + ψ(r)

)2
∇×M(r) + 2∇ψ(r)×M (r)− 2

β(r)M (r)×X(r) +∇× δM(r)

=∇×
[(

1 + ψ(r)
)2
M (r)

]
− 2
β(r)M (r)×X(r) +∇× δM (r)

≡∇×Mψ(r)− 2
β(r)M (r)×X(r),

(4.35)

where we keep only the linear order of ψ(r) and δ(1/T (r)), and define Mψ(r) ≡(
1 + ψ(r)

)2
M (r) + δM (r), δM (r) ≡

∫
dr′Λ(r, r′)x(r′).

Going through the derivation, the Eq. (4.17) can be rewritten as

Jψ(r) = JKubo(r) +∇×Mψ(r)− 2
β(r)M (r)×X(r). (4.36)

However, this expression does not satisfy the fundamental Onsager relation and

Einstein relation in nonequilibrium thermodynamics which require the heat current

should be proportional to the conjugate force, X(r), in our case. Therefore, we

define the transport heat current as follows:

J tr(r) ≡ Jψ(r)−∇×Mψ(r). (4.37)

Integrating over r, we obtain the global transport heat current,

J tr ≡ 1
V

∫
drJ tr(r)

= 1
V

∫
dr
[
JKubo(r)− 1

β(r)M(r)×X(r)
]
.

(4.38)

In linear response theory, to calculate the transport coefficient, we choose the “rapid”

case [88], i.e., the external fields vary rapidly so that the energy density almost

stays the same. In this situation, the temperature field can also be regarded as a

constant. Moreover, if we set ψ(r) = ψqe
iq·r, then∇ψ(r) = iqeiq·rψq. In the “rapid”
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case, q → 0, therefore, ∇ψ(r) will be irrelevant to r. Based on the discussion

above, we can extract X out of the integral. With the Kubo formula [88], the Kubo

contribution is [26]

1
V

∫
drJKubo(r) ≡ ←→LX,

←→
L αγ = 1

V
lim
s→0

lim
q→0

∫ ∞
0

dte−st〈Jγ,−q; Jα,q(t)〉0.
(4.39)

Therefore, the total transport heat current becomes

J tr =←→LX − 2
V β0

M ×X. (4.40)

By definition, J tr ≡ κtr∇T . When we measure the thermal conductivity κ in a 2-D

system, we set ψ = 0 so that X = −∇T/kBT 2
0 . Comparing the two sides, we obtain

κtr
xy =

←→
L xy

kBT 2
0

+ 2Mz

V T0
. (4.41)

This result was obtained by Qin et al. in 2011 [26].

4.1.1.2 Application to Lattice System

Previously, we have introduced a general 2-D phonon system with non-zero

vector potential. The transport phonon Hall conductivity in the system contains two

parts: one is the traditional Kubo contribution and the other is from the circulating

energy magnetization M . Compared with a typical phonon system without vector

potential, it is the vector potential that causes the energy magnetization. To obtain

the phonon Hall conductivity in practical calculation, we apply the general formula

to that 2-D phonon system.

In the lattice system, we use Rlj = (Rl, rj) to represent the positions of nuclei,

where Rl = l1a1 + l2a2 labels the l-th cell with integer pair (l1, l2), rj labels the
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j-th ion within the cell. The energy of l-th cell is

εl = 1
2v

2
l + 1

2
∑
l′
ulKll′ul′

≡ 1
4
∑
l′
yTl Hll′yl′ + h.c.

(4.42)

Here we define ulj ≡
√
mjxlj as the reduced displacement. K is the force constant

matrix with dimension 2N , and vl = pl − (Au)l is the velocity under vector

potential A(R). yl ≡ (ul,vl)T combines the displacement and velocity so that

H = diag{K, I}, I is identity matrix. Energy density can be defined as follows:

ε(r) ≡
∑
l

δ(r −Rl)εl

∫
drε(r) = Ĥ.

(4.43)

Continuity requires

∂ε(r)
∂t

+∇ · j(r, t) = 0, j(r, t) = jKubo(r, t) +∇×M (r, t). (4.44)

Transferring into continuous Fourier space by εk =
∫
ε(r)e−ik·rdr, jk =

∫
j(r)e−ik·rdr,

and taking limit k→ 0, we have

k · jk = iε̇k

= 1
~
[
εk, H

]
= 1

~
[∑

l

εle
−ik·Rl , H

]

≈ 1
~
[∑

l

εl − ik ·
∑
l

εlRl,
∑
l′
εl′
]

= 1
i~
∑
ll′
k ·Rl

[
εl, εl′

]

= 1
2i~

∑
ll′
k · (Rl −Rl′)

[
εl, εl′

]
.

(4.45)

79



CHAPTER 4. PHONON HALL EFFECT

Since lim
k→0

jk =
∫
jrdr ≡ Jheat with Jheat as the total heat current, we can eliminate

the k on the both sides to obtain the total heat current Jheat. Expanding the

commutator using the Eq. (4.42), we obtain

1
2i~

∑
ll′

(Rl −Rl′)[εl, εl′ ] = 1
2i~

∑
ll′

(Rl −Rl′)

×
[1
4
∑
m

yTl Hlmym + h.c., 1
4
∑
m′
yTl′Hl′m′ym′ + h.c.

]

= 1
32i~ ·

∑
ll′

∑
mm′

(Rl −Rl′)
{
yTm′Hm′l′ [yl, yTl′ ]Hlmym

+ yTl′Hl′m′ [yl, yTm′ ]Hlmym + yTl Hlm[ym, yTl′ ]Hl′m′yl′

+ yTl Hlm[ym, yTm′ ]Hm′l′yl′
}

+ other three terms.

(4.46)

Similar to previous definition, [yl, yTl′ ] ≡ i~Jll′ , J = −JT . Moreover, we define

(AB)′ll′ ≡ (Rl −Rl′)(AB)ll′ . With the definitions, the commutators can be further

simplified:

1
2i~

∑
ll′

(Rl −Rl′)[εl, εl′ ] = 1
32
∑
ll′

∑
mm′

[
yTm′Hm′l′J

′
l′lHlmym + yTl′ (HJ)′l′lHlmym

+ yTl (HJ)′ll′Hl′m′ym′ + yTl (HJH)′ll′yl′
]

+ other three terms.
(4.47)

In the same way, it is easy to find that ∑
ll′

(Rl−Rl′)
[∑
m
yTl Hlmym, (

∑
m′
yTl′Hl′m′ym′)†

]
=

∑
ll′

(Rl −Rl′)
[∑
m
yTl Hlmym,

∑
m′
yTl′Hl′m′ym′

]
, and the rest two terms are the conjugate

of these two terms. Therefore, the heat current is

Jheat = 1
16
∑
ll′

∑
mm′

[
yTm′Hm′l′J

′
l′lHlmym + yTl′ (HJ)′l′lHlmym

+ yTl (HJ)′ll′Hl′m′ym′ + yTl (HJH)′ll′yl′ + h.c.
]
.

(4.48)
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Furthermore, it is natural to define the local current operator jl as

jl = 1
16
∑
l′

∑
mm′

[
yTm′Hm′l′J

′
l′lHlmym + yTl′ (HJ)′l′lHlmym

+ yTl (HJ)′ll′Hl′m′ym′ + yTl (HJH)′ll′yl′ + h.c.
]
.

(4.49)

For convenience in subsequent derivation, we define Heff ≡ iJH, (Heff)ll′ ≡ i(JH)′ll′ ,

which has the property that (HT
eff)ll′ = i(HJ)′ll′ .

Let us firstly work out the Kubo term. Switching to reciprocal space, we define

the second quantization as follows:

yl ≡
∑
k

√
~|ωk|
N

ψke
ik·Rlak, k ≡ (k, σ),

[ak, a†k′ ] = sgn(σ)δkk′ ,

a†k = a−k, ωk = −ω−k,

(4.50)

where ψ̄k ≡ ψ†Hk, ωk is the eigenvalue of the system which has positive and negative

branches labelled by σ. This choice differs from the standard second quantization

in solid state textbooks where the ω is in the denominator. With this choice, the

Hamiltonian can be written as

Ĥ = 1
4
∑
ll′

(∑
k

√
~|ωk|
N

ψ†ke
−ik·Rla†k

)
Hll′

(∑
k′

√
~|ωk′|
N

ψk′e
ik′·Rl′ak′

)
+ h.c.

= ~
4N

∑
ll′

∑
kk′

√
|ωk||ωk′|ψ†ke−iRl′ ·(k−k

′)Hll′e
−ik·(Rl−Rl′ )ψk′a

†
kak′ + h.c.

= 1
4
∑
kk′

~
√
|ωk||ωk′ |ψ†kHkψk′δkk′a†kak′ + h.c.

= 1
2
∑
k

~|ωk|a†kak.

(4.51)

Here we have employed the identity ∑
l′
e−iRl′ ·(k−k

′) = Nδkk′ and ψ†kHkψk′ = ψ̄kψk′ =

δkk′ from the eigensystem in the Eq. (4.12). The Hermitian conjugate of the first
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term is just the same itself. Note that this representation includes both positive and

negative ωk. If we only consider the positive branches, it is just the typical form of

Harmonic oscillators with second quantization: Ĥ = ∑
k
~ωk(a†kak + 1

2).

In the reciprocal space, the local heat current becomes

jq =
∑
l

jle
−iq·Rl = ~

16N
∑
ll′

∑
mm′

∑
kk′

√
|ωk||ωk′ |a†kak′ψ

†
k

×
[
Hm′l′J

′
l′lHlme

−ik·Rm′+ik′·Rm−iq·Rl + (HJ)′l′lHlme
−ik·Rl′+ik′·Rm−iq·Rl

+ (HJ)′ll′Hl′m′e
−ik·Rl+ik′·Rm′−iq·Rl + (HJH)′ll′e−ik·Rl+ik

′·Rl′−iq·Rl
]
ψk′

+ (h.c., q → −q).

(4.52)

With the help of the discrete Fourier transform and its identity relation, we can

further simplify the expression:

jq = ~
16
∑
kk′

√
|ωk||ωk′ |a†kak′ψ

†
k

[
HkJ̃kHk′ + Ṽ

†
kHk′ + Ṽ

†
k′Hk′ + (H̃JH)k′

HkJ̃k′Hk′ +HkṼ k′ +HkṼ k + (H̃JH)k
]
ψk′δk′,k+q,

(4.53)

where J̃k ≡ i∇kJk, Ṽ
†
k ≡∇k(H†eff)k, (H̃JH)k′ ≡ i∇k(HJH)k′ . Substituting the

matrix form of J and H defined before, the final formula for the local heat current is

jq = ~
8
∑
kk′

√
|ωk||ωk′|a†kak′ψ

†
k(Ṽ k + Ṽ k′ + Ṽ

†
k + Ṽ †k′)ψk′δk′,k+q. (4.54)

Compared with the formula in an old paper by Hardy for the current [89], the

position of eigenfrequencies in our formula is different since we choose a different

basis and quantization.

In the Kubo term, two heat currents are in simple multiplication, therefore it is
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safe to take q → 0 initially:

jq = ~
4
∑
kk′

√
|ωk||ωk′ |a†kak′ψ

†
k(Ṽ k + Ṽ †k)ψk′δk′,k

= ~
4
∑
kk′

√
|ωk||ωk′ |ψ̄kṼ kψk′δkk′(a†kak′ + ak′a

†
k).

(4.55)

Here we have used the following properties of this system:

ψ†kṼ
†
kψk′ = (ψ†k′Ṽ kψk)† = (ψ†k′Ṽ kψk)∗,

ψ∗k = ψ−k, ω
∗
k = ωk = −ω−k,

Ṽ
∗
k = Ṽ −k, H

∗
k = H−k,

a†k = a−k,

HkṼ k = Ṽ k.

(4.56)

We calculate the Kubo term in the phonon Hall conductivity using the Eq. (4.39):

κKubo
xy = 1

V T
lim
s→0

lim
q→0

∫ β

0
dλ
∫ ∞

0
dte−st〈jy−q(−i~λ)jxq (t)〉0

= ~2

16V T lim
s→0

∫ β

0
dλ
∫ ∞

0
dte−st

∑
kk′

∑
pp′

√
|ωk||ωk′||ωp||ωp′|ψ̄kṼ y

k ψk′ψ̄pṼ
x
p ψp′

× δkk′δpp′ [〈a†k(−i~λ)ak′(−i~λ)a†p(t)ap′(t)〉0

+ 〈a†k(−i~λ)ak′(−i~λ)ap′(t)a†p(t)〉0] + h.c.

= ~2

16V T
∑
kk′

∑
pp′

√
|ωk||ωk′||ωp||ωp′|ψ̄kṼ y

k ψk′ψ̄pṼ
x
p ψp′

× δkk′δpp′ [〈a†kak′a†pap′〉0 + 〈a†kak′ap′a†p〉0]

× lim
s→0

∫ β

0
dλ
∫ ∞

0
dte~(ωk−ωk′ )λ+i(ωp−ωp′ )t−st + h.c.

= i~
16V T

∑
kk′

∑
pp′

e~β(ωk−ωk′ ) − 1
(ωk − ωk′)(ωp − ωp′)

√
|ωk||ωk′ ||ωp||ωp′|ψ̄kṼ y

k ψk′ψ̄pṼ
x
p ψp′

× δkk′δpp′ [〈a†kak′a†pap′〉0 + 〈a†kak′ap′a†p〉0] + h.c.,
(4.57)
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where ak(−i~λ) = ake
−~ωkλ, ap(t) = ape

−iωpt. Wick theorem says

〈a†kak′a†pap′〉0 = 〈a†kak′〉0〈a†pap′〉0 + 〈a†kap′〉0〈ak′a†p〉0 + 〈a†ka†p〉0〈ak′ap′〉0. (4.58)

The first term separates the jxq and jy−q exactly, which should be 0 for in equilibrium

there is no transport heat current. Therefore, we only focus on the last two terms.

Since 〈a†kak′〉 = nksgn(k)δkk′ , nk = 1/[eβ~ωk − 1], we have

〈a†kak′a†pap′〉0 = 〈a†kak′ap′a†p〉0 = sgn(k)sgn(k′)nk(1 + nk′)(δkp′δk′p + δk,−pδk′ ,−p′),

(4.59)

where sgn(k) = sgn(σ), the branch labelling. Substituting into the Kubo formula, it

becomes

κKubo
xy = i~

16V T
∑
kk′

∑
pp′

e~β(ωk−ωk′ ) − 1
(ωk − ωk′)(ωp − ωp′)

×
[
2nk(1 + nk′)

][
sgn(k)sgn(k′)

×
√
|ωk||ωk′ ||ωp||ωp′|(δkp′δk′p + δk,−pδk′,−p′)ψ̄kṼ y

k ψk′ψ̄pṼ
x
p ψp′δkk′δpp′

]
+ h.c.

= i~
8V T

∑
kk′

nk − nk′
(ωk − ωk′)2ωkωk′δkk′ [ψ̄kṼ y

k ψk′ψ̄k′Ṽ
x
k′ψk + ψ̄kṼ

y
k ψk′ψ̄−kṼ

x
−kψ−k′ ] + h.c.

= i~
8V T

∑
kk′

nk − nk′
(ωk − ωk′)2ωkωk′δkk′ψ̄kṼ

y
k ψk′ [ψ̄k′Ṽ x

k′ψk + ψ†k′Ṽ
†x
k ψ̄†k] + h.c..

(4.60)

The sign part together with the square root is always positive so we can ignore it.

To further simplify the formula, we take one of the terms as an example to show the
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procedure:

i~
8V T

∑
kk′

nk
(ωk − ωk′)2ωkωk′δkk′ψ̄kṼ

y
k ψk′ψ̄k′Ṽ

x
k′ψk

= i~
8V T

∑
k,i,j

nki
(ωki − ωkj)2ωkiωkjψ̄kiṼ

y
k ψkjψ̄kjṼ

x
k ψki

= i~
8V T

∑
k,i,j

nki
(ωki − ωkj)2ωkiωkjψ̄ki

∂Heff

∂ky
ψkjψ̄kj

∂Heff

∂kx
ψki

= −i~8V T
∑
k,i,j

nkiωkiωkjψ̄ki
∂ψkj
∂ky

ψ̄kj
∂ψki
∂kx

= i~
8V T

∑
k,i

nkiωki
(∑

j

∂ψ̄ki
∂ky

ωkjψkjψ̄kj
∂ψki
∂kx

)

= i~
8V T

∑
k,i

ωkinki
∂ψ̄ki
∂ky

Heff
∂ψki
∂kx

.

(4.61)

For simplicity, we ignore the subscript of the matrices. From the third line to the

fourth line, we have used the property of the eigensystem that

ψ̄ki
∂Heff

∂ky
ψkj = (ωkj − ωki)ψ̄ki

∂ψkj
∂ky

+ ∂ωki
∂ky

δij. (4.62)

Intraband terms are ignored for they only contribute symmetric partial derivatives

∂ωki

∂ky

∂ωki

∂kx
which will be cancelled by their Hermitian conjugate. In the last two lines,

ψ̄kiψkj = δij and Heff = ∑
j
ωkjψkjψ̄kj are employed. Following the same procedure,

we obtain all eight terms:

κKubo
xy = i~

8V T
∑
k,i

ωkinki

[
∂ψ̄ki
∂ky

Heff
∂ψki
∂kx

+ ∂ψ†ki
∂ky

H†eff
∂ψ̄†ki
∂kx

+ ∂ψ̄ki
∂ky

HeffH
−1∂ψ̄ki
∂kx

†

+ ∂ψ†ki
∂ky

H†effH
∂ψki
∂kx

− (kx ↔ ky)
]
.

(4.63)
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Since ψ̄ = ψ†H, H† = H, the last two terms can be further simplified:

∂ψ̄ki
∂ky

HeffH
−1∂ψ̄ki
∂kx

†

+ ∂ψ†ki
∂ky

H†effH
∂ψki
∂kx

= ∂ψ̄ki
∂ky

Heff
∂ψki
∂kx

+ ∂ψ†ki
∂ky

H†eff
∂ψ̄†ki
∂kx

− ∂ψ̄ki
∂ky

Heff
∂H−1

∂kx
ψ̄†ki −

∂ψ†ki
∂ky

H†eff
∂H

∂kx
ψki

= ∂ψ̄ki
∂ky

Heff
∂ψki
∂kx

+ ∂ψ†ki
∂ky

H†eff
∂ψ̄†ki
∂kx

− ∂ψ†ki
∂ky

H†eff
∂H

∂kx
ψki − ψki

∂H

∂ky
Heff

∂H−1

∂kx
ψ̄†ki + ∂ψ†ki

∂ky
HHeffH

−1 ∂H

∂kx
ψki

= ∂ψ̄ki
∂ky

Heff
∂ψki
∂kx

+ ∂ψ†ki
∂ky

H†eff
∂ψ̄†ki
∂kx

.

(4.64)

In the last line, we used the properties: HHeffH
−1 = iHJHH−1 = iHJ = H†eff , and

∂H

∂ky
Heff

∂H−1

∂kx
=


∂K
∂ky

0

0 0


 0 iI

−iK −i2A



∂K−1

∂kx
0

0 0

 = 0 · I. (4.65)

Therefore, the final formula for the Kubo term is

κKubo
xy = i~

4V T
∑
k,i

ωkinki

[
∂ψ̄ki
∂ky

Heff
∂ψki
∂kx

+ ∂ψ†ki
∂ky

H†eff
∂ψ̄†ki
∂kx

− (kx ↔ ky)
]

= ~
2V T

∑
k,i

ωkinkiIm
[
∂ψ̄ki
∂kx

Heff
∂ψki
∂ky

− ∂ψ̄ki
∂ky

Heff
∂ψki
∂kx

]
.

(4.66)

This formula sums over both the positive and negative branches of the eigensystem.

Next we will show that this Kubo term is cancelled by the inter-band contribution

of the energy magnetization. We calculate the energy magnetization term in z

direction according to the Eq. (4.29):

2Mz − T
∂Mz

∂T
≡ M̃z = β

2i∇q × 〈ε−q; jq〉0|z,q→0

= i

2
∂

∂qy

∫ β

0
dλ〈ε−q(−i~λ)jxq 〉0

∣∣∣∣
q→0
− (x↔ y).

(4.67)
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There is a derivative with respect to q in this formula, therefore we must explicitly

work out the Kubo correlator up to the first order of the q. The energy density

operator in the reciprocal space can be quantized as follows:

ε−q =
∑
l

εle
iq·Rl

= ~
4N

∑
ll′

∑
kk′
eiq·Rl

√
|ωk||ωk′|(ψ†ke−ik·RlHll′ψk′e

ik′·Rl′a†kak′ + h.c.)

= ~
4
∑
kk′

√
|ωk||ωk′|

[
ψ†k(Hk +Hk′)ψk′a†kak′δk′,k−q

]
.

(4.68)

Firstly, we integrate over variable λ as before so that

M̃z = i~
64

∂

∂qy

∑
kk′

∑
pp′

eβ~(ωk−ωk′ )−1

(ωk − ωk′)
√
|ωk||ωk′||ωp||ωp′ |

× ψ†k(Hk +Hk′)ψk′ψ†p(Ṽ x
p + Ṽ x

p′ + Ṽ †xp + Ṽ †xp′ )ψp′

× 〈a†kak′a†pap′〉0δk′,k−qδp′,p+q

∣∣∣∣
q→0
− (x↔ y).

(4.69)

Again, we utilize the Wick theorem and the fact 〈ε−q〉0 = 0, 〈jq〉0 = 0 when q 6= 0

to obtain

〈a†kak′a†pap′〉0 = 〈a†kap′〉0〈ak′a†p〉0 + 〈a†ka†p〉0〈ak′ap′〉0

= sgn(k)sgn(k′)nk(nk′ + 1)[δkp′δk′p + δk,−pδk′,−p′ ].
(4.70)

Therefore, previous M̃z becomes

M̃z = i~
32

∂

∂qy

∑
kk′
ωkωk′

nk′ − nk
ωk − ωk′

ψ†k(Hk +Hk′)ψk′

× ψ†k′(Ṽ x
k + Ṽ x

k′ + Ṽ †xk + Ṽ †xk′ )ψkδk′,k−q
∣∣∣∣
q→0
− (x↔ y),

(4.71)

where we have used the properties in Eq. (4.56). It seems rather messy if we take

the partial derivative term by term, however, many terms will not contribute due to

the x↔ y symmetry.
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Let us apply the Taylor expansion to ω up to the first order so that ωk−qσ′ ≈

ωk − (∂ωk/∂k) · q. When the partial derivative works on ωk′ in the formula for M̃z,

∂ωk′/∂qy = −∂ωk/∂ky and the rest terms will just take q → 0 to maintain the linear

order of q. ∂nk′/∂qy is the same due to the chain rule. Since ψ†kHkψk′ = ψ̄kψk′ = δkk′ ,

there will be only intra terms. Moreover, due to the property of the system described

by Eq. (4.62), we have ψ†kṼ x
k ψk = ψ̄kṼ

x
k ψk = ∂ωk/∂kx. As a result, we obtain a

factor being ∂ωk
∂ky

∂ωk
∂kx

which will be canceled by x↔ y operation. Therefore, non-zero

terms in M̃z is

M̃z = i~
32
∑
kk′
ωkωk′

nk′ − nk
ωk − ωk′

∂

∂qy

[
ψ†k(Hk +Hk′)ψk′

× ψ†k′(Ṽ x
k + Ṽ x

k′ + Ṽ †xk + Ṽ †xk′ )ψk
]∣∣∣∣
q→0
− (x↔ y).

(4.72)

Firstly, we calculate the inter-band term that k = (k, σ) 6= (k, σ′) = k′ in the

formula. In this case, the partial derivative can only act on the term ψ†k(Hk+Hk′)ψk′

otherwise there will be a δkk′ contradicting with our assumption.

M̃ inter
z = − i~16

∑
kk′
ωkωk′

nk′ − nk
ωk − ωk′

[ψ̄k
∂ψk′

∂ky
+ ψ†k

∂ψ̄†k′

∂ky
]ψk′(Ṽ x

k + Ṽ †xk )ψk − (x↔ y)

= − i~16
∑
kk′
ωkωk′

nk′ − nk
ωk − ωk′

[
ψ̄k
∂ψk′

∂ky
−
(
ψ̄k′

∂ψk
∂ky

)†]
ψk′(Ṽ x

k + Ṽ †xk )ψk − (x↔ y)

= i~
16
∑
kk′
ωkωk′

nk′ − nk
(ωk − ωk′)2ψ

†
k(Ṽ

y
k + Ṽ †yk )ψk′ψ†k′(Ṽ x

k + Ṽ †xk )ψk − (x↔ y)

= −Re
[
i~
8
∑
kk′
ωkωk′

nk − nk′
(ωk − ωk′)2ψ

†
k(Ṽ

y
k + Ṽ †yk )ψk′ψ†k′(Ṽ x

k + Ṽ †xk )ψk
]
.

(4.73)

where properties in the Eq. (4.56) are employed again. The last line is valid for

the x↔ y operation is equivalent to take the Hermitian conjugate. Recall the Eq.
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(4.60), we can rewritten it as follows:

κKubo
xy = i~

8V T
∑
kk′

nk − nk′
(ωk − ωk′)2ωkωk′δkk′ψ̄kṼ

y
k ψk′ [ψ̄k′Ṽ x

k′ψk + ψ†k′Ṽ
†x
k ψ̄†k] + h.c.

= i~
8V T

∑
kk′

nk − nk′
(ωk − ωk′)2ωkωk′ψ

†
kṼkψk′(ψ

†
k′Ṽ

x
k ψk + ψ†k′Ṽ

†x
k ψk) + h.c.

= i~
8V T

∑
kk′

nk − nk′
(ωk − ωk′)2ωkωk′ψ

†
k(Ṽ

y
k + Ṽ †yk )ψk′ψ†k′(Ṽ x

k + Ṽ †xk )ψk.

(4.74)

From the first line to the second line, we use the properties HkṼ k = Ṽ k, and

Ṽ
†
kH
†
k = Ṽ

†
k. The third line is obtained by taking the Hermitian conjugate and

switch k ↔ k′ (note the factor nk − nk′ will change sign after this switch). It is easy

to verify this expression is real, which is consistent with the fact that κKubo
xy is a

physical observable. Compared with the inter-band term M̃ inter
z , we have

M̃ inter
z = −V TκKubo

xy

= −~
2
∑
k,i

ωkinkiIm
[
∂ψ̄ki
∂kx

Heff
∂ψki
∂ky

− ∂ψ̄ki
∂ky

Heff
∂ψki
∂kx

]
.

(4.75)

For k = k′, the partial derivative can not act on the Ṽ x
k′ because it will result in

a symmetric second order derivative cancelled by the x↔ y operation. Thus the

intra-band term is

M̃ intra
z = i~

16
∑
k

ω2
k

nk′ − nk
ωk − ωk′

∣∣∣∣
q→0

{
−
[
ψ̄k
∂ψk
∂ky

+ ψ†k
∂ψ̄†k
∂ky

]
ψ†k(Ṽ x

k + Ṽ †xk )ψk

− 2
[∂ψ̄k
∂ky

Ṽ x
k ψk + ∂ψ†k

∂ky
Ṽ †xk ψ̄†k

]}
− (x↔ y)

= i~
8
∑
k

ω2
k

∂nk
∂ω

[
ψ̄k
∂ψk
∂ky

∂ωk
∂kx

+ ψ†k
∂ψ̄†k
∂ky

∂ωk
∂kx

+ ∂ψ̄k
∂ky

Ṽ x
k ψk + ∂ψ†k

∂ky
Ṽ †xk ψ̄†k

]
− (x↔ y).

(4.76)

Since ψ̄kHeff = ωkψ̄k, applying the partial derivative ∂/∂kx to both sides, we obtain

∂ψ̄k
∂kx

Heff + ψ̄k
∂Heff

∂kx
= ∂ωk
∂kx

ψ̄k + ωk
∂ψ̄k
∂kx

. (4.77)
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Subsequently, we multiply ∂ψk/∂ky to the right on both sides so that

ψ̄k
∂ψk
∂ky

∂ωk
∂kx

= ∂ψ̄k
∂kx

(Heff − ωk)
∂ψk
∂ky

+ ψ̄k
∂Heff

∂kx

∂ψk
∂ky

. (4.78)

Similarly, if we apply this procedure to ψ†kH
†
eff = ωkψ

†
k, we obtain another term in

M̃ intra
z ,

ψ†k
∂ψ̄†k
∂ky

∂ωk
∂kx

= ∂ψ†k
∂kx

(H†eff − ωk)
∂ψ̄†k
∂ky

+ ψ†k
∂H†eff
∂kx

∂ψ̄†k
∂ky

. (4.79)

Therefore, the M̃ intra
z becomes

M̃ intra
z = i~

8
∑
k

ω2
k

∂nk
∂ω

[
∂ψ̄k
∂kx

(Heff − ωk)
∂ψk
∂ky

+ ∂ψ†k
∂kx

(H†eff − ωk)
∂ψ̄†k
∂ky

+ ψ̄k
∂Heff

∂kx

∂ψk
∂ky

+ ψ†k
∂H†eff
∂kx

∂ψ̄†k
∂ky

+ ∂ψ̄k
∂ky

∂Heff

∂kx
ψk + ∂ψ†k

∂ky

∂H†eff
∂kx

ψ̄†k

]
− (x↔ y).

(4.80)

Obviously, the sum of the last four terms are real, so they have no contribution.

Therefore, the intra-band contribution is

M̃ intra
z = −~

4
∑
k,i

ω2
ki

∂nki
∂ω

Im
[
∂ψ̄ki
∂kx

(Heff − ωki)
∂ψki
∂ky

− ∂ψ̄ki
∂ky

(Heff − ωki)
∂ψki
∂kx

]

= −~
4
∑
k,i

ω2
ki

∂nki
∂ω

{
Im
[∂ψ̄ki
∂kx

Heff
∂ψki
∂ky

− ∂ψ̄ki
∂ky

Heff
∂ψki
∂kx

]
+ ωkiΩz

ki

}
,

(4.81)

where Ωki ≡ −Im
[
∂ψ̄ki

∂k
× ∂ψ̄ki

∂k

]
is the Berry curvature of the eigensystem.

Finally, we integrate over temperature T to obtain the Mz. For convenience, we

define

Mki ≡ Im
[
∂ψ̄ki
∂k
×Heff

∂ψki
∂k

]
, (4.82)
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and rewrite the Eq. (4.67) with β = 1/kBT as follows:

2Mz − T
∂Mz

∂T
= M̃ z =⇒ 2Mz + β

∂Mz

∂β
= M̃ z

=⇒ 2βMz + β2∂Mz

∂β
= βM̃ z

=⇒ ∂β2Mz

∂β
= βM̃ z.

(4.83)

After integrating over the β, we obtain

Mz = 1
β2

∫ β

0
λM̃zdλ.

= 1
β2

∫ β

0
λ
{
− ~

4
∑
ki

ωki
[
Mz

ki(2nki(λ) + ωki
∂nki(λ)
∂ω

) + ω2
kiΩz

ki

∂nki(λ)
∂ω

]}
dλ.

(4.84)

Only nki(λ) and ∂nki(λ)
∂ω

= λ
ωki

dnki(λ)
dλ

contains λ. The integral containing the partial

derivative can be worked out as follows:
∫ β

0
λ
∂nki(λ)
∂ω

dλ =
∫ β

0

λ2

ωki

dnki(λ)
dλ

dλ

= 1
ωki

[
λ2nki(λ)

∣∣∣β
0
−
∫ β

0
2λnki(λ)dλ

]
= β2n

ki

ω
ki

− 1
ωki

∫ β

0
2λnki(λ)dλ.

(4.85)

Substituting the result into the Eq. (4.84), we obtain

Mz = −~
4
∑
ki

ωkiMz
kinki −

~
4
∑
ki

ω2
kiΩz

kinki + ~
2β2

∑
ki

ω2
kiΩz

ki

∫ β

0
λnki(λ)dλ. (4.86)

Therefore, the total phonon Hall conductivity is

κtr
xy = − ~

2V T
∑
ki

ω2
kiΩz

kinki + ~
V Tβ2

∑
ki

ω2
kiΩz

ki

∫ β

0
λnki(λ)dλ. (4.87)

To make the formula more compact, we define a new quantity σ̃xy(ε),

σ̃xy(ε) ≡
dσxy(ε)
dε

= − 1
V ~

∑
ki

Ωz
kiδ(ε− ~ωki). (4.88)
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With the σ̃xy, the phonon Hall conductivity can be rewritten as

κtr
xy = 1

2T

∫ ∞
−∞

dεσ̃(ε)
[
ε2n(ε)− 2

∫ ε

xn(x)dx
]

= 1
2T σxy(ε)

[
ε2n(ε)− 2

∫ ε

xn(x)dx
]∣∣∣∞
−∞
− 1

2T

∫ ∞
−∞

dεε2σxy(ε)
n(ε)
dε

,

(4.89)

where x ≡ ελ/β. Since σxy(ε) =
∫ ε
−∞ dxσ̃xy(x), σxy(−∞) = 0. σxy(∞) is also 0 due

to the symmetry of ψki. Therefore, the final formula is

κtr
xy = − 1

2T

∫ ∞
−∞

dεε2σxy(ε)
n(ε)
dε

. (4.90)

Although the derivation is rather long and tricky, we have rigorously confirmed Qin’s

result [2].

To sum up, once we have obtained the eigenvalues and associated eigenvectors

of the effective Hamiltonian, we can calculate its Berry curvature and phonon Hall

conductivity using the following formulas:

Ωqi = −Im
[
∂ψ̄qi
∂q
× ∂ψqi

∂q

]
, (4.91)

and

κxy = − 1
2T

∫ ∞
−∞

dεε2σxy(ε)
dn(ε)
dε

, (4.92)

where

σxy(ε) = − 1
V ~

∑
~ωqi≤ε

Ωz
qi, (4.93)

n(ε) = 1/(eε/(kBT )−1) is the Bose function at temperature T , and kB the Boltzmann

constant. For clarity, here we replace the k with q as the phonon wave vector

in subsequent sections. In the above summation over mode qi, all modes with

both positive and negative frequencies, are included. Since we are dealing with a
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two-dimensional sheet, the volume V is an ill-defined concept. We use V = L2a,

the area times the thickness, choosing a somewhat arbitrarily to match the units of

W/(mK) of the usual three-dimensional thermal conductivity. When estimating the

phonon Hall conductivity κxy in a graphene-like lattice, we assume the thickness of

the sample is the same as the bond length a = 1.42 Å of graphene.

4.1.2 An Optimization: the Theta Function

Although equation (4.92) is enough to calculate the phonon Hall conductivity,

it is usually difficult to implement the integral over the energy accurately for the

Berry curvatures at some q have large values. However, it is possible to avoid this

difficulty if we integrate out the intergral by hand:

κxy = 1
2TV ~

∑
q,i

Ωz
qi

∫ ∞
−∞

dεε2θ(ε− ~ωqi)
dn

dε

≡ k2
BT

2V ~
∑
q,i

Ωz
qiΘ(β~ωqi),

(4.94)

where θ is the step function, β = 1/kBT , and

Θ(x) =
∫ ∞
x

y2dn, (4.95)

with the substitution βε→ y. By integration by parts, we will obtain

Θ(x) = x2

ex − 1 +
∫ ∞
x

2ydy
ey − 1 . (4.96)

When x = 0, the first term is a indeterminate value, but the original integral in

this case has a definite value π2/3. When x 6= 0, we make another substitution

y → −lnu so that

Θ(x) = x2

ex − 1 − 2
∫ e−x

0+

lnu
1− udu. (4.97)
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Again we use integration by parts,

Θ(x) = x2

ex − 1 + 2lnu dln(|1− u|)
∣∣∣∣e−x
0+
− 2

∫ e−x

0+

ln|1− u|
u

du

= x2

ex − 1 − 2xln(|1− e−x|)− 2
∫ e−x

0+

ln|1− u|
u

du.

(4.98)

The last term is related to the Spence’s function or the dilogarithm function,

−
∫ x

0+

ln|1− u|
u

du =


Li2(x), x ≤ 1,

π2/3− ln2(x)/2− Li2(1/x), x > 1.

(4.99)

Since Li2(x)+Li2(1/x) = π2/6− ln2(−x)/2, we can combine two cases so that finally

we obtain

Θ(x) =


x2

ex−1 − 2xln(|ex − 1|) + 2Re[Li2(e−x)], x 6= 0.

π2/3, x = 0.

(4.100)

Here we always take the real part of the Li2(e−x) for when e−x > 1, it is a complex

value while Θ(x) is real. Although the Li2 still contains an integral, there are

developed reliable packages to calculate accurately in many langauages such as

fortran, C++ and Mathematica. With this integrated equation, the accuracy can

be greatly boosted, therefore I call it an optimization.

4.2 Current-induced Non-zero Vector Potential

Lü et al. [18] theoretically studied the effect of electric current on a molecular

bridge connecting two metallic electrodes. They found a new mechanism, which

involves Berry phase, that can lead to a breakdown of the bridge by a “run away”

mode. Their discovery inspired us to ask if we introduce electric current into a
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lattice system, e.g., the honeycomb lattice, is there a phonon Hall effect? The “run

away” mode means the amplitude of oscillation including those perpendicular to the

molecular bridge will grow in time, therefore if we extend it to a 2D lattice, this

“run away” mode induced by electric current may result in a phonon Hall current.

Figure 4.1 provides a possible setup on a honeycomb lattice for this current-induced

phonon Hall effect.

Figure 4.1: The schematic setup to detect current-induced phonon Hall effect.
Electric current and temperature gradient are needed which are parallel to each
other. A very small magnetic field, which is about 10−5 tesla, is to perturb the
system and distinguish the direction of the phonon Hall current.

For convenience, we use the renormalized coordinate ulj ≡
√
Mjxlj to denote the

nucleus displacement in real space. Electrons in a metal or a semi-conductor carrying

electric current can interact with the lattice phonons through the electron-phonon

interaction (EPI). In the NEGF formalism, EPI effect is included as a self-energy
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term in the phonon retarded Green’s function [1],

D(ω, q) =
[
ω2I − K̃q − Π(ω=0)− ΠNA

q (ω)
]−1

, (4.101)

where I is the identity matrix in site space of a unit cell, K̃q is the dynamic matrix.

Π(ω=0) is the second term in the equation below. We subtract it off so that the

leading contribution is proportional to the frequency ω in the so-called non-adiabatic

self-energy due to electrons:

ΠNA
qjj′(ω) = 1

N

∑
mn

∑
k

g∗mnj(k, q)gmnj′(k, q)

×
[

fmk+q − fnk
εmk+q − εnk − ~ω − iη

− fmk+q − fnk
εmk+q − εnk

]
,

(4.102)

where f is the Fermi function, g is the converted EPI matrix falling in electron

mode space and phonon reciprocal space, k and q are wave vectors of electrons and

phonons respectively, εnk is the electron dispersion relation, the subscripts m and n

indicate the electron bands, and the subscripts j and j′ denote the atomic labels in a

unit cell including both atom sites and Cartesian directions. The summation is over

the first Brillouin zone of the electrons. A small positive η attributes the electrons

with a finite life time. The self energy can be computed from a first-principle

package.

Alternatively, the movement of the ions can also be described semi-classically by

an equation of motion taking into account the effect of the electrons. For a general

electron-phonon system, there is a generalized Langevin equation describing the

atoms’ movement [90]:

ü = −Ku−
∫ t

Πr
epi(t− t′)u(t′)dt′ + ξ. (4.103)
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Here we do not consider the bath contribution and set the noise term ξ to zero, for

our system is infinitely large. We can define dΓ(t)/dt ≡ Πr
epi(t) and integrate by

parts so that the equation of motion becomes:

ü = −Ku−
∫ t

Γ(t− t′)u̇(t′)dt′. (4.104)

Next we apply a Markov approximation to Γ(t− t′) so that Γ(t− t′) ≈ 4A(t′)δ(t− t′)

(factor 4 is for consistency). The final expression of the equation of motion will be

ü = −Ku− 2Au̇, (4.105)

where K is the spring constant matrix in real space corresponding to the dynamic

matrix K̃q in reciprocal space, and A can be regarded as the matrix representation of

the vector potential induced by EPI which is antisymmetric. Therefore, the phonon

Green’s function is:

D(ω, q) =
[
ω2I − K̃q + 2iωÃq

]−1
. (4.106)

Comparing the two expressions, if we ignore the higher order terms of ω in ΠNA(ω),

and note that Ãq is anti-Hermitian (the anti-Hermitian part of ΠNA(ω) is the source

of dissipative Joule heating, which we will ignore.), we can conclude that:

Ãq = lim
ω→0

ΠNA(ω) + (ΠNA)†(ω)
−4iω . (4.107)

The Markov approximation adopted here is well justified as the electrons move on a

much faster time scale than that of the nuclear degrees of freedom. In terms of the

energy scale, an electron has typical energy of order eV, while phonon ~ω is of the

order 100meV or less. So keeping the leading ω dependence only on self-energy is a
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good approximation. We can trace back to an effective Hamiltonian for phonons

with the electrons taken into account through a non-dissipative term as

Ĥ = 1
2(p− Au)2 + 1

2u
TKu, (4.108)

and the corresponding eigen equation is

ωψq = i

 0 I

−I −2Ãq


K̃q 0

0 I

ψq

=

 0 iI

−iK̃q −i2Ãq

ψq.
(4.109)

Here we choose yq = (uq,vq)T , and vq = pq − Ã(q)uq as before.

4.3 Model Implementation on a Graphene-like
Lattice

4.3.1 Hamiltonian and Self-energy

Graphene has been widely studied and it has remarkably high electron mobility,

therefore we choose a graphene-like lattice to implement our settings. We use a

standard spinless tight-binding model for the electrons:

Ĥe = −t
∑
lδ

[
c†A,lcB,l+δ + c†B,lcA,l+δ

]
, (4.110)

where t = 2.8 eV is the hopping parameter. A and B indicate the two sublattices,

and l runs over the Bravais lattice sites and δ runs over the displacements of the

three nearest neighbors of a given site. Zhang et al.[25] have proposed a simple

phonon model for a graphene-like lattice in which the coupling matrix is diagonal

98



CHAPTER 4. PHONON HALL EFFECT

when the bond orientation is in the x direction between two atoms,

Kx =

KL 0

0 KT

 , (4.111)

where KL = 0.144 eV/(uÅ2) is the longitudinal spring constant and KT = KL/4

is the transverse spring constant. In our coordinates, unit cell lattice vectors

are a1 = (3a/2,
√

3a/2) and a2 = (3a/2,−
√

3a/2). The explicit coupling matri-

ces among three nearest pair can be obtained by a rotation matrix U which are

K01 = U(π/3)KxU(−π/3), K02 = U(−π/3)KxU(π/3) and K03 = U(π)KxU(−π)

respectively. Based on these matrices, we can construct five coupling matrices

between unit cells,

K0 =

K01 +K02 +K03 −K03

−K03 K01 +K02 +K03

 , (4.112)

K1 =

 0 0

−K02 0

 , K2 =

 0 0

−K01 0

 , (4.113)

K3 =

0 −K02

0 0

 , K4 =

0 −K01

0 0

 . (4.114)

Then the dynamic matrix is

K̃q =
∑
l′
Kll′e

i(R0
l′−R

0
l )·q

= K0 +K1e
i(3qxa/2−

√
3qya/2) +K2e

i(3qxa/2+
√

3qya/2)

+K3e
−i(3qxa/2−

√
3qya/2) +K4e

−i(3qxa/2+
√

3qya/2).

(4.115)

In this model, we have ignored the z mode and consider only the in-plane motion.

The reason is that the motion in the direction perpendicular to the plane couples
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quadratically to the electron degrees of freedom, and this is a higher order effect

to the electron-phonon interaction. The electron bands and phonon dispersion of

this lattice model are illustrated in Fig. 4.2. In Fig. 4.2(b), we compare the phonon

dispersion of our model with the DFT results of the graphene. It can be seen our

model is a rough model simulating the real graphene.
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Figure 4.2: (a) Electron bands. (b) Phonon dispersion of the model compared with
the phonon dispersion of graphene calculated by DFT.

For the electron-phonon interaction, we take a SSH-like model, as used in a

previous work by Jiang and Wang [91],

Ĥepi = J1
∑
lδ

[
c†A,lcB,l+δ + c†B,l+δcA,l

]

× [(uB,l+δ − uA,l) · êl,δ],

(4.116)

where J1 = −6.0 eV/Å and êl,δ is the direction between two nearest atoms. The g

matrix is given by

gmnj(k, q) =
∑
m′n′

S†mm′(k + q)Ξj
m′n′(k, q)Sn′n(k), (4.117)
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where j = {Ax,Ay,Bx,By}, gmnj(k, q)∗ = gnmj(k + q,−q) due to hermicity of the

Hamiltonian,

S(k) = 1√
2

 1 eiφ(k)

−e−iφ(k) 1

 , (4.118)

with eiφ(k) = f(k)/|f(k)|, f(k) = e−ikxa + ei(kxa/2+
√

3kya/2) + ei(kxa/2−
√

3kya/2), and

Ξj
m′n′(k, q) is the reciprocal EPI matrix corresponding to Ĥepi. The non-zero

reciprocal EPI matrix elements are

ΞAx
AB(k, q) = −J1[eikxa/2cos(

√
3kya/2)− e−ikxa],

ΞAy
AB(k, q) = −J1

√
3ieikxa/2sin(

√
3kya/2),

ΞBx
AB(k, q) = J1[ei(kx+qx)a/2cos(

√
3(ky + qy)a/2)− e−i(kx+qx)a],

ΞBy
AB(k, q) = J1

√
3iei(kx+qx)a/2sin(

√
3(ky + qy)a/2),

Ξj
BA(k, q) =

(
Ξj

AB(k + q,−q)
)∗
, j = {Ax,Ay,Bx,By}.

(4.119)

In this work, we focus on the EPI for k points near the Dirac points of the

electrons and q near the Γ point of the phonons, for we find that they are dominant

in determining the final phonon Hall conductivity. It seems that we have prepared

all the ingredients to calculate Ãq. However, there is a problem that when we

apply an electric current to this graphene-like two-dimensional surface, assuming

the drift velocity v1 of current is along the x direction, it is in a nonequilibrium

state, therefore we cannot just substitute the Fermi function into the formula. To

solve this problem, we use a single-mode relaxation approximation [62] so that:

f = f 0 − ∂f 0

∂ε
Φ ≈ f 0(ε− Φ), (4.120)
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where f 0 = [e(ε−µ)/kBT + 1]−1 with µ being the chemical potential of electron, and

Φ ≡ Φnk is mode dependent:

Φnk = −eEτnk
∂εnk
∂~kx

, (4.121)

where E is the applied electric field, τnk is the relaxation time which is only related

to the magnitude of the wave vector. In practice, since we don’t know the relaxation

time, we combine it with the electric field and replace them with the drift velocity

v1, for graphene-like lattice [92]:

Φnk = v1 Re
[
z∗
∂z

∂kx

]
/(~v2

F ), (4.122)

where vF = 3at/(2~) is the Fermi velocity, a = 1.42 Å is the distance between atoms,

and z = −tf(k). By requiring this correction to the Fermi function, the self-energy

can be numerically calculated, and thereafter, the Ãq matrix.

4.3.2 Geometric Way for Berry curvature

Usually there are two ways of calculating the Berry curvature, one is the explicit

way,

Ωi = −Im
∑
i′ 6=i

ψ̄i
∂Heff
∂qx

ψi′ψ̄i′
∂Heff
∂qy

ψi − (qx ↔ qy)
(ωi − ωi′)2 . (4.123)

However, to calculate the partial derivative of Heff , we need numerical differentiation

which will cost a large amount of computation to be precise enough. Therefore, we

choose another way, a geometric way by dividing the Brillouin zone into plaquettes

each consisting of four points on a square with area ∆S and calculating the Berry

phase around them [63, 16]:

φ = −Im ln(ψ̄1ψ2ψ̄2ψ3ψ̄3ψ4ψ̄4ψ1), (4.124)
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Compared with the Hermitian case, we have replaced the Hermitian conjugate

of the eigenvector by the left eigenvector. If investigated further, we find that

this replacement is not correct for ψ̄1ψ2 6= (ψ̄2ψ1)∗. This break of the equality, a

fundamental property of the inner product in Hilbert space, will invalidate Stokes’

theorem so that we cannot obtain Berry curvature through Berry phase. To overcome

this, we define a new version of inner product:

〈ψ̄1ψ2〉 ≡
ψ̄1ψ2 + (ψ̄2ψ1)∗

2 . (4.125)

With this definition, property of inner product in Hilbert space and validity of

Stokes’ theorem are restored. Then the Berry curvature is calculated by

Ω = lim
∆S→0

−Im ln
(
〈ψ̄1ψ2〉〈ψ̄2ψ3〉〈ψ̄3ψ4〉〈ψ̄4ψ1〉

)
∆S . (4.126)

4.3.3 Uniqueness of the Berry Curvature

As we have discussed in the previous section, the choice of yq is not unique – at

least three different choices exist in the literature. Zhang et al. choose yq = (uq, pq),

Qin et al. choose yq = (uq, vq), Liu et al. choose yq = (K̃−
1
2

q uq, vq) [25, 2, 93]. The

difference between Zhang’s and Qin’s choices is like the difference between Lagrangian

mechanics and Hamiltonian mechanics, therefore they are more or less equivalent.

The special choice of Liu results in a Hermitian effective Hamiltonian, which implies

immediately the eigenfrequencies are all real. When the vector potential term

can be separated from the usual potential energy term as in our case, these three

bases are related by similarity transformations explicitly. However, this kind of

variable transformations is not gauge invariant. Therefore, generally, if Ãq is not
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Figure 4.3: The Berry curvatures along the high-symmetry path under three different
bases [25, 2, 93]. Although they do not differ so much from each other, they are
indeed different. The inset shows the details of the Berry curvatures near the Γ
point.

a constant matrix, they will result in different Berry curvatures. The question

then arises as which one should be used to compute the phonon Hall conductivity?

To illustrate and confirm that there is indeed a difference, we choose a smooth

Ãq = (Λ + i|Λ|) ∗ (b · q + c) matrix, where Λ is a constant 4 × 4 antisymmetric

matrix, |Λ| takes the absolute value of each element in Λ, b is a constant vector

parameter, and c is another constant parameter. In principle, these three bases

should result in different Berry curvatures, but in practice, the differences are small,

especially between Zhang’s and Qin’s choices, therefore we choose such a highly
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anisotropic case. We plot the corresponding Berry curvatures of the three bases

along a high-symmetry path of the graphene-like lattice in Fig. 4.3. The parameter

set is chosen to be: b · q = (1000Å,1Å)·q, c = 0.1 rad/ps, and Λ is a constant

antisymmetric matrix with upper triangular elements, lower triangular elements and

diagonal elements being 1.0, -1.0, and 0 rad/ps respectively. We see that there are

sharp peaks at the Γ point. However, the signs of the peaks are opposite for Liu et al.

definition to that of Zhang and Qin et al.. Away from the Γ point, the values tend

to be close among the three. In conclusion, since only Qin et al. derived the correct

formula for the phonon Hall conductivity with their definition of the Berry curvature,

which considers an energy magnetization contribution to Hall conductivity [2] while

Zhang et al. did not, we prefer to follow Qin’s definition. It is natural that if we use

other choices, we will obtain different formulas for phonon Hall conductivity.

4.3.4 Numerical Results and Discussions

In order to have a well-defined topological structure, we need to perturb our

system to open tiny gaps at Γ and K points, as the Berry curvature becomes

ill-defined when the bands are degenerate. This goal is achieved by adding a small

onsite potential term to the phonon dynamic matrix and a nearly zero magnetic field

which goes into the Hamiltonian through Raman-type spin-phonon interaction [25].

The effect of the magnetic field is described by a constant antisymmetric matrix Ah:

Ah =

Bh 0

0 Bh

 , Bh =

 0 h

−h 0

 , (4.127)
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Figure 4.4: The dispersion relation of positive branches along high-symmetry path
Γ −M −K − Γ with v1 = 1.0 × 104 m/s, T = 300K, µ = 0.1 eV. A small onsite
potential Vonsite = 1.0× 10−3KL and a nearly 0 magnetic field measured by effective
parameter h = 1.0 × 10−9 rad/ps are employed to perturb the system. The inset
shows one of the anti-crossing points. Note that the out-of-plane ZA mode is not
considered here.

where h is an effective parameter representing magnetic field with units rad/ps

(1 rad/ps ≈ 33.3 cm−1). Adding this matrix to our previous Ãq will introduce

magnetic field into our system. When we calculate Ãq, a 400× 400 k grids is used

and the parameter η is set to be about 0.2 eV. We note that as a function of a

constant magnetic field h, the Berry curvatures and the Chern numbers are odd

functions of h and experience a discontinuity at h = 0, thus ill-defined at h = 0.

Our results presented below thus should be considered as the limit when h → 0+
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and Vonsite → 0+. This is physical since we can always apply a small magnetic

field and put the system on a substrate, thereby acquiring an onsite interaction.

There is one more important thing to note that inside the formula of Ãq, since we

only focus on q points near Γ point, there is a hidden δ function behavior when

temperature is low. This δ function originates from the difference of the intra-band

Fermi functions in the numerator of Ãq if we take a Taylor expansion of q near Γ

point at low temperature. To handle this δ function numerically, we should compute

in a very dense k grids which requires a lot of computation power. However, we can

also broaden this δ function by tuning the electron parameter β = 1/kBT . Through

computation, we find that the differences of EPI at low temperature range, e.g.,

below 300 K or even below 500 K, are very small, therefore, when we calculate Ãq

at low temperature, we can make an approximation to fix the broadening parameter

to be the value at higher temperature like 300 K or 500 K.

Figure 4.4 shows the positive part of the dispersion relation of our current-

induced system, from which we can see that the two acoustic branches are very

close to the pure phonon system without the drift current, while the two optical

branches get modified drastically. This behavior is easy to understand if we review

the EPI form of our model. The strength of EPI in our model is proportional to the

relative displacement of atoms, therefore the optical modes, in which atoms move

relatively, are equipped with stronger EPI than acoustic ones. It deserves notice that

there are several anti-crossing points in the dispersion relations. These points will

possess much larger Berry curvatures, therefore they are dominant in determining

the topological properties of the system. Points in acoustic branches near Γ point
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and anti-crossing points near K points also have large Berry curvatures. However,

these pairs of Berry curvatures should cancel each other for they are similar to pure

phonon system where there are no PHE.
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Figure 4.5: (a) Phonon Hall conductivity κxy versus drift velocity v1 at a temperature
T = 300K. The broadening parameter is β = 1/(kB × 300K). (b) Phonon Hall
conductivity κxy versus temperature at v1 = 10000m/s. The broadening parameter
is set to be β = 1/(kB × 500K). These two plots share the same set of parameters
of temperature, chemical potential, onsite potential and nearly 0 magnetic field as
Fig. 4.4.

Figure 4.5(a) demonstrates the relationship between κxy and the drift velocity

v1. κxy is roughly linear dependent on v1 for our picked velocity sequence. When

v1 is gradually close to the Fermi velocity of this graphene-like lattice system, our

theory and approximation on EPI will gradually break down. The Chern numbers

of positive branches are C1 = 1, C2 = C3 = 0, C4 = −1, respectively. In our

range of the drift velocity, there is no jump among Chern numbers as the Fig. 4.6

shows, which seems kind of trivial. Since the topological structure of the system
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does not change, the discontinuities should come from numerical errors. Figure

4.5(b) shows temperature dependence of κxy. When the temperature is very small,

PHE tends to disappear, and in our temperature range, the absolute value of the

phonon Hall conductivity gradually increases as temperature is increasing, but we

can not conclude what the exact relationship between κxy and temperature is. In

our calculation, numerical errors mainly come from the calculation of Ã(q) and

cubic interpolation to obtain its values with denser grids, which is 2000×2000.

� ���� ���� 
��� ���� �����
v1��
���

�����

����	

���	�

����	

����

���	

��	�

���	

����

C

C1
C2

C3
C4

Figure 4.6: Chern numbers of four positive branches κxy against the drift velocity
v1. Larger indices are associated with higher frequencies.

The order of magnitude of our current-induced κxy is one order smaller than

the case with the magnetic field parameter h being several rad/ps. It is instructive

to compare the magnitude of the Hall conductivity to the universal conductance

quantum which is G0 = T (πkB)2/(3h), when converted into the same units of
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Figure 4.7: Phonon Hall conductivity κxy versus magnetic field parameter h. We can
see κxy changes sign as h changes sign and there is a discontinuity when h crosses 0.

conductivity, G0/a, at 300K, we find it is about 2W/(mK). Our result is about

1/100-th of the conductance quantum. Since κxy with our model is only about one

order smaller than a pure magnetic field experimental results [19], it should be still

observable experimentally in principle.

Figure 4.7 shows this sign jump of the phonon Hall conductivity. The role small

magnetic field played in our system is to perturb our system at Γ point to induce

circular polarisation like the “run away” mode in the work by Lü et al., for the

current-induced Ã(q) is 0 there due to the translational symmetry. Therefore, the

magnetic field determines the sign of the phonon Hall conductivity. Away from Γ

point, current-induced Ã(q) starts to affect the system so that there is a discontinuity

of κxy. Previously, we said we ignore the Joule heating effect. However, in practice,
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Joule heating always exists without special flowing direction. Therefore, it will not

prevent us from observing PHE. We simply prepare a sample with temperature

gradient in a direction, let electric current flow parallel to this temperature gradient,

and apply small magnetic field twice with opposite direction, then measure the

temperature differences in the direction transverse to the current flow. The Joule

heating effect does not change sign while the Hall effect changes sign. From this, we

can deduce the pure Hall contribution.

4.4 Summary

In summary, we have confirmed Tao Qin’s theory through thorough derivation,

and presented an optimization to calculate the phonon Hall conductivity more

accurately. Moreover, we proposed a mechanism of the PHE induced by the electric

current. Compared with other mechanisms of the PHE, no significant magnetic field

is needed in our system. The Chern numbers of some phonon branches are not 0,

but the total Chern number of all the branches is still 0. The property of our system

is that for a suitable range of the drift velocities, the phonon Hall conductivity has

a linear relation on the drift velocity which is proportional to the applied current.

Our mechanism is also consistent with the thermodynamics that when temperature

goes to 0, the PHE disappears. The magnitude of the phonon Hall conductivity

grows nonlinearly when temperature is increasing, but the exact relation cannot be

determined quantitatively.
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Chapter 5

PHE with First-principles Calcula-
tions

Compared with the theoretical studies which are still hovering around the

phenomenon-based models, all the recent experiments are performed on complex

materials. The large phonon Hall conductivity and its strange behaviour in STO

are challenging current microscopic theory [21, 31]. Therefore, it is difficult to

understand them with simplified models, more accurate and persuasive first-principles

calculations are needed.

Usually, harmonic assumption is made in first-principles calculations for phonon

properties like phonon dispersion. However, in some highly anharmonic materials,

harmonic terms alone will produce imaginary phonon frequencies, and it cannot

explain those phenomena such as the thermal expansion, temperature-dependent

phonon dispersion, and some phase transitions. Therefore, beyond harmonicity is a

natural requirement to explore the PHE in complex materials like STO, and it was

argued in a similar perovskite, BTO, that the anharmonic soft phonon modes will

result in a large dielectric constant [46] which could act as a magnifier of the PHE

[30]. Based on this understanding, anharmonicity should play an important role in
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the PHE in real materials. In recent years, many packages based on first-principles

calculations have been developed to calculate anharmonic properties in solids such

as SCAILD, ALAMODE, and TDEP [94, 43, 95]. With the help of these packages,

it is feasible for us to study the PHE in real materials, which could deepen our

understandings in this area.

5.1 Anharmonic Self-consistent Phonon Calcula-
tion for Soft Phonon Modes

There are currently three approaches to handle the anharmonicity: many-body

perturbation theory [96, 97], ab initio molecular dynamics (AIMD) [98, 95], and

self-consistent phonon (SCPH) theory [99, 94, 100, 43]. Perturbation theory is only

valid for weak anharmonicity, while AIMD is a nonperturbative approach. However,

since AIMD is based on the time-dependent Schrödinger equation for all particles

approximately [101], it cannot include zero-point vibration which is significant

at low temperature. SCPH provides another choice to address anharmonicity

nonperturbatively considering the quantum effect. Therefore, in this study, we focus

on the SCPH approach, and borrow the ALAMODE package developed by Tadano

and Tsuneyuki [43]. In this section, we briefly introduce the SCPH theory.

A general Hamiltonian with the third- and the fourth-order Taylor expansion of

the potential can be described as follows:

Ĥ = 1
2
∑
i

p2
i + 1

2u
TKu

+ 1
3
∑
ijk

Γijkuiujuk + 1
4
∑
ijkl

Tijkluiujukul,

(5.1)
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where ui ≡
√
Mixi, Mi and xi are mass and displacement of the i-th degree of

freedom, respectively. Although the third-order term has important contribution

for most anharmonic behaviors like thermal expansion and phonon lifetime, the

fourth-order term is also important, especially for the soft phonon modes. Moreover,

the fourth-order is simpler than the third if we apply a mean-field approximation

by replacing u4 with 〈u2〉u2. With this approximation, the problem goes back to a

quadratic problem with the effective force constant being determined self-consistently.

Therefore, in this thesis, we only focus on the fourth-order correction. By an equation

of motion method [102], the non-equilibrium Green’s function (NEGF) satisfies

G(1, 2) = G0(1, 2)

+
∫
d1′d2′d3d4G0(1, 1′)T (1′, 2′, 3, 4)G(2′, 3, 4, 2),

(5.2)

where G(1, 2) = − i
~〈T̂ u(1)u(2)〉, G(1, 2, 3, 4) = − i

~〈T̂ u(1)u(2)u(3)u(4)〉, T̂ is the

contour order operator, G0(1, 2) is the non-interacting version ofG(1, 2), and numbers

represent the combination of (jt). To close this equation, we need to apply a mean-

field approximation:

G(1, 2, 3, 4) ≈ i~
[
G(1, 2)G(3, 4) +G(1, 3)G(2, 4)

+G(1, 4)G(2, 3)
]
.

(5.3)

Then we can work out the effective force constant matrix,

Ke = K + Σ, (5.4)

where we define

Σij = 3
∑
kl

Tijkl〈ukul〉. (5.5)
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The ingredient we need in the PHE is the dynamic matrix, and therefore we need to

transform the equation into mode space, which is

Dnn′(q) = ωn(q)2δnn′

+ 3
∑
mm′q′

Tnn′mm′(q, q′)〈Qm(q′)Qm′(q′)∗〉,
(5.6)

where Q represents normal modes, n and m are indices for normal modes, q and q′

are lattice momentum, and ωn is the eigenfrequency of the harmonic system. This

equation should be solved self-consistently. In 2015, Tadano and Shinji have already

discussed details within their ALAMODE package [43]. Therefore, we utilize their

package to calculate the dynamic matrix for real materials.

5.2 Phonon Hall Effect Theory

Recall the general description of the PHE theory discussed in Chapter 4, the

phonon dynamics can be described by the following eigen equation:

ωqiψqi =

 0 iI

−iDq −i2Aq

ψqi ≡ H̃qψqi. (5.7)

Solving this eigensystem, we obtain the Berry curvatures and phonon Hall conduc-

tivity:

Ωqi = −Im
[
∂ψ̄qi
∂q
× ∂ψqi

∂q

]
, (5.8)

and

κxy = − 1
2T

∫ ∞
−∞

dε ε2σxy(ε)
dn(ε)
dε

, (5.9)
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where

ψ̄ = ψ†

Dq 0

0 I

 ,

σxy(ε) = − 1
V ~

∑
~ωqi≤ε

Ωz
qi,

(5.10)

n(ε) = 1/(eε/(kBT )−1) is the Bose function at temperature T , ε represents the energy,

V is the volume in real space, and kB is the Boltzmann constant. The summation

includes both positive and negative frequencies. The most common source of the Aq

is the external magnetic field which has been applied in many experiments measuring

the PHE. To describe this process, SPI was introduced.

5.2.1 Lorentz Force Effect with Born Effective Charge

After the first observation of the PHE in 2005, several researchers have tried

to explain the experiments theoretically [23, 24, 25], and all of them focused on

the Raman-type SPI. Under an external magnetic field, the SPI in an ionic crystal

lattice has the form of [25]

HI =
∑
α

hα · (uα × pα) (5.11)

where hα = − qα
2Mα

B if it is purely due to Lorentz force, mα and qα are the ionic mass

and charge at site α, uα and pα are the vectors of displacement and momentum of

the α-th lattice site, respectively. If one assumes the magnetic field is along z-axis,

the SPI can be written as

HI = uTAp, (5.12)
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where A is an antisymmetric block diagonal matrix in real space with the diagonal

block being

 0 hα

−hα 0

. However, using qα as the charge of the ion is not very

accurate in real materials, and in fact, ionic materials do not have free charges.

Instead, charge property should be described by a tensor, i.e., the Born effective

charge tensor. Born effective charge tensor ZT
α,ij describes the linear relation between

the polarization per unit cell along the direction i and the displacement along the

direction j at site α under the condition of a zero electric field, which is equivalent to

the coefficient of the linear relation between the force on an atom and the macroscopic

electric field. These two coefficients are both related to the mixed second-order

derivative of the energy over a macroscopic electric field and atomic displacements

[103].

If we take a careful look at the form of SPI, it can be found that it has the similar

form as the Hamiltonian containing a Lorentz force, therefore, to generalize it to

couple with the Born effective charge, we should start from the magnetic energy.

The energy of a magnetic moment is

Vm = −m ·B, (5.13)

where usually m = e
2r × v, e is the charge of the particle. Since the Born effective

charge is a tensor, we should insert it into the equation carefully. A reasonable

argument is from the way Born effective charge acting on the electric field, which is

ZTE. Here we take the transpose of Z because the first index of it is associated

with the electric field [103]. If we change the reference system so that the charge

appears to move with a velocity v, it will also feel a magnetic field E → E + v×B.
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Therefore, ZT should act on v × B, not on B directly. Moreover, in electronic

system, the rate of change of the polarization is dP
dt

= eZv. Analogous to this, we

propose that in magnetic case, Z acts on v. However, this replacement breaks the

antisymmetry over r and v. To restore it, we add a term with Z act also on r so

that the energy becomes

Vm = −e4[r × (Zv) + (Zr)× v] ·B

= −e4[
(
(vZT )×B

)
· r + (v ×B) · (Zr)]

= −e4[viZkiBlε
kljrj + εiklviBkZljrj]

≡ −e4[v · (ZT ×B +B ×Z) · r].

(5.14)

Then compare it with the form of the SPI, HI = uTAp = −pTAu, we can conclude

that

A = e

4Mα

(ZT
α ×B +B ×Zα). (5.15)

5.2.2 Analytic and Non-analytic Part of the Dynamic matrix

In standard solid state physics, the dynamic matrix is given by

Dnn′(jj′; q) = 1√
MjMj′

∑
l′

Φnn′(lj; lj′)eiq·(Rl′−Rl), (5.16)

where n represents the total degrees of freedom within the unit cell, Mj is the atomic

mass of atom j, Φ is the force constant matrix, Rl locates the unit cell, and q is the

wave vector. By Diagonalizing this matrix, one can obtain the eigenvalues. However,

this analytic dynamic matrix alone cannot correctly describe the phonon dispersion

of ionic solids sometimes. There will be a so-called LO-TO splitting at Γ point in

ionic materials because the Fourier transform of the long range Coulomb interaction
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is not well-defined at Γ point [104]. To capture this splitting, we need to add a

non-analytic part of the dynamic matrix [103],

DNA
nn′(jj′; q) = 1√

MjMj′

4π
V

(Z∗j q)n(Z∗j′q)n′
q · ε∞q

, (5.17)

where V is the volume of the primitive cell, Zj is the Born effective charge tensor of

atom j, ε∞ is the dielectric constant tensor. ALAMODE provides two ways to add

this non-analytic part. One is the Parlinski’s way [105],

Dtotal = D(q) +DNA(q)e−q2/σ2
, (5.18)

where σ is a damping factor. The other one is the mixed-space approach [106],

Dtotal = D(q) +DNA(q) 1
N

∑
l′
eiq·(Rl′−Rl). (5.19)

We choose the mixed-space approach since it does not need an extra parameter.

Both the analytic and non-analytic part of the dynamic matrix are explicit, therefore,

it is easy to calculate their partial derivatives over q which are required in the PHE

framework.

5.3 Numerical Details, Results and Discussions

Dynamic matrix, vector potential, and Berry curvatures are the ingredients to

calculate the phonon Hall conductivity. We determine the structures of the materials

based on first-principles calculations using Quantum-Espresso (QE) [107], then

calculate their interatomic force constants (IFC) up to the fourth-order with the

help of the AIMD package in QE, and finally using the ALAMODE to extract the
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corresponding dynamic matrix including both analytic and non-analytic (with LO-

TO splitting) part. We assume the vector potential is just from the SPI introduced

in the last section with the block diagonal A matrix. The Born effective charge

dyadic is calculated by ph.x module in QE. As for the Berry curvatures, the equation

(5.8) is too abstract to be used in a real calculation, but fortunately, convert it to a

more explicit form using the eigen equation is already a common skill in topological

physics. Taking the z-component of the Berry curvature as an example:

Ωz
j,qxqy = −Im

[ ∑
j 6=j′

ψ̄j
∂H̃
∂qx
ψj′ψ̄j′

∂H̃
∂qy
ψj

(ωj − ωj′ + iη)2 − (qx ↔ qy)
]
, (5.20)

where ωj is the eigenfrequency in the Eq. (5.7), η is related to the inverse of the

phonon lifetime to avoid infinity when there are degenerate points. Since both the

analytic and non-analytic part of the dynamic matrix have explicit formulas, and

the SPI is independent of q, the Berry curvatures can be explicitly worked out.

Thereafter, the phonon Hall conductivity can be obtained by the summation of the

weighted Berry curvatures in the first Brillouin zone.

5.3.1 Numerical Results for NaCl

In 2011, Agarwalla et al. have calculated the PHE in NaCl using “General

Utility Lattice Program” (GULP) with a Coulomb potential and a non-Coulomb

Buckingham potential [29]. However, at that time, they used a not quite correct

theory and their approach was still model-based. Therefore, we recalculate the PHE

in NaCl in first-principles as a new benchmark. In our first-principles calculations,

we apply structure optimization with the PAW-PBE pseudo-potential for Na and

Cl to determine the lattice constant which turns out to be 5.65 Åwith the energy
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cutoff being 500 eV, and we use a 2× 2× 2 supercell to calculate the IFCs. After

several convergence tests, a 50× 50× 50 grid and an 8× 8× 8 grid, are employed

in calculating the dynamic matrix according to Eq. (5.6) for q and q′ respectively.

The small η is chosen to be 0.1 cm−1.
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Figure 5.1: (a) Phonon dispersion of NaCl at T = 300 K without magnetic field.
(b) Phonon dispersion of NaCl at T = 300 K with an external magnetic field being
3× 105 T.

Figure 5.1(a) shows the phonon dispersion of NaCl at T = 300 K without an

external magnetic field with LO-TO splitting included by the mixed-space approach

[106]. It can be seen that in Fig. 5.1(a) there are many degenerate points. If we

apply a magnetic field (along z-direction throughout the paper) of 3× 105 T, those

degenerate points will be lifted especially for the two TO modes as Figure 5.1(b)

illustrates. Therefore, the role magnetic field plays is to open gaps in the phonon

dispersion. Since NaCl has a simple structure, the branches in phonon dispersion can

be well separated from each other by the applied magnetic field. As a result, we can
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draw the corresponding Berry curvatures of each branch, which are shown in Fig. 5.2.

Certain symmetries are observed in Fig. 5.2. The first and second acoustic branches

are almost opposite to each other, so are the first and second optical branches, while

the third acoustic branch and the third optical branch have their own patterns. This

behaviour is consistent with the phonon dispersion of NaCl.
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Figure 5.2: The Berry curvatures of six positive branches in b1 − b2 reciprocal plane
of NaCl under the magnetic field B = 3× 105 T at temperature T = 300 K, where
b1 = 2π

a
(−q̂x + q̂y + q̂z), b2 = 2π

a
(q̂x − q̂y + q̂z) are the two of three basis vectors

with a being the lattice constant. The horizontal and vertical axes represent the
fraction of b1 and b2 in the range of (−0.5, 0.5). The unit of the Berry curvatures is
a2

0, where a0 is the Bohr radius. From (a) to (f), the associated eigenvalues are in
ascending order.

Figure 5.3 illustrates the dependence of the phonon Hall conductivity on magnetic

field and temperature. It can be seen that as the temperature goes to 0, conductivity

also decreases to 0. This is a favorable correction compared with the blowup of

the conductivity near 0 K in Agarwalla et al.’s plots. For a small magnetic field,

the magnitude of the conductivity is roughly linearly growing up, and when the
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Figure 5.3: (a) Phonon Hall conductivity versus the applied magnetic field at T = 50
K and T = 100 K respectively. (b) Phonon Hall conductivity versus temperature at
B = 3× 105 T and B = 5× 105 T respectively.

magnetic field increases further, the magnitude starts to decrease, the same behavior

as that in Agarwalla et al.’s results. However, the conductivity does not change sign

in the same range of the magnetic field. Moreover, the magnitudes of our results are

about one order larger than Agarwalla et al.’s, which is another progress of the ab

initio approach for stronger PHE can more easily be measured in experiments.

Although we obtain observable values of the phonon Hall conductivity, it requires

a rather large magnetic field, about 105 T at least. In experiments, a magnetic field

with an order of magnitude 1 is enough to induce observable and even large phonon

Hall conductivity in complex materials [19, 21]. Therefore, it deserves to implement

our approach in some much more complicated materials such as materials in the
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family of perovskites.

5.3.2 Numerical Results for BTO

BTO has a large dielectric constant, and it was argued that it is due to its

soft optical phonons [46] at Γ point. Previous study implies that a large dielectric

constant could result in large phonon Hall conductivity [30], therefore, we calculate

the PHE in BTO to verify this point. At different temperature ranges, BTO has

different structures, while this structural diversity is difficult to be precisely caught

by first-principles calculations [108]. Therefore, for simplicity, we still choose the

simple cubic BTO to implement the calculation. PAW-PBE pseudo-potentials for

Ba, Ti, and O are employed with a 2 × 2 × 2 supercell to calculate the dynamic

matrix. The lattice constant is optimized to be 4.024 Å, and the energy cutoff is set

to be 800 eV. q and q′ grids are 50× 50× 50 and 8× 8× 8 respectively. The small

η is still chosen to be 0.1 cm−1.

The phonon dispersion of BTO at T = 60 K is illustrated in Fig. 5.4 where the

two soft TO modes can be clearly seen near Γ point whose frequencies are close to 0.

Applying magnetic field results in a similar behavior as in NaCl which is trying to

open gaps in dispersion. Since our goal for NaCl is to provide a benchmark while for

BTO is to compare with experimental values, we use a reasonably large magnetic

field with an order of magnitude 1 in this case. Within this range, the phonon

dispersion almost remains the same under the magnetic field, therefore, it is not

necessary to demonstrate it here.

Similar to Fig. 5.3, Figure 5.5 shows the behaviors of the phonon Hall conductivity

124



CHAPTER 5. PHE WITH FIRST-PRINCIPLES CALCULATIONS

Γ X M Γ R M0

100

200

300

400

500

600

700

800

ω 
(c
m
−ω
)

Figure 5.4: Phonon dispersion of BTO at T = 60 K without magnetic field.

against the magnetic field and temperature. Figure 5.5(a) is drawn at 60 K for

this is roughly the lowest temperature range that first-principles calculations can

correctly address the soft optical phonons in BTO [46]. Again, for a small magnetic

field, the Hall conductivity demonstrates a linear relationship with the magnetic

field. For large fields, the phonon Hall conductivity also becomes large and even has

a sign change. Figure 5.5(b) is under a magnetic field of 16 T, the absolute value of

Hall conductivity increases at first and reaches a peak near 150 K, then starts to

decrease. However, the order of magnitude is two orders smaller than the order of

the experimental values in STO. Although STO and BTO are different materials,
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they have very similar crystal structures and both have soft optical modes at low

temperature [45]. Therefore, we think the comparison is reasonable.
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Figure 5.5: (a) Phonon Hall conductivity versus the applied magnetic field at T = 60
K. (b) Phonon Hall conductivity versus temperature at B = 16 T.

We note that when we increase the magnetic field, the phonon Hall conductivity

in the BTO encounters a sign change. Since the conductivity is just the sum of the

weighted Berry curvatures in the first Brillouin zone, we should observe clues for the

sign change from the Berry curvatures and phonon dispersion of the BTO. Usually,

the great change of Berry curvatures comes from band-openings or band-crossings.

However, monitoring the evolution of each branch in the BTO is not a good idea. In

the phonon dispersion of the BTO, many branches are deeply entangled so that we

cannot always distinguish each branch correctly traveling around the whole Brillouin

zone, neither the Berry curvatures of each branch. Moreover, the phonon Hall

conductivity is an overall effect summing over all the weighted Berry curvatures so
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we cannot only analyze the individual Berry curvatures along the high symmetry

path. Therefore, we decide to simply split the branches into two groups, three

acoustic branches and twelve optical branches, and draw a plot of contributions to

the phonon Hall conductivity of the two groups, which is the Fig. 5.6. Comparing

with the Fig. 5.5(a), we can conclude that the acoustic contributions are larger than

optical for small magnetic fields so that the total conductivity is negative initially,

and when the magnetic field surpasses some value, the situation gets reversed. Once a

small magnetic field is applied to the system, the degenerate branches will be slightly

lifted (points near the Γ point are dominant) so that the Berry curvatures rapidly

increase as shown in Fig. 5.6. Initial tiny gaps nearly produce symmetric Berry

curvatures (dominated by the same η in the Eq. (5.20) ) among all the branches.

However, due to the Θ function, the acoustic branches with much smaller eigenvalues

will contribute more resulting in a negative conductivity (with a transformation,

it is valid to just consider the positive branches [2]). When the magnitude of the

magnetic field keeps increasing, by zooming in the phonon dispersion, we find that

the gaps in the acoustic branches grow faster than those in the optical branches

against the magnetic field. As a result, the magnitude of the Berry curvatures of

the acoustic branches decrease faster than those in the optical branches. The slopes

of the two groups in Fig. 5.6 verify this statement. Finally, at some value of the

magnetic field, the optical branches contribute more to the phonon Hall conductivity

so that a sign change shows up.

Why are the results so small? Our intuition is that the spin-phonon interaction,

in this case, is too weak for it cannot even remove the degeneracy of the soft optical
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Figure 5.6: Mode-dependent contributions to the phonon Hall effect for varying
magnetic field at T = 60 K. The red squares stand for the acoustic contributions
and the blue dots for the optical contributions.

phonons. With this degeneracy, although we have soft optical phonons, their effects

just get canceled. This canceling can be easily checked by looking at the mode

contribution to the phonon Hall conductivity. However, currently we have no idea

what are the suitable ingredients to open a gap between soft optical phonons from

first-principles calculations, and we would like to leave it as an open question that

deserves our further exploration. Therefore, we perform a numerical test to open a

gap by hand.

There are two ways to manually open a small gap at and near the Γ point, one
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Figure 5.7: (a) Open a small gap by manually lifting 1% of the value of the higher
soft optical phonon branch at and near Γ point (the chosen range is where the
frequencies are lower than 100 cm−1). (b) Open a small gap with the same value
and range as (a), but by manually lifting 1% of the value of the lower soft optical
phonon branch which will introduce band-crossing points near Γ point. These two
operations can be imagined considering a partially degenerate two-level system.

is to lift the higher soft optical phonon branch and the other is to lift the lower soft

optical phonon branch. The latter one will induce band-crossing points near the

Γ point. Figure 5.7 shows the Hall conductivity after these two operations. It can

be seen that their magnitudes are indeed enlarged to be close to the experimental

values. These two operations result in opposite signs, and usually the phonon Hall

conductivity experiments measured has a negative sign.

5.3.3 Discussions for STO

Last year, an experimental group found a large phonon Hall conductivity in

STO under the magnetic field around 15 T. Therefore, we also explored the PHE in

STO by first-principles calculations. Since BTO and STO have a similar structure,
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the numerical details are almost the same as BTO except for the pseudo-potential

files. Our optimized lattice constant for STO is 3.852 Åbased on the PBEsol

exchange-correlation functional for Sr, Ti, and O [109], which performs better

than other functionals and is consistent with the previous experimental value [110]

and theoretical calculation [43]. However, we cannot obtain large phonon Hall

conductivity even after manually open a gap, and the order of magnitude is still two

orders smaller than the experiments in STO. The failure could result from many

reasons. Firstly, we choose a cubic structure while at low temperature, STO has

different phases of structure. Secondly, we expect there should be soft phonon modes

with frequencies being close to 0 near Γ point so that the dielectric constant of the

STO will be as large as 104 at low temperature, while our current approach utilizing

ALAMODE cannot produce that soft optical modes, and the dielectric constant we

obtained is about three orders smaller than expected. Thirdly, perhaps we cannot

produce large PHE with the SPI.

Right after the experiment, a theoretical paper by Chen et al. discussed this

experiment in detail [30]. The authors pointed out that with Qin’s theory, the phonon

Hall conductivity can only be about four orders smaller than the experimental value.

Although our results are two orders smaller, it is not enough. Moreover, according

to our observation, the SPI we used is too weak to open a gap between two soft

phonon modes at Γ point. Therefore the degeneration may cause canceling during

the calculation. We obtain large values as those in the experiment if we open a

gap by hand in BTO (not in STO for we cannot produce soft phonon modes in

STO). In Chen et al.’s paper, they also provide another direction to explain the
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experiment, which is using the Boltzmann transport theory. With their approach,

they made a successful prediction of the ratio between the longitudinal conductivity

and the phonon Hall conductivity. However, there is another new experiment in

STO challenging their theory. Just by replacing the 16O in STO with the isotope

18O, researchers found that the phonon Hall conductivity will be reduced by two

orders [31]. It is difficult to explain this behavior using Boltzmann transport theory

for the replacement only changes the mass. Moreover, it is unnatural that we can

only explain the PHE with macroscopic methods.

Γ X M Γ R M

0

200

400

600

800

ω 
(c
m
−ω
)

without SOC
with SOC

Figure 5.8: The phonon dispersion of the STO with and without the SOC at 0 K.
The black solid line stands for the case without the SOC, and the red dotted line
for the case with the SOC.
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When there is an external magnetic field, the ion will experience two effective

vector potentials: one is from the real magnetic field (the SPI in our case), and the

other is from the “Berry phase” due to the phase of electron ground state, which

was first pointed out by Mead and Truhlar [86]. The latter one has already been

considered in Qin’s theory, and Saito et al. have discussed in detail how to include

it in a square lattice model [27]. However, it seems that nobody knows how to

calculate this electron-related vector potential in first-principles calculations. Another

electron-related physical process is the spin-orbit coupling (SOC) of electrons. In our

consideration, the SOC may affect the PHE in two ways. First, the SOC may relate

to the electronic “Berry phase”, but we cannot deal with it yet. Second, the SOC

may modify the phonon dispersion directly [111, 112]. As a quick exploration, we

calculate the phonon dispersion of the STO turning on the SOC at zero temperature,

which is illustrated in Fig. 5.8. It can be seen that the effect of the SOC is so weak

that the phonon dispersion almost remains the same. Although previous research

reported the SOC in the STO-based heterostructures [113] and gating system [114],

there are no studies on the SOC in bulk STO or BTO before. Therefore, the high

temperature effect of the SOC in the STO or BTO deserves future exploration.

Besides, in our calculations, we do not take care of the cubic potential term which

is related to the phonon lifetime. Qin’s theory starts from the harmonic assumption,

therefore we cannot deal with cubic term with this theory. Currently, we simply add

a small constant value η in the Eq. (5.20) to represent the inverse of the phonon

lifetime. Although we can tune the η to modify the phonon Hall conductivity, a

systematical theory for PHE considering the cubic term should be developed in future
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work. Therefore, we think the experiments still lack a microscopic explanation, and

our intuition is that it may be relevant to the inner electronic topological structure

of the STO or the cubic potential term in the STO, which is a future project to

explore.

5.4 Summary

In summary, we introduce an approach to calculate the phonon Hall conductivity

in real materials using first-principles calculations, and apply it to NaCl, BTO, and

STO. Although the approach is very direct, it highly relies on whether first-principles

calculations can predict materials properly and how to introduce the effective vector

potential in materials. We have provided a benchmark of the PHE in NaCl to

be examined in the future, and based on our calculation, there is still a gap to

address soft phonons in STO using first-principles calculations. We conclude that

SPI is not a good candidate to explain the PHE in real materials, and propose

that the inner electronic structure or cubic potential term in STO may be possible

directions to explore in future work. Finally, we think the relationship between the

soft mode and κxy is far from clear quantitatively and needs further exploration.

This study provides an effective route to capture the PHE from the accurate first-

principles calculations in any real materials and has implications in promoting

related experimental investigations.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation explored the electron and phonon dynamics within the electron-

phonon interaction. Multiple methods such as the nonequilibrium Green’s function,

Boltzmann transport equation, Green-Kubo formula, and density functional theory

were employed to investigate the dynamics.

To inspect the electron dynamics coupled to phonons, a general nonlinear

Schrödinger equation was derived to describe the evolution of electrons. How-

ever, this nonlinear equation is too complex to be solved numerically. Therefore, we

split it into two equations, one for electrons and the other for phonons, and then

we solved the coupled equations by molecular dynamics method. As an application,

we applied our method to the 1-D SSH model with single electron. The results

indicated the charge transport in this case with examined parameters is bandlike

meaning that the diffusion constant decreases as the temperature increases. This

behavior contradicted with the prediction derived by the BTE method both qualita-

tively and quantitatively. Therefore, the BTE method is inapplicable to this 1-D

model. The reason we attributed to is that the BTE method incorrectly counts more
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scattering events than what really occurs in 1-D case. Subsequently, we explored

single electron’s transport in a quasi 1-D polymer, the poly(Ni-C2S4), with data

provided by our collaborator from first-principles calculations. In this polymer, the

phonons lie in three dimensions while the electron still moves in one-dimensional

space. Therefore, our simulation only differed quantitatively from the BTE method,

both of which indicated high conductivity in this polymer except higher values

implied by our results. Unfortunately, we could not explore further with larger size

and longer simulation time due to the complexity of the polymer.

For the phonon dynamics, we focused on the phonon Hall effect, which has been

a rather intriguing area in recent years. Summarizing previous research, we provided

a general description of the PHE and a thorough derivation of the phonon Hall

conductivity. Currently, all the experiments and theoretical mechanisms require

a significant magnetic field, while generally, a magnetic filed is not necessary as

long as there is a source of the effective vector potential. Therefore, we proposed

a mechanism of the PHE induced by electric current with the help of the EPI.

In this mechanism, only a very weak magnetic field was needed to perturb the

phonon system in a graphene-like lattice model. The dependence of the phonon Hall

conductivity on the drift velocity of the driving current and on the temperature were

studied. It was found that the magnitude of the conductivity grows linearly against

the increasing drift velocity in the perturbative region. With increasing temperature,

the PHE becomes stronger, while the exact relation could not determined. The

topology of this system was kind of trivial without jumping of the Chern numbers.

We also discussed a way to observe this current-induced PHE to be examined by
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experiments.

As a first attempt, we linked the general theory of the PHE with first-principles

calculations trying to bridge the gap between experiments and theoretical research.

We obtained dynamic matrix and effective vector potential (provided by the spin-

phonon interaction in our calculation) with the help of the first-principles packages,

and then substituted them into the framework of the PHE to calculate the phonon

Hall conductivity. Our first goal was to provide a new benchmark of the PHE in NaCl

which has been explored in previous work. A major revision that PHE disappears

when temperature goes to zero and a minor revision about the magnitude of the

phonon Hall conductivity were achieved. Another goal was to investigate the PHE in

perovskite BTO/STO since large PHE has been observed in experiments. According

to previous research, soft phonon modes should play a crucial role in determining

the PHE. However, although we successfully produced soft phonons in BTO from

first-principles calculations, the results are much smaller than experimental values.

With further exploration, we found that the two soft modes are degenerate, thereby

the dominant Berry curvatures they produce cancel each other, and if we manually

open a small gap here, the Hall conductivity will be comparable with experiments.

Therefore, we thought the SPI we used to generate the effective vector potential was

too weak to break the degeneration between soft modes. However, PHE in STO is

more challenging since first-principles calculations cannot predict its structure at

low temperature correctly. The results we obtained in normal STO cannot explain

experiment even if we manually open the gap between soft modes, but they are close

to the measurements in SrTi18O3, which could be an inspiration for future research.
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There is still a long way to go to fully understand the PHE in real materials. New

theory and better tools are in demand.

6.2 Future Research Directions

For electron dynamics, our current implementation only considered 1-D or quasi

1-D models with phonon baths. Therefore, the model settings can be enriched such as

adding electron baths, setting different temperature for baths, applying electric field,

and so on. Since we found the BTE method does not give a consistent prediction in

1-D with our simulation, we may seek a way to improve the BTE method in future.

Moreover, we have tried to detect a polaron in our model but failed, and currently,

polaron physics still lacks investigation, which is another valuable future direction.

Although this thesis has dived into the field of the PHE deeply, we have not

reached the end of the story. New ingredients are needed to explain experiments

with current microscopic theory, and possible candidates may be the inner electronic

structure or other anharmonic potential terms, for exampe, cubic potential of the

materials. To capture the inner electronic structure, we need to find a way to

compute the electron Berry connection A(R) = i~〈α(R)|∇|α(R)〉 in Mead and

Truhlar’s theory by first-principles calculations directly. There is also a possibility

that better theory for the PHE should be developed.

We believe the above (but not limited to) future research directions will advance

the methodologies presented in this thesis and boost our understandings to associated

fields.
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