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Abstract

There are very few known universal relations that exists in the field of

nonequilibrium statistical physics. Linear response theory is one such ex-

ample which was developed by Kubo, Callen and Welton. However it is

valid for systems close to equilibrium, i.e., when external perturbations are

weak. It is only in recent times that several other universal relations are

discovered for systems driven arbitrarily far-from-equilibrium and they are

collectively referred to as the fluctuation theorems. These theorems places

condition on the probability distribution for different nonequilibrium ob-

servables such as heat, injected work, particle number, generically referred

to as entropy production. In the past 15 years or so different types of fluc-

tuation theorems are discovered which are in general valid for deterministic

as well as for stochastic systems both in classical and quantum regimes.

In this thesis, we study quantum fluctuations of energy flowing through a

finite junction which is connected with multiple reservoirs. The reservoirs

are maintained at different equilibrium temperatures. Due to the stochastic

nature of the reservoirs the transferred energy during a finite time interval

is not given by a single number, rather by a probability distribution. In
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order to extract information about the probability distribution, the most

convenient approach is to obtain the characteristic function (CF) or the

cumulant generating function (CGF).

In the first part of the thesis, we study the so-called “full-counting statis-

tics” (FCS) for heat and entropy-production for a phononic junction sys-

tem modeled as harmonic chain and connected with two heat reservoirs.

Based on the two-time projective measurement concept we derive the CF

for transferred heat and obtain an explicit expression using the nonequi-

librium Green’s function (NEGF) and Feynman path-integral technique.

Considering different initial conditions for the density operator we found

that in all cases the CGF can be expressed in terms of the Green’s functions

for the junction and the self-energy with shifted time arguments. However

the meaning of these Green’s functions are different and depends on the

initial conditions. In the long-time limit we obtain an explicit expression

for the CGF which obey the steady-state fluctuation theorem (SSFT), also

known as Gallavotti-Cohen (GC) symmetry. We found the “counting” of

energy is related to the shifting of time argument for the corresponding

self-energy. The expression for the CGF is obtained under a very general

scenario. It is valid both in transient and steady state regimes. More-

over, the coupling between the leads and the junction could have arbitrary

time-dependence and also the leads could be finite in size. We also derive a

generalized CGF to obtain the correlations between the heat-flux of the two

reservoirs and also to calculate total entropy production in the reservoirs.

In the second part, we study the CGF for a forced driven harmonic junction.

xi



For generalized CGF we obtain an explicit expression in the asymptotic

limit and showed that force induced entropy-production in the reservoirs

satisfy fluctuation symmetry. The long-time limit of the CGF is expressed

in terms of a force-driven transmission function. For periodic driving we

analyze the effect of different heat baths (Rubin, Ohmic) on the energy cur-

rent for one-dimensional linear chain. We also consider the heat pumping

behavior of this model.

Then we consider another important setup which is useful for the study

of exchange fluctuation theorem (XFT) first put forward by Jarzynski and

Wójcik. The system consists of N -terminals without any finite junction

part and the systems are inter-connected via arbitrary time-dependent cou-

pling. We derive the generalized CGF and discuss the transient fluctuation

theorem (TFT). For two-terminal situation we address the effect of cou-

pling strength on XFT. We also obtain a Caroli-like transmission function

for this setup which is useful for the interface study.

In the last part of the thesis, we consider the generalization of the FCS prob-

lem by including nonlinear interaction such as phonon-phonon interaction.

Based on the nonequilibrium version of Feynman-Hellmann theorem we

derive a formal expression for the generalized current in the presence of ar-

bitrary nonlinear interaction. As an example, we consider a single harmonic

oscillator with quartic onsite potential and derive the long-time CGF by

considering only the first order diagram for the nonlinear self-energy. We

also discuss the SSFT for this model.

In conclusion, applying NEGF and two-time quantum measurement method

xii



we investigate FCS for energy transport through a phononic lead-junction-

lead setup in both transient and steady-state regimes. For harmonic junc-

tion we obtain the CGF considering many important aspects which are

relevant for the experimental situations. We also analyze FCS for lead-lead

setup i.e., without the junction part and explored transient and steady state

fluctuation theorems. For general nonlinear junction we develop a formal-

ism based on nonequilibrium version of Feynman-Hellmann theorem. The

power of this general method is shown by considering an oscillator model

with quartic onsite potential. The methods that we develop here for energy

transport can be easily extended for the charge transport as shown by an

example in the appendix.
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Chapter 1

Introduction

The field of statistical mechanics can be divided into equilibrium and

nonequilibrium statistical mechanics. Equilibrium statistical mechanics has

a very simple and elegant structure and is applicable for systems which are

not subjected to any thermodynamic affinities or forces. Depending on

the type of the system the equilibrium probability distribution for the mi-

croscopic degrees of freedom is well known. For example, microcanonical

distribution for isolated systems, canonical distribution for a system which

exchange energy with a weakly coupled environment or a grand canonical

distribution for system which exchange both energy and particle with the

environment. Knowing the Hamiltonian of the system the main task is

then to obtain the partition function, the derivative of which is related to

experimentally measurable quantities such as average energy, specific heat

etc.
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Chapter 1. Introduction

On the contrary very little is known for nonequilibrium systems which are

most ubiquitous in nature. Typically a system can be driven out of equilib-

rium by applying thermal gradients or chemical potential gradients across

the boundaries or may be triggered by time dependent or non-conservative

forces. Unlike equilibrium case, no such general form for the probability

distribution for microscopic degrees of freedom is known in nonequilibrium

physics.

One of the primary interest in the study of nonequilibrium physics is to

understand the heat or charge conduction through the system of interest.

These conduction processes were first described by phenomenological laws

namely Ohm’s law for electrical transport and Fourier’s law for thermal

transport [1–3]. These laws are applicable in the linear-response regime

meaning the system is near to equilibrium, i.e., for weak electric field,

temperature gradient, etc. A significant amount of research is devoted to

understand the necessary and the sufficient conditions for the validity of

these laws and also to derive these relations starting from a microscopic

description, which is still an open problem. On the other hand, how to

extend these laws in the far from equilibrium regime haunted physicists

over the decades.

It is only in the past decade that a major breakthrough happened in this

field with the discovery of fluctuation relations which are valid for systems

driven arbitrarily far from equilibrium. Fluctuation relations make rigorous

predictions for different types of nonequilibrium processes beyond linear-

response theory. In particular, it puts severe restriction on the form of

2



Chapter 1. Introduction

the probability distribution for different nonequilibrium quantities such as

work, heat flux, total entropy which are generally referred to as the entropy

production.

In the year 1993, Evans, Cohen and Moriss [4–6] presented their first numer-

ical evidence which predicts that the probability distribution of nonequi-

librium entropy production is not arbitrary, rather obey a simple relation

which was later formulated as entropy fluctuation theorem. Since then

extensive research has been carried out to extend this relation for stochas-

tic, deterministic and thermostated systems in both classical and quantum

regime. All these relations are now collectively called as the fluctuation

theorems (FT). These theorems are important for number of reasons [7]:

• They explain how macroscopic irreversibility emerges naturally in

systems that obey time-reversible dynamics and therefore shed light

on Loschmidt’s paradox.

• They quantify probabilities of violating second law of thermodynam-

ics which could be significant for small systems or during small time

intervals.

• They are valid for systems that are driven arbitrarily far from equi-

librium.

• In the linear-response regime, they reproduce the fluctuation-dissipation

relations, Green-Kubo formula, Onsager’s reciprocity relations.

• These relations can be verified by performing experiments.

3



Chapter 1. Introduction

Over the past 15 years or so this particular field has gathered a lot of atten-

tion and many different types of fluctuation relations have been discovered.

Here we will discuss few of them. Since this thesis is based on quantum

fluctuations we will mainly focus on the quantum aspect of this theorem.

However the results are also valid for classical systems.

1.1 Introduction to fluctuation theorems

Fluctuation relation is a microscopic statement about the second law of

thermodynamics which states that the probability of positive entropy pro-

duction in nonequilibrium systems is exponentially larger than the corre-

sponding negative value, typically expressed in the form [8]

PF (x)

PR(−x)
= exp[a(x− b)], (1.1)

where x is the quantity of interest, for example, nonequilibrium work (W )

by an external force, heat, etc. PF (x) (PR(x)) is the probability distribution

for the the forward (F ) (reversed (R)) process, explained later. a and b

are real constants with information about the system’s initial equilibrium

properties. The above relation can also be expressed as

〈exp
[

−ax
]

〉 =
∫

e−axPF (x)dx = e−ab
∫

PR(−x)dx = exp
[

−ab
]

. (1.2)

To derive different types of FT for classical and quantum systems two main

4



Chapter 1. Introduction

ingredients are required:

1. Initial condition for the system which is supposed to be in equilibrium

and is described by the canonical distribution ρ(t = 0) = e−βH(0)/Z0

where H is the Hamiltonian of the system, Z0 = Tr
(

e−βH(0)
)

, β ≡

(kBT )
−1 and T is the temperature. For the classical case, H becomes

the function of phase space variables and the trace in Z0 is replaced

by the integration over phase space.

2. The principal of microreversibility of the underlying dynamics [8].

In quantum case another crucial concept that is required to derive the FT

is known as the two-time projective quantum measurement method [8–10]

which we will elaborate in the later part of this chapter.

1.1.1 Jarzynski Equality

The first type of fluctuation relation deals with the fluctuation of work

for an isolated Hamiltonian system H(λ(t)) that is driven by an external

time dependent force protocol λ(t) with arbitrary driving speed. In the

year 1977 Bochkov and Kuzovelv first provided a single compact classical

expression for the work fluctuation [11]. Later in 1997 it was generalized by

Jarzynski [12, 13] and thereby known as Jarzynski equality (JE). JE relates

the nonequilibrium work with equilibrium free energy difference. In this

prescription the force protocol λ(t) drives the system away from equilibrium

5



Chapter 1. Introduction

starting from the state A at time t = 0 with Hamiltonian H(λ(0)) to the

state B at t = τ with Hamiltonian H(λ(τ)). During this process the work

done by the external protocol defined as

W =

∫ τ

0

λ̇
∂H(λ)

∂λ
dt, (1.3)

satisfies the following equality

〈

exp
(

− βW
)〉

= exp(−β∆F ), (1.4)

where β is the initial equilibrium temperature (coming from the initial

condition) and ∆F is the free energy difference between final and initial

equilibrium state corresponding to the Hamiltonian H(λ(τ)) and H(λ(0))

respectively. The average here is taken over different realizations of work

for the fixed protocol λ(t) and fixed initial condition. The remarkable

fact about JE is that the free energy difference can be determined via a

nonequilibrium, irreversible process which is of great practical importance.

Applying Jensen inequality for real convex function, i.e., 〈ex〉 ≥ e〈x〉, to

JE implies 〈W 〉 ≥ ∆F which is consistent with thermodynamic prediction.

Note that JE is also valid when the system is in contact with the environ-

ment either via weak or strong coupling. For proof see [14, 15]. A simple

proof for JE for the isolated quantum system starting with canonical initial

condition is given later.

6



Chapter 1. Introduction

1.1.2 Crooks relation

Crooks [16] later provided a significant generalization to the JE by consid-

ering the probability distribution of work P (W ) for the forward (F ) and

the reverse (R) process. Here forward process means that the external pro-

tocol λ(t) acts on the equilibrium state A at time t = 0 and it ends at the

nonequilibrium state B at time t = τ . In the reverse process, the initial

state B is first allowed to reach equilibrium and then the system evolves

till t = τ with the reversed protocol λ̃(t) = λ(τ − t). As a consequence

of the time-reversal symmetry of the microscopic evolution Crooks showed

that

PF (W )

PR(−W )
= exp

(

β(W−∆F )
)

. (1.5)

Jarzynski equality can be trivially obtained from Crooks relation by first

multiplying both sides e−βWPR(−W ) and then integrate over W .

1.1.3 Gallavotti-Cohen FT

Another class of FT is concerned with the entropy fluctuation in nonequi-

librium steady state for closed systems described by deterministic ther-

mostated equations of motions [4–6, 17, 18] as well as for open systems

modeled via stochastic differential equations [19–21]. In this case a generic

form is given as

lim
τ→∞

1

τ
ln
[ P (S = στ)

P (S = −στ)
]

= σ, (1.6)

7



Chapter 1. Introduction

where S is the net entropy-production during the nonequilibrium process

and σ is the entropy production rate. For example, a system connected with

two heat baths at different temperature TL and TR, the entropy production

S is given as S = (T−1R − T−1L )Q where Q is amount of heat transferred

during the time τ . Then the above relation says that in steady-state it is

more likely to have heat flow from hotter to colder end (Q is positive) rather

than in the opposite direction (Q is negative). This particular fluctuation

symmetry is known as Gallavotti-Cohen (GC) relation and is valid in the

asymptotic limit. Note that Crooks FT also resembles GC symmetry if one

identifies στ = (W−∆F )/T . However the main difference is that GC is

valid in the long-time limit and therefore known as steady-state fluctuation

theorem (SSFT) whereas Crooks theorem holds for any finite time τ and

often named as transient fluctuation theorem (TFT).

1.1.4 Experimental verification of Fluctuation theo-

rems

In recent times, rapid experimental progress has helped to verify some of

these FT for micro and mesoscopic systems where fluctuations are large. In

2002, Evans’s group verified the integrated version of FT [22] by performing

an experiment with a microscopic bead which is captured in an optical trap

and dragged through water. They observed the violation of second law

i.e., negative entropy production trajectories over time scales of the order

of seconds. Later the same group verified the transient version of the FT

8



Chapter 1. Introduction

[23, 24].

The JE is also verified in macromolecule pulling experiments, such as RNA

and single molecule [25, 26] and it is shown that how equilibrium free

energies could be extracted from these experiments. Subsequently Collin

et al. [27] confirms the Crooks relation by performing similar RNA pulling

type experiment. Several other interesting experiments have also been

carried out to verify FT, see for example [28–32]. For a review on FT

experiments see [33].

1.1.5 Quantum Fluctuation theorems

Fluctuation theorems were first derived and formulated for classical sys-

tems. The derivations were mostly based on the notion of classical tra-

jectory picture. The extension of these theorems to the quantum regime

however was not at all straightforward for the following reasons:

• The absence of trajectory picture in the quantum domain.

• Difficulty in generalizing the definitions for work, heat because of the

noncommutative nature of the operators at different time.

Originally Bochkov and Kuzovelv [11] tried to extend their classical re-

sults to the quantum regime by defining the work operator in analogy

with classical expression but failed to provide any quantum analog. Many

9
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other authors [34–36] subsequently tried in the same direction and ar-

rived at the conclusion that quantum analog of JE is satisfied only when

the time-dependent Hamiltonian H(t) commute at different times i.e.,
[

H(t),H(t′)
]

= 0 for any t, t′ which is obviously not valid in general.

Work is not an observable

Kurchan, Tasaki, Mukamel and Talkner et al. [37–43] later pointed out

that work is not a quantum observable and cannot be represented by a

single Hermitian operator. Therefore it’s eigenvalue cannot be determined

by performing single quantum measurement. Rather work characterizes a

process from initial time to the final time just like work in the thermody-

namical sense which is not a state function. Thus in order to obtain the

statistics for work, the Hamiltonian of the system H(t) must be measured

twice, first at the initial time t = 0 and then at the final time t = τ . The

value of the work, for a single realization, is then given as the difference

of the two eigenvalues obtained from the two measurements. By repeating

this measurement procedure with the same initial condition and the force

protocol the distribution P (W ) is constructed. This particular approach

of getting the distribution is known as the two-time measurement method

and is the starting point to derive different quantum fluctuation relations.

In the following, we first review the two-time measurement method fol-

lowing the references [8–10] and then present a simple derivation for one

particular type of FT, known as exchange fluctuation theorem (XFT), to

illustrate the main concepts.

10
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1.2 Two-time quantumMeasurementMethod

In this section, we elaborate the concept of two-time measurement method

which will be used in the subsequent chapters. Let us suppose that we are

interested in the statistics of a quantity which can be written as the differ-

ence of an operator at two different time. For example, the work operator

for an isolated driven system, described by a time-dependent Hamiltonian

H(t), can be defined as the change of energy of the system i.e.,

W(t) = HH(t)−H(0), (1.7)

(calligraphic fonts are used to represent quantum operators) with HH(t) =

U †(t, 0)H(t)U(t, 0) is the Hamiltonian in the Heisenberg picture. U(t, 0) =

T exp
[

− i
~

∫ t

0
H(t′)dt′

]

for t > t′. Therefore let us consider a general

operator A(t) in the Schrödinger picture which may have explicit time

dependence. The operator in its eigenbasis can be written as

A(t) =
∑

at

at|at〉〈at| =
∑

at

atΠat , (1.8)

where at is the instantaneous eigenvalue (discrete) and Πat is the corre-

sponding projection operator satisfying Π2
at = Πat and

∑

at
Πat = 1. Let us

also assume that the full system is in a pure state |Ψ0〉 at t = 0. The gener-

alization for the mixed states can be done easily. The concept of two-time

measurement is the following:

1. First we measure the operator A(t) at t = 0. Then according to

11
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quantum mechanics, the outcome of the measurement can only be an

eigenvalue of the (Schrödinger) operator A = A(t = 0) and the wave

function collapses to an eigenstate of A. Let the eigenvalue is a0 and

the corresponding eigenstate is |a0〉. Then we can write

A|a0〉 = a0|a0〉, Πa0 = |a0〉〈a0|. (1.9)

We assume that the eigenvalues are discrete and nondegenerate. The

probability of obtaining the eigenvalue a0 is given by

P (a0) =
∣

∣

∣
〈a0|Ψ0〉

∣

∣

∣

2

= Tr
[

ρ0Πa0

]

, (1.10)

where ρ(0) = |Ψ0〉〈Ψ0|. Immediately after the first measurement at

t = 0, the wave function collapses to

|Ψ′0〉 =
Πa0 |Ψ0〉

√

Tr
[

Πa0ρ0

]

. (1.11)

2. Then propagate the state |Ψ′0〉 up to the time of interest t with the

full Hamiltonian H(t) and then perform a second measurement of the

operator A(t). The outcome now is another eigenvalue say at. Then

the conditional probability to obtain at given a0 is given as

P (at|a0)= |〈at|U(t, 0)|Ψ
′

0〉2=
1

Tr
[

ρ0Πa0

]Tr
[

Πa0ρ(0)Πa0U †(t, 0)ΠatU(t, 0)
]

,

(1.12)

12
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where U(t, 0) is the unitary operator satisfies the Schrödinger equa-

tion

i~
∂U(t, 0)
∂t

= H(t)U(t, 0). (1.13)

Therefore the joint probability of getting a0 at time 0 and at at time

t is given as

P (at, a0) = P (at|a0)P (a0) = Tr
[

Πa0ρ(0)Πa0U †(t, 0)ΠatU(t, 0)
]

.

(1.14)

If the initial state is in a mixed state, we add up the initial probability

classically, i.e., the density matrix will be given as

ρ(0) =
∑

k

wk|Ψk
0〉〈Ψk

0|, wk > 0,
∑

k

wk = 1. (1.15)

Now, we are interested in the probability distribution for Q given as dif-

ference of the eigenvalues at and a0 respectively i.e., Q = at − a0. (Q of

non-calligraphic font is a classical variable) Then the probability distribu-

tion P (Q) can be constructed as

P (Q) =
∑

at,a0

δ(Q−(at−a0))P (at, a0), (1.16)

where δ(x) is the Dirac-delta distribution. The characteristic function (CF)

associated with this probability distribution P (Q) is defined as

Z(ξ) =

∫ ∞

−∞

dQ eiξQ P (Q) =
∑

at,a0

eiξ(at−a0) P (at, a0). (1.17)

13
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Substituting the expression for P (at, a0), using the cyclic property of the

trace and the properties of the projection operator we obtain

Z(ξ) =
∑

at,a0

eiξ(at−a0)Tr
[

Πa0ρ(0)Πa0U †(t, 0)ΠatU(t, 0)
]

=
∑

at,a0

Tr
[

Πa0ρ(0)Πa0e
−iξA(0)U †(t, 0)Πate

iξA(t)U(t, 0)
]

= Tr
[

ρ′(0) e−iξA(0) eiξA
H (t)

]

= 〈e−iξA(0) eiξAH (t)〉ρ′(0) = 〈eiξAH(t) e−iξA(0)〉ρ′(0), (1.18)

where now the average is with respect to the modified density operator

ρ′(0) =
∑

a0
Πa0ρ(0)Πa0 , containing information about the initial measure-

ment. We call ρ′(0) as the projected density matrix. Note that the projected

density matrix coincides with the initial density matrix if ρ(0) commutes

with Πa0 and therefore commutes with the operator A(0) i.e.,

ρ′(0) = ρ(0) ⇔ [ρ(0),A(0)] = 0. (1.19)

This particular derivation can be easily generalized for systems in contact

with environment as shown in chapter 3.

Example: Work operator and JE

For the work operator defined in Eq. (1.7) we can identify A(t) as H(t).

Therefore the CF corresponding to the work distribution P (W ) can be

immediately written down as

Z(ξ) ≡ 〈eiξW 〉 = 〈e−iξH(0) eiξH
H (t)〉ρ′(0). (1.20)

14
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We now choose the initial condition for the isolated system as ρ(0) =

e−βH(0)/Z0 by imagining that at t < 0 the system was in weak contact with

a heat bath at temperature T = 1/kBβ. Therefore we can write

Z(ξ) =
1

Z0

Tr
[

e−βH(0)e−iξH(0) eiξH
H (t)

]

. (1.21)

Now substituting ξ = iβ and defining Zt = Tr
[

exp[−βH(t)]
]

we obtain

Z(iβ) = 〈exp[−βW ]〉 = Zt

Z0
= exp[−β∆F ], (1.22)

with F (t) = − 1
β
lnZt and ∆F = F (t) − F (0) is the free energy change

between the final and initial equilibrium state.

1.3 Quantum Exchange Fluctuation theorem

In this section we derive one particular form of the fluctuation theorem

known as Exchange Fluctuation theorem (XFT) to illustrate how fluctu-

ation symmetry emerges out from very few basic fundamental principles.

For the derivation we mostly follow reference [8]. We will also discuss the

FT in chapter 5.

Using the principle of microreversibility XFT was first written down by

Jarzynski and Wójcik [44] for both classical and quantum systems and it

was generalized later by Saito and Utsumi [45] and Andrieux et al. [46].
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This FT is valid for several interacting systems, initially at different tem-

peratures and chemical potentials, which are allowed to interact within the

time interval [0, τ ]. The interaction between the systems could be time-

dependent. The total Hamiltonian is then written as

H(Vt) =

r
∑

i=1

Hi + Vt (1.23)

Hi is the Hamiltonian of the i-th system and Vt is the time-dependent

interaction between the systems which is switched on at time t = 0 and

switched off at t = τ and nonzero within the interval [0, τ ].

We assume that the systems are initially decoupled and present at their

respective equilibrium temperature and chemical potential. Then the initial

condition for the density operator is given as

ρ0 =
∏

i

ρi =

r
∏

i=1

e−βi[Hi−µiNi]

Ei
, (1.24)

where βi, µi and Ei = Tr e−βi[Hi−µiNi] the inverse temperature, chemical po-

tential and grand partition function respectively of i-th system. Ni here

is the particle number operator. It is also assumed that the particle num-

bers in each subsystems are conserved in the absence of interaction i.e.,

[Hi,Ni] = 0. So in this case we can simultaneously measure both Hi and

Ni for each system i as they all commute with each other. We perform

two-time measurement one at t = 0 and another at t = τ for all Hi and

Ni.
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Let us assume that after the first measurement of all Hi’s and all Ni’s

at t = 0 the wave function collapses onto a common eigenstate |ψn〉 with

eigenvalues Ei
n and N i

n. Then the wavefunction evolves under the full

Hamiltonian H(Vt) up to time τ when the second measurement of all Hi

and allNi’s is performed and the wave function collapse to another common

eigenstate |ψm〉 with eigenvalues Ei
m and N i

m.

Using Eq. (1.14) the joint probability distribution p(m,n;V) for obtaining

the eigenvalues Ei
n, N

i
n at t = 0 and Ei

m, N
i
m at t = τ is given as

p(m,n;V) = pn→m[V] p0n, (1.25)

where pn→m[V] is the transition probability from state |ψn〉 to |ψm〉 given

as

pn→m[V] = |〈ψm| U(τ, 0) |ψn〉|2 (1.26)

with U(t, 0) = T exp
[

− i
~

∫ t

0
H(Vt′)dt

′
]

and p0n =
∏

i e
−βi[Ei

n−µiN i
n]/Ei is the

initial probability for the n-th state.

Now let us construct the joint probability distribution for energy and par-

ticle exchanges p[∆E,∆N;V] where the notation ∆E and ∆N is for the

individual energy and particle number changes of all the systems i.e.,

∆E1,∆E2, · · · ,∆Er and ∆N1,∆N2, · · · ,∆Nr respectively. The joint prob-

ability distribution p[∆E,∆N;V] is then given as

p[∆E,∆N;V]=
∑

m,n

(

r
∏

i=1

δ(∆Ei−(Ei
m−Ei

n)) δ(∆Ni−(N i
m−N i

n))
)

p(m,n;V),

(1.27)
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Now if the total Hamiltonian commutes with the time-reversal operator Θ

at any instant of time i.e., ΘH(Vt) = H(Vt)Θ then the microreversibility of

non-autonomous system implies that pn→m[V] = pm→n[Ṽ ] where Ṽt = Vτ−t

is the time-reversed protocol. Therefore we simply have

p(m,n,V)
p(n,m, Ṽ)

=
p0n
p0m

=
r
∏

i=1

e
βi

[

(Ei
m−E

i
n)−µi(N

i
m−N

i
n)

]

(1.28)

Then using Eq. (1.27) we write

p[∆E,∆N;V]=
∑

m,n

∏

i

δ(∆Ei−(Ei
m−Ei

n)) δ(∆Ni−(N i
m−N i

n)) p(n,m; Ṽ) p
0
n

p0m

=
(

r
∏

i=1

eβi

(

∆Ei−µi∆Ni

)

)

∑

m,n

∏

i

δ(∆Ei−(Ei
m−Ei

n)) δ(∆Ni−(N i
m−N i

n)) p(n,m; Ṽ)

=
(

r
∏

i=1

eβi

(

∆Ei−µi∆Ni

)

)

∑

m,n

∏

i

δ(∆Ei−(Ei
n−Ei

m)) δ(∆Ni−(N i
n−N i

m)) p(m,n; Ṽ)

=
(

r
∏

i=1

eβi

(

∆Ei−µi∆Ni

)

)

p[−∆E,−∆N; Ṽ] (1.29)

Therefore we have

p[∆E,∆N;V]
p[−∆E,−∆N; Ṽ]

=

r
∏

i=1

eβi[∆Ei−µi∆Ni]. (1.30)

The above relation can also be derived starting from the definition of the

CF

Z({ξeα}, {ξpα},V) = 〈e
∑

α iξeαH
H
α (t)+iξpαNH

α (t) e
∑

α−iξ
e
αHα(0)−iξ

p
αNα(0)〉. (1.31)
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In this case the fluctuation symmetry reads as

Z({ξeα}, {ξpα},V) = Z({−ξeα + iβα},−{ξpα − iµαβα}, Ṽ), (1.32)

where {ξeα} and {ξpα} is the set of counting fields for the energy and particle

number respectively. Inverse Fourier transform of this CF will produce the

symmetry given in Eq. (1.30).

1.4 Full-Counting statistics (FCS)

As mentioned before that with the advent of micro-manipulation tech-

niques and nanotechnologies in recent years, it is now possible to measure

probabilities of nonequilibrium quantities such as P (W ) by manipulating

single atoms or electrons. This generate an immense interest to both ex-

perimentalists and theorists to study nonequilibrium problems in small

or low-dimensional systems such as molecular junction which has already

shown many practical advancement [47–51]. Since these small systems are

always in contact with the environment they show random thermal and

quantum fluctuations, also called noise, which are typically of the same or-

der (few times kBT ) with the system energy scale. This fluctuations shows

large deviations from systems average behavior and thus make it an exper-

imentally measurable quantity. This random fluctuations may even lead

to instantaneous transfer of heat or charge against the gradients and could

play an important role in controlling the transport. Therefore for small
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systems understanding the properties of higher order fluctuations seems

necessary, in the context of transport theory, which cannot be obtained

just by calculating the mean value. With increasing system size however

these relative fluctuations are suppressed with 1/
√
N , where N is the sys-

tem size, making the average as the dominant behavior and the fluctuations

hard to measure.

Generically speaking, to extract information about these fluctuations it is

necessary to talk about the statistical distribution P (Q), where Q is the

quantity of interest such as heat, charge, transferred through the system

during a time interval τ . From this distribution, we can go on to calculate

not only the mean and the variance of Q but in principle all higher order

fluctuations such as skewness, Kurtosis etc. Therefore P (Q) constitutes a

complete knowledge (zero frequency) about the properties of Q and thus

known as the full-counting statistics (FCS). Finding out this distribution

function for different nonequilibrium system is one of the key interest in

the field of nonequilibrium physics.

Parallel to this distribution function a quantity which is often useful for the

actual calculation is the Fourier transformation of this distribution, known

as the characteristic function (CF). It contains the same information as the

distribution function. The CF is defined as,

Z(ξ) ≡ 〈eiξQ〉 ≡
∫

dQeiξQP (Q), (1.33)
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(If Q is a discrete variable, the integration should be replaced by a sum-

mation) where ξ is known as the counting field or the counting parameter.

Once Z(ξ) is known P (Q) can be obtained by an inverse Fourier transform.

The CF is similar in notion with the partition function in equilibrium sta-

tistical physics. The moments of Q (denoted by single angular bracket) are

obtained from the CF by taking derivatives with respect to the counting

field ξ and evaluated at ξ = 0. i.e.,

〈Qn〉 = ∂nZ(ξ)

∂(iξ)n

∣

∣

∣

ξ=0
. (1.34)

In analogy with the equilibrium free-energy, the logarithm of the CF is

also defined and is known as the cumulant generating function (CGF). It

generates the irreducible moments or the cumulants (denoted by double

angular bracket) of Q given as

〈〈Qn〉〉 = ∂n lnZ(ξ)

∂(iξ)n

∣

∣

∣

ξ=0
. (1.35)

The cumulants can be expressed in terms of the moments for example

〈〈Q〉〉 = 〈Q〉,

〈〈Q2〉〉 = 〈Q2〉 − 〈Q〉2 = 〈
(

Q− 〈Q〉
)2〉,

〈〈Q3〉〉 = 〈Q3〉 − 3〈Q〉2〈Q〉+ 2〈Q〉3 = 〈
(

Q− 〈Q〉
)3〉,

〈〈Q4〉〉 = 〈Q4〉 − 3〈Q2〉2 − 4〈Q3〉〈Q〉+ 12〈Q2〉〈Q〉2 − 6〈Q〉4,

(1.36)
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and similarly for higher orders. The first cumulant, same as the moment,

is the average value of Q and represents the peak of the distribution P (Q).

The second cumulant 〈〈Q2〉〉 = 〈Q2〉 − 〈Q〉2 is the fluctuation about the

mean value and represents the width of the distribution. The third cumu-

lant, known as skewness, describes the asymmetry of the distribution. In

the same way all the higher order cumulants give specific information and

thus construct the distribution function.

The theory of FCS has recently become a subject of significant interest in

the study of quantum transport. But it has its origin dates back in quan-

tum optics where the statistics of the number of photons, emitted from a

source, is studied by counting them using a photo-detector [52–54]. There-

after Levitov and Lesovik apply this concept for electrons in mesoscopic

systems where the transmission of single electrons through a conductor

is counted using a spin detector by coupling it with the current operator

[55, 56]. This coupling parameter turns out to be the counting field for

the problem. Based on the scattering matrix approach these authors for

the first time give a definite answer for charge transport of non-interacting

electrons in a two-terminal setup by obtaining the CF. Their pioneering

work is now celebrated as Levitov-Lesovik formula. Over the years numer-

ous other techniques are developed to study FCS for charge transport in

different nonequilibrium systems. For example, a semi-classical theory is

put forward by Pilgram et al. [57] based on stochastic path integral. Later

on Keldysh Green’s function approach to FCS is proposed by Nazarov et

al. [58]. Using these approaches many works followed [9, 59–61]. With
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the physics of noninteracting electrons well understood, the full counting

statistics of strongly interacting systems is now actively pursued [62–65].

Recently, experimentalists have been able to determine the FCS for elec-

trons in quantum dot systems [66–68].

1.5 Problem addressed in this thesis

Study of FCS for electrons have achieved a lot of progress since the pioneer-

ing work by Levitov and Lesovik. But in contrast to the FCS for electron

transport, much less attention has been paid for FCS study of heat trans-

port via phonons. Although calculating steady state heat current through

nonequilibrium lattice systems is one of the most well studied aspects of

nonequilibrium physics [1, 2, 69, 70], the extension to FCS study for these

systems is proposed recently by Saito and Dhar [71]. They obtain the long-

time limit for the CGF of heat for one-dimensional linear chain connected

with two thermal baths and derived an equivalent form of Levitov-Lesovik

formula for phonons. Later on Ren et al. study FCS problem for two-level

systems [72, 73] using quantum master equation approach. FCS of energy

fluctuations in a driven quantum resonator is recently carried out by Clerk

[74]. Most of these current theories however mainly focus on the asymp-

totic limit of the CF where the initial distribution as well as the quantum

effect of measurement generally speaking do not play any role. Therefore

one of the main aim of this thesis is to study the FCS for heat transport in

general lattice systems, both harmonic and anharmonic, treating transient
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and asymptotic limit on equal footing. We study the transport problems

from a very general perspective such as, analyzing the effects due to dif-

ferent initial conditions of the density operator, investigating the effects of

quantum measurement etc . Moreover we enquire the conditions that leads

to different types of FT’s by obtaining the CF. The main objectives of this

thesis are

• To develop a rigorous formalism based on nonequilibrium Green’s

functions (NEGF) and two-time quantum measurement method to

study the FCS problem for a ballistic lead-junction-lead system con-

sidering many relevant aspects such as incorporating both transient

and steady state behavior, time-dependent coupling between the leads

and the center, finite size of the leads, time-dependent driving force

etc.

• To examine conditions which leads to the steady state fluctuation

theorems for these models.

• To generalize the theory for N -terminals with and without the cen-

ter. For without the junction setup a recent experiment validates

exchange fluctuation theorem [75].

• To extend the ballistic FCS theory for general anharmonic lattice sys-

tems employing nonequilibrium version of Feynman-Hellmann theo-

rem.
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The result of the present research may have significance on the understand-

ing of the FCS as well as the fluctuation theorems for phonons transport

both in transient and steady state for general lattice systems. It provide

insight on the two-time measurement aspect which is the central ingredient

to obtain correct probability distribution in the sense of fluctuation sym-

metry. Some of these results are worthy of experimental verifications. A

recent experiment by Clerk et al [76] has measured phonon shot noise of

mechanical resonator which also seems to be a potential candidate for FCS

experiments.

It is worth mentioning that a significant progress has been achieved in the

FCS for heat transport in the classical regime. Using Langevin dynamics

Kundu et al. [77] presented analytical results for harmonic junction which

later generalized for arbitrary harmonic network by Saito and Dhar [78].

Few numerical studies has also addressed FCS problems for nonlinear sys-

tems [79]. Very recently an exact result in classical nonlinear molecular

junction is obtained by Liu et al. [80].

1.6 Thesis structure

In the following of this thesis, we will introduce the Nonequilibrium Green’s

function (NEGF) method in chapter 2 which will be used extensively in the

later chapters; followed by the study of FCS for lead-junction-lead ballistic

system in chapter 3. In chapter 4 we study the the FCS and heat generation
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due to driven force in the junction part. In chapter 5 we extend this FCS

study for N -terminal setup without the junction. In chapter 6 we develop

a method to generalize the FCS approach for arbitrary nonlinear junction.

Finally a conclusion of this study and future prospects is given in chapter

7.
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Chapter 2

Introduction to

Nonequilibrium Green’s

function (NEGF) method

In this thesis, to study the full-counting statistics (FCS) for nonequilibrium

systems we employ nonequilibrium Green’s functions (NEGF) method, also

referred to as Keldysh formalism. In the following we give a brief introduc-

tion of this method.
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2.1 Introduction

NEGF is an elegant and powerful method which is used for evaluating

properties of many-body systems in both equilibrium and nonequilibrium.

The method has its root from quantum field theory. NEGF method was

first developed by Schwinger [1], Kadanoff and Baym [2] and later on by

Keldysh [3]. By generalizing time ordered operators to contour-ordered

operators Keldysh developed Feynman diagrammatic expansion method

using Wick’s theorem for nonequilibrium systems [4, 5]. Kadanoff and

Baym developed the equation of motion approach for the Green’s functions.

Both approaches are equally applicable for studying a dynamic system in

nonequilibrium state. NEGF has found many applications for example, in

electronic transport for mesoscopic systems, in solid state physics, nuclear

physics, plasma physics and also in the study of superconductivity and

superfluidity. For quantum transport, NEGF addresses the problem based

on microscopic theory in a complete and consistent way, including nonlinear

interactions. One of the main application of NEGF in quantum transport

is to calculate the steady state properties of a finite system connected with

two heat baths at different fixed temperatures and/or chemical potentials.

NEGF is one of the most commonly used methods in electronic transport

study. However its application in thermal transport has gained significant

interest only in recent times for both linear [6–8] and nonlinear systems

[9–13]. For extensive study on NEGF we recommend the books by Datta,

Haug and Jauho, Rammer, Di Ventra [4, 5, 14–16] and a review article by

Wang et al [17]. Let us very briefly list few important features of NEGF
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[18]:

• The main ingredient in NEGF is the Green’s function, which is in

general a function of two space-time coordinates. Based on the knowl-

edge of these functions one can compute time-dependent expectation

values such as current, densities etc.

• In the absence of external driving, thermodynamic affinities, NEGF

reduces to the equilibrium Green’s function method which has impor-

tant applications in many branches of physics and also in quantum

chemistry.

• Generalizing time-ordered operators to contour-ordered operators NEGF

can be mapped to a formally equivalent equilibrium theory.

• NEGF method can handle both finite and extended systems and in

transport theory the formalism can be well applied to study both

transient and steady state properties.

In the following, we introduce different types of Green’s functions, their

importance and also the relations between them. After that we will discuss

a generalized version of the Green’s function known as contour-ordered

Green’s function, which opens up the possibility to perform perturbative

expansion with respect to interacting Hamiltonian, similar to what is done

in quantum field theory. At the end of this chapter we will apply all these

techniques to derive the Landauer formula for current.
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2.2 Definitions of Green’s functions

In NEGF approach it is advantageous to define various (six) Green’s func-

tions (retarded (r), advanced (a), lesser (<), greater (>), time-ordered (t),

anti-time-ordered (t̄)) which describes the expectation value of a product of

operators evaluated at different instant of times. Keeping in mind the lat-

tice models to discuss thermal transport in subsequent chapters we choose

these operators as position operators in the first quantized representation.

However these definitions can be easily generalized for any two arbitrary

operators which need not to be even Hermitian. The reasoning for defining

such objects is that experimentally relevant quantities can be immediately

expressed in terms of these Green’s functions. We start by defining the

retarded Green’s function [19, 20]

Gr(t, t′) = − i

~
θ(t− t′)〈[u(t), u(t′)T ]〉, (2.1)

where u(t) is a column vector of the particle displacements in the Heisen-

berg picture i.e., it’s dynamics is governed by some HamiltonianH(t) which

can depend on time explicitly. For brevity, we have set all the atomic

masses to 1, but the formulas are equally applicable to variable masses

with a transformation uj → √
mjxj . The square brackets are the commu-

tators. Here θ(t) is the Heaviside step function. The notation 〈· · · 〉 means

the average is with respect to an initial density matrix ρ(t0) i.e., 〈· · · 〉=

Tr
[

ρ(t0) · · ·
]

, typically taken in the form of canonical distribution. Here

t0 is the reference time. Also 〈
[

A,BT
]

〉 represents a matrix and should
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be interpreted as 〈ABT 〉 − 〈BAT 〉T . The physical dimension of Gr(t, t′) is

time. Retarded Green’s function often termed as the response function in

the linear-response theory because it differs from zero only for times t > t′

and hence can be used to calculate response at time t due to some exter-

nal perturbation at time t′. In addition, information about the density of

states, spectral properties are also contained in this Green’s function.

In a similar notion the advanced Green’s functions is defined as

Ga(t, t′) =
i

~
θ(t′ − t)〈[u(t), u(t′)T ]〉. (2.2)

We also define the lesser and greater Green’s functions as

G<(t, t′) = − i

~
〈u(t′)u(t)T 〉T ,

G>(t, t′) = − i

~
〈u(t)u(t′)T 〉. (2.3)

These two Green’s functions are directly linked to many physical observ-

ables such as average kinetic energy, current, particle density, etc. As a

simple example the expectation value for the kinetic energy (K.E) can be

written as

〈K.E〉 =
1

2
〈u̇T (t)u̇(t)〉

=
1

2
lim
t→t′

∂2

∂t ∂t′
〈uT (t)u(t′)〉

=
i~

2
lim
t→t′

∂2

∂t∂t′
Tr

[

G>(t, t′)
]

=
i~

2
lim
t→t′

∂2

∂t∂t′
Tr

[

G<(t′, t)
]

. (2.4)
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Finally we define time and anti-time ordered Green’s functions as

Gt(t, t′) = − i

~
〈Tu(t)u(t′)T 〉,

Gt̄(t, t′) = − i

~
〈T̄ u(t)u(t′)T 〉. (2.5)

where T (T̄ ) is the time (anti-time) ordering operator which moves the

operator with the earlier time argument to the right (left). These two

Green’s functions allow the construction of a systematic perturbation the-

ory in thermal equilibrium.

Relations among the Green’s functions:

From the definitions of the Green’s functions it is clear that these functions

are not all independent. In fact they obey the following relations which are

true in both time and frequency space,

Gr −Ga = G> −G<,

Gt +Gt̄ = G> +G<,

Gt −Gt̄ = Gr +Ga. (2.6)

Here we have simplified the notation as we don’t specify the arguments for

the Green’s functions, which means it could be either in time or in frequency

domain. In equilibrium or nonequilibrium steady state (NESS) Green’s

functions depend only on the time difference, say Gr(t, t′) = Gr(t− t′). In

that case it is often useful to work in the Fourier space. We define the

Fourier transformation as (we will follow this convention throughout this
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thesis)

Gr[ω] =

∫ +∞

−∞

dtGr(t) eiωt. (2.7)

Then the inverse Fourier transform is given by

Gr(t) =

∫ +∞

−∞

dω

2π
Gr[ω] e−iωt. (2.8)

Based on the above relations, out of six Green’s functions, only three of

them are linearly independent. Moreover, in stationary state Gr[ω] and

Ga[ω] are Hermitian conjugate of one another i.e., Ga[ω] = (Gr[ω])†. There-

fore in nonequilibrium steady-state only two Green’s functions are indepen-

dent which we can choose as Gr[ω] and G<[ω].

Fluctuation-dissipation relation

In thermal equilibrium, there is an additional relation between Gr[ω] and

G<[ω] in the frequency space, given as:

G<[ω] = f(ω)
(

Gr[ω]−Ga[ω]
)

, (2.9)

where f(ω) = 1/(eβ~ω − 1) is the Bose-Einstein distribution function at

temperature T = 1/kBβ. The above equation is one particular form of

fluctuation-dissipation theorem as the correlation function G<[ω] carries

information about the fluctuations and is related to the imaginary part of

the response function which is responsible for the dissipation. The above

relation can be proved with the help of an important identity in the time-

domain, known as Kubo-Martin-Schwinger (KMS) boundary condition [21]
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and is given as

G<(t) = G>(t− iβ~), (2.10)

where we assume that G<(t) can be analytically continued in the complex

t plane.

Proof:

The ij component of G< matrix is given as

G<
ij(t) = − i

~
Tr

[

ρ(0)uj(0)ui(t)
]

= − i

~
Tr

[

ρ(0)uj(−t)ui(0)
]

= G>
ji(−t)

= − i

~
Tr

[e−βH

Z
e−

i
~
Htuje

i
~
Htui(0)

]

= − i

~
Tr

[ 1

Z
e

iH
~
(−t+iβ~)uje

− iH
~
(−t+iβ~)e−βHui(0)

]

= − i

~
Tr

[

ρ(0)ui(0)uj(−t+ iβ~)
]

= G<
ji(−t+ iβ~) = G>

ij(t− iβ~). (2.11)

where the equilibrium density matrix ρ(0) = e−βH/Z and Z = Tr(e−βH) is

the canonical partition function. (Here we choose t0 = 0). Now performing

Fourier transformation of the above relation we get the detailed balance

condition.

G>[ω] = eβ~ωG<[ω]. (2.12)

Using this relation and Gr−Ga = G>−G< proves Eq. (2.9). It is important
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to mention that this detailed balance condition is one of the fundamental

basis behind the fluctuation theorems (FT’s) as it is valid for heat baths

which are always maintained in thermal equilibrium. Therefore one of the

important properties of equilibrium theory is that all Green’s functions

are linked via fluctuation-dissipation theorem and hence there is only one

independent Green’s function; which can be taken as the retarded one i.e.,

Gr. However we will later see that in NEGF-FCS case relations between

different Green’s functions like in Eq. (2.6) do not exist and we need to

compute all Green’s functions independently which makes the problem non-

trivial in general.

2.3 Contour ordered Green’s function

NEGF theory is formally equivalent to the equilibrium one, with the only

difference that in nonequilibrium case the Green’s functions are defined on

a contour, referred to as Keldysh contour (see Fig. 2.1). This contour runs

from the remote past where the system was in equilibrium to the highest

relevant time and back to the remote past again. It plays an analogous role

as the time-ordered Green’s function plays in equilibrium. The Contour

ordered Green’s function is the central quantity in NEGF for constructing

the perturbation theory based on Wick’s theorem and Feynman diagrams.

Before getting into the details about this function, we first very briefly

review three different representation pictures in quantum mechanics.
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t0 tM

τ

τ ′

Figure 2.1: The complex-time contour C in the Keldysh formalism. The
path of the contour begins at time t0, goes to time tM , and then goes back
to time t = t0. τ and τ ′ are complex-time variables along the contour.

2.3.1 Different pictures in quantum mechanics

Let us consider a system with Hamiltonian H(t) and assume that it can

be written as a sum of a noninteracting or free part H0 and a complicated

interaction part V(t), which could depend on time explicitly. Therefore the

total Hamiltonian is given as H(t) = H0 + V(t).

Schrödinger Picture:

In this picture the wavefunction |ψ(t)〉 is time-dependent and its dynamics

is governed by the Schrödinger equation:

i~
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉. (2.13)

The formal solution of this equation is written as

|ψ(t)〉 = U(t, t0)|ψ(t0)〉, U(t, t0)U †(t, t0) = U †(t, t0)U(t, t0) = 1, (2.14)

U(t, t0) = T exp
[

− i

~

∫ t

t0

dt′H(t′)
]

. (2.15)

We choose t0 as the synchronization time. The operators in this picture
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are constant.

Heisenberg Picture:

In this picture the wavefunctions are constant i.e., |ψH(t)〉 = |ψ(t0)〉 and

the operators are time-dependent with the evolution

OH(t) = U †(t, t0)O(t)U(t, t0), (2.16)

where O(t) is in the Schrödinger picture with explicit time-dependence.

Interaction Picture:

The state vector in this picture is defined as

|ψI(t)〉 = e
i
~
H0(t−t0)|ψ(t)〉. (2.17)

Therefore the wavefunctions propagate with respect to the interacting Hamil-

tonian V(t) only and satisfy the following equation

i~
∂

∂t
|ψI(t)〉 = VI(t)|ψI(t)〉. (2.18)

with formal solution

|ψI(t)〉 = UI(t, t
′)|ψI(t

′)〉. (2.19)

UI(t, t
′) is often called the scattering or S-matrix and is defined as

S(t, t′) = UI(t, t0)U †I (t′, t0) = T exp
[

− i

~

∫ t

t′
dt′ VI(t

′)
]

, (2.20)
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which appears in the perturbative expansions. The operators in this picture

evolve under the influence of the free Hamiltonian H0 i.e.,

OI(t) = U †0(t, t0)O(t)U0(t, t0), (2.21)

and similarly for VI(t) in Eq. (2.18). Here

U0(t, t0) = exp
[

− i

~
H0(t− t0)

]

,

UI(t, t0) = T exp
[

− i

~

∫ t

t0

dt′ VI(t
′)
]

. (2.22)

Then it can be easily shown that the full unitary operator U(t, t0) can be

decomposed as a product of free evolution part U0(t, t0) and the interacting

evolution part UI(t, t0) i.e.,

U(t, t0) = U0(t, t0)UI(t, t0). (2.23)

More importantly using Eq. (2.16) and Eq. (2.21) the relation between the

operators in Heisenberg and interaction picture is given as

OH(t) = U †I (t, t0)OI(t)UI(t, t0). (2.24)

2.3.2 Closed time path formalism

We now introduce the contour, the closed time path, which starts at initial

time t0 and go upto maximum relevant time t = tM and then back again
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to t0 (see Fig. (2.1)). The key observation is that the transformation of

the operator between Heisenberg picture and interaction picture given in

Eq. (2.24) can be expressed on closed contour form as

OH(tM) =
(

TCe
− i

~

∫
C
VI(τ)dτOI(tM)

)

. (2.25)

Here τ is the contour-time variable which runs over the contour from time

t0 to tM on the upper branch and from tM to t0 on the lower branch. TC is

the contour-ordered operator which orders operator according to their con-

tour time argument, earlier contour time places an operator to the right.

This crucial equivalence of Eq. (2.24) and Eq. (2.25) is the basis for for-

mulating the perturbation theory on contour. Note that under the contour

ordering operator the algebra of operators become equivalent to the algebra

of numbers.

Now expanding the exponential and splitting the contour into upper and

lower branch it can be shown that [4]

(

TCe
− i

~

∫
C
VI(τ)dτOI(tM)

)

=
(

T←−
C
e−

i
~

∫
←−
C
VI(τ)dτ

)

OI(tM )
(

T−→
C
e−

i
~

∫
−→
C
VI(τ)dτ

)

,

(2.26)

where T−→
C
and T←−

C
denotes contour ordering on the upper and lower branch

respectively. Now parameterizing the contour according to τ(t′) = t′, t′ǫ[t0, tM ]

we see that

T−→
C

(

e−
i
~

∫
−→
C
VI(τ)dτ

)

= Te−
i
~

∫ tM
t0
VI(t

′)dt′ = UI(tM , t0),

T←−
C

(

e−
i
~

∫
←−
C
VI(τ)dτ

)

= T̄ e
i
~

∫ tM
t0
VI(t′)dt′ = U †I (tM , t0), (2.27)
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i.e., contour ordering on the upper (lower) branch is identical to the time

ordering (anti-time ordering) T−→
C

= T
(

T←−
C

= T̄
)

. This idea for one point

operator can be easily generalized for product of two operators and hence

for the Green’s functions. The main idea for the general case is as follows

• Transform each Heisenberg operator appearing in the Green’s func-

tion to the interaction picture.

• Read the time-evolution from the right to represent the evolution on

the contour.

For example let us consider the time-ordered Green’s function

Gt(t, t′) = − i

~
〈Tu(t)uT (t′)〉, (2.28)

if t > t′ then the above Green’s function can be written as (in the interaction

picture)

G>(t, t′) = − i

~
Tr

[

ρ(t0)S(t0, t) uI(t)S(t, t′) uTI (t′)S(t′, t0)
]

, (2.29)

where we have used the fact that S(t, t0) = UI(t, t0). Now let us read the

time evolution from the right side. Given a state at initial time t0 it evolves

from t0 till the time t′ at which point operator uI(t
′) acts. Then it evolves

from t′ to t where the operator uI(t) acts. Finally it evolves from t back to

t0 i.e.,

S(t′, t0) → uTI (t
′) → S(t, t′) → uI(t) → S(t0, t). (2.30)
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Similarly for t′ > t we can write,

G<(t, t′) = − i

~
Tr

[

ρ(t0)S(t0, t′)uTI (t′)S(t′, t)uI(t)S(t, t0)
]

. (2.31)

Therefore the contour-ordered version of the Green’s function can be writ-

ten as

G(τ, τ ′) = − i

~
〈TCuI(τ)uTI (τ ′)e−

i
~

∫
C
VI(τ ′′)dτ ′′〉 (2.32)

≡ − i

~
〈TCu(τ)uT (τ ′)〉. (2.33)

where τ, τ ′ are the contour time variables and depending on the posi-

tions of these variables on the two branches of the contour, different real

time Green’s functions can be obtained. Therefore writing contour-ordered

Green’s function in the interaction picture gives us the opportunity to per-

form perturbative expansion (see Eq. (2.32)) and the topological structure

immediately becomes identical to the equilibrium theory. We will also show

this by an example at the end of this chapter.

Contour time τ, τ ′ to real time t, t′

Since the two contour variables τ, τ ′ can lie either on the upper or lower

branch there are four different real time Green’s functions that can be

obtained. They are given as,

Gσσ′(t, t′) = lim
ǫ→0+

G(t + iǫσ, t′ + iǫσ′), σ, σ′ = ±1. (2.34)

where we have introduced a branch index σ, such that τ = t + iǫσ. Here
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σ can take two possible values ±1 with σ = +1(−1) means τ is on the

upper (lower) branch. Following this notation, we can identify that in real

time G++(t, t′) = Gt(t, t′), G−−(t, t′) = Gt̄(t, t′), G+−(t, t′) = G<(t, t′), and

G−+(t, t′) = G>(t, t′), or in the matrix form

G(τ, τ ′) →







G++(t, t′) G+−(t, t′)

G−+(t, t′) G−−(t, t′)






=







Gt(t, t′) G<(t, t′)

G>(t, t′) Gt̄(t, t′)






= G(t, t′).

(2.35)

For later convenience we also define a new matrix Ḡ(t, t′) given by Ḡ(t, t′) =

σzG(t, t
′) where σz is the third Pauli matrix i.e.,

σz =







1 0

0 −1






. (2.36)

Here we identify σz as the matrix related to the branch index.

2.3.3 Important relations on the Keldysh Contour

In order to work on the contour we need to generalize few definitions that

are known in real time to the contour time. For example, we define the

contour version of the Dirac-delta function as

∫

dτ ′ δ(τ, τ ′) f(τ ′) = f(τ). (2.37)

Note that, here we can not write δ(τ, τ ′) as δ(τ − τ ′) since τ and τ ′ may lie

on two different branches and then the meaning of τ − τ ′ is ambiguous.
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We generalize the Heaviside theta function on the contour as θ(τ, τ ′), de-

fined to be 1 if τ is later than τ ′ on the contour and 0 otherwise. The delta

function then can be obtained from the theta function by taking contour

time derivative, given as δ(τ, τ ′) = dθ(τ, τ ′)/dτ . This fact is required to

derive the equations of motion for the contour-ordered Green’s functions.

Note that the derivative on the contour is defined as

df(τ)

dτ
= lim

τ ′→τ

f(τ ′)−f(τ)
τ ′−τ , (2.38)

The limit τ ′ → τ suggests that τ, τ ′ should lie on the same branch.

The Heisenberg equation of motion on the contour is written in a similar

form as given in the real time,

dAH(τ)

dτ
=

1

i~

[

AH(τ),HH(τ)
]

, (2.39)

and since the transformation from Schrödinger operator to Heisenberg oper-

ator is a unitary transformation, the canonical commutation relation holds

for equal contour time i.e.,

[

ui(τ), pj(τ)
]

= i~δij . (2.40)

The transformation for contour time integral to the real time is done as
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follows

∫

dτf(τ) · · · →
∫ tM

t0

f+(t)dt+

∫ t0

tM

f−(t)dt =
∑

σ=±1

σ

∫ tM

t0

fσ(t)dt. (2.41)

As an example the contour-ordered delta function, defined in Eq. (2.37),

transforms as

δ(τ, τ ′) → σδσσ′δ(t− t′), (2.42)

with δσ,σ′ is the Kronecker delta. More explicitly, we can write,

δ(τ, τ ′) =































δ(t− t′) for τ, τ ′ on upper branch

−δ(t− t′) for τ, τ ′ on lower branch

0 for τ, τ ′ on different branches

2.3.4 Dyson equation and Keldysh rotation

We see from Eq. (2.32) that contour ordered Green’s functions are useful for

performing perturbative expansion with respect to scattering matrix VI(τ)

in the interaction picture. Expanding the exponential or the S-matrix in

Eq. (2.32) we get an infinite series corresponding to different orders of VI

with each term is averaged with respect to the initial density operator ρ(t0).

In perturbation theory the main task is to evaluate such terms or rather first

break down the terms into Gaussian products as accomplished by Wick’s

theorem, which is valid when ρ(t0) is Gaussian or quadratic. Therefore

each term in the expansion consists of product of free thermal equilibrium
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contour-ordered Green’s functions. In some situations, this infinite series

can be summed exactly with the help of Feynman diagrams [22, 23] which

then gives rise to Dyson’s equation. A general form of it in contour time

can be written as (see for example the derivation of Eq. 2.85)

G(τ, τ ′) = g(τ, τ ′) +

∫

C

∫

C

dτ1dτ2 g(τ, τ1)Σ(τ1, τ2)G(τ2, τ
′), (2.43)

where g is the bare or free Green’s function. Σ is called the self-energy,

includes the effects of interaction coming from VI . We realize that G here is

the sum of infinite number of terms i.e., G = g+
∫ ∫

gΣg+
∫ ∫ ∫

gΣgΣg+

· · · .

Now using the transformation rule for integration going from contour to

real time, we write the components of the Dyson equation as

Gσσ′(t, t′) = gσσ
′

(t, t′) +

∫ tM

t0

∫ tM

t0

dt1dt2
∑

σ1,σ2=±1

σ1σ2 g
σσ1(t, t1) Σ

σ1σ2(t1, t2)

Gσ2σ′(t2, t
′). (2.44)

Multiplying σ on both sides, we obtain

σGσσ′(t, t′) = σgσσ
′

(t, t′) +

∫ tM

t0

∫ tM

t0

dt1dt2
∑

σ1,σ2=±1

σgσσ1(t, t1)σ1Σ
σ1σ2(t1, t2)

σ2G
σ2σ′(t2, t

′), (2.45)

which in simplified notation reads

Ḡ(t, t′) = ḡ(t, t′) +

∫ tM

t0

∫ tM

t0

dt1dt2 ḡ(t, t1)Σ̄(t1, t2)Ḡ(t2, t
′), (2.46)
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where Ḡ(t, t′) = σz G(t, t
′) as introduced before. Similarly we define ḡ

and Σ̄. Such a form of the matrix however is not very useful for actual

calculation and one performs a Keldysh rotation which for any arbitrary

matrix M is given as

M̆ = OTM̄O = OTσzMO. (2.47)

where the rotation matrix O (rotation by an angle 45◦ in the space of

branches) is given by

O =
1√
2







1 1

−1 1






, OOT = OTO = I. (2.48)

The effect of the Keldysh rotation is to change any given matrix M̄ to M̆

as,

M̆ =







M r MK

M K̄ Ma






(2.49)

=
1

2







M t −M< +M> −M t̄, M t +M t̄ +M< +M>

M t +M t̄ −M< −M>, M< −M t̄ +M t −M>






.(2.50)

In this case we define the quantities M r, Ma, MK , and M K̄ following

Eq. (2.50). The Keldysh rotation transforms the matrix Ḡ as

Ğ =







Gr GK

0 Ga






, (2.51)
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where the GK̄ component is 0 due to the standard relation among Green’s

functions G> + G< = Gt + Gt̄. We define GK = G< + G>, known as

the Keldysh Green’s function. These three Green’s functions (retarded,

advanced and Keldysh) appears in Ğ are the fundamental objects of the

Keldysh technique. We will later see that for FCS problems, because of the

presence of the counting field, the K̄ component will be nonzero in general.

Finally after Keldysh rotation, we write the Dyson equation in Eq. (2.46)

as (by multiplying OT from left and O from right and using the fact that

O is an orthogonal matrix)

Ğ(t, t′) = ğ(t, t′) +

∫ tM

t0

∫ tM

t0

dt1dt2 ğ(t, t1)Σ̆(t1, t2)Ğ(t2, t
′). (2.52)

Since all this matrices are now upper-triangular and as product of any

number of triangular matrices is again a triangular matrix, we can immedi-

ately conclude that, the convolution of any number of retarded (advanced)

Green’s functions is also a retarded (advanced) Green’s function.

If the Green’s functions are now time translationally invariant then the

above convolutions in the ω domain becomes multiplication in the limit

t0 → −∞ and t→ ∞ and we obtain

Ğ[ω] = ğ[ω] + ğ[ω]Σ̆[ω]Ğ[ω], (2.53)
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with different components written down explicitly as

Gr[ω] = gr[ω] + gr[ω]Σr[ω]Gr[ω],

Ga[ω] = ga[ω] + ga[ω]Σa[ω]Ga[ω],

GK [ω] = gK[ω] + gr[ω]Σr[ω]GK [ω] + gr[ω]ΣK [ω]Ga[ω] + gK [ω]Σa[ω]Ga[ω].

(2.54)

Generalization

Often in NEGF we encounter convolutions involving many Green’s func-

tions in contour time such as

B(τ, τ ′) =

∫

dτ1

∫

dτ2 · ·A1(τ, τ1)A2(τ1, τ2) · ·An(τn−1, τ
′). (2.55)

Based on the above technique we can immediately write down the relations

in frequency space as [4, 15]

B̆[ω] = Ă1[ω]Ă2[ω] · · · Ăn[ω], n = 2, 3, · · ·

Br[ω] = Ar
1[ω]A

r
2[ω] · · ·Ar

n[ω], n = 2, 3, · · · (2.56)

Ba[ω] = Aa
1[ω]A

a
2[ω] · · ·Aa

n[ω], n = 2, 3, · · · (2.57)

BK [ω] = Ar
1[ω] · · ·Ar

n−1[ω]A
K
n [ω] + Ar

1[ω] · · ·Ar
n−2[ω]A

K
n−1[ω]A

a
n[ω] +

· · ·+ AK
1 [ω]A

a
2[ω] · · ·Aa

n−1[ω]A
a
n[ω]. (2.58)

This particular transformation of going from contour time to the real time

is known as Langreth’s rule [4, 20].
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2.4 Example: Derivation of Landauer for-

mula for heat transport using NEGF ap-

proach

One of the primary interest in quantum transport is to calculate steady

state current. We therefore in this section introduce a harmonic lattice

model to study heat transport using NEGF method and illustrate the main

concepts developed in this chapter. We derive the steady state expression

for the heat current for this model, known as Landauer like formula. This

formula was first derived for the electron transport [24–27] and later ex-

tended for heat transport [7, 28]. For alternate derivation of this formula

such as using Generalized Langevin equation, see [29, 30].

Harmonic lattice model

A typical setup to study transport consists of three parts called as the

Left lead (denoted by L), the center (denoted by C) and the right lead

(denoted by R). The center part is the system of interest which can be

an insulator or a metal or a semi-conductor and is finite in size. The left

and right leads (also known as reservoir, bath) are maintained at different

temperatures and/or chemical potential difference. To satisfy the criterion

of a bath they are modeled by non-interacting Hamiltonians with infinite

degrees of freedom. The system and the leads are connected via some

coupling Hamiltonian.
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For harmonic lattice model the center part is modelled as finite number

of coupled harmonic oscillators and the coupling Hamiltonians between

the leads and the center are taken in bilinear form in position variables.

The leads are collections of infinite coupled harmonic oscillators with zero

chemical potential. The Hamiltonian for the entire system is then written

as

H = HL +HC +HR +HLC +HRC , (2.59)

where Hα = 1
2
pTαpα + 1

2
uTαK

αuα, α = L,C,R, for the left, right, and the

finite central region. Masses are redefined as u =
√
mx. uα and pα are

column vectors of coordinates and momenta. Kα is the spring constant

matrix of region α. The coupling HαC is given as

HαC = uTαV
αCuC , α = L,R. (2.60)

and V αC =
[

V Cα
]T
.

Initial condition for the density operator

At initial time t = t0 → −∞, we consider three systems Hα, α = L,C,R

to be decoupled from each other and are at separate temperatures, TL,

TC , and TR with respective equilibrium distributions. Then the density

operator for the full system is in the the direct product state of L,C and

R i.e.,

ρprod(t0) = ρL ⊗ ρC ⊗ ρR, ρα =
e−βαHα

Tr[e−βαHα]
for α = L,C,R. (2.61)

For t > t0 → −∞, the coupling elements V LC and V CR are turned on
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slowly so that a steady state for the entire system can be established at

time t = 0. The full density operator at t = 0 (denoted by ρNESS(0)) is

then given as

ρNESS(0) = U(0, t0)ρprod(t0)U †(0, t0), (2.62)

where U(t, t′) is the evolution operator for the full system. The current is

calculated considering ρNESS(0) as the initial state.

Calculation for current

The operator for the energy current flowing from one of the lead, say the

left lead, is defined as the rate of change of the energy of the left lead

Hamiltonian and is written as (t > 0)

IL(t) = −dH
H
L (t)

dt
=
i

~

[

HH
L (t),H

]

= pTL(t)V
LCuC(t), (2.63)

where the operators are in the Heisenberg picture. Now taking the average

with respect to the steady state density operator ρNESS(0), the average

current can be expressed in terms of the Green’s function as

〈IL(t)〉 = i~
∂

∂t′
Tr

[

V LCG>
CL(t, t

′)
]

t′=t
. (2.64)

Since [u̇L(t), uC(t)] = 0, we can also write the above expression as

〈IL(t)〉 = i~
∂

∂t′
Tr

[

V LCG<
CL(t, t

′)
]

t′=t
. (2.65)

We see that the energy current is directly related to the lesser and greater
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Green’s function. After symmetrization we obtain

〈IL(t)〉 =
i~

2

∂

∂t′
Tr

[

V LCGK
CL(t, t

′)
]

t′=t
, (2.66)

whereGK
CL = G<

CL+G
>
CL. Now our main task is to obtainG<,>

CL components.

To obtain these, we work in the contour-ordered version of GCL which for

the general case can be written as,

Gαβ(τ, τ
′) = − i

~
〈Tcuα(τ)uTβ (τ ′)〉ρNESS(0) α, β = L,C,R. (2.67)

Let us now show how we can perform perturbative calculation on contour

and obtain Dyson’s equation by working in the interaction picture. Two

key steps are

• Express the Green’s function Gαβ in terms of the decoupled initial

condition ρprod(t0) because we know how to calculate the bare of free

Green’s functions for such initial condition.

• Transform to the interaction picture with respect to the decoupled

Hamiltonian H0 = HL + HC + HR and work with the interaction

HLC +HRC .
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For simplicity, let us consider the greater component of Gαβ

G>
αβ(t, t

′) = − i

~
〈uα(t)uTβ (t′)〉ρNESS(0)

= − i

~
Tr

[

ρNESS(0)U †(t, 0) uα U(t, t′) uTβ U(t′, 0)
]

= − i

~
Tr

[

ρprod(t0)U †(t0, t) uα U(t, t′) uTβ U(t′, t0)
]

. (2.68)

We now go to the interaction picture with respect to H0 and consider t0 as

the synchronization tim. Then we can decompose the full unitary operator

as the product of free and interacting evolution part

U(t, t0) = U0(t, t0)UI(t, t0), (2.69)

with

U0(t, t0) = e−
i
~
H0 (t−t0), UI(t, t0) = Te

− i
~

∫ t

t0
V̂(t′)dt′

. (2.70)

(The symbol caret is used to denote that the operators are in the interaction

picture with respect to the free Hamiltonian H0). V̂(t) is given as

V̂(t) = U †0(t, t0)
[

HLC +HCR

]

U0(t, t0)

= ûTL(t)V
LC ûC(t) + ûTR(t)V

RC ûC(t). (2.71)

Eq. (2.68) in the interaction picture can be written as

G>
αβ(t, t

′) = − i

~
Tr

[

ρprod(t0)S†(t, t0)ûα(t)S(t, t′)ûTβ (t′)S(t′, t0)
]

.

60



Chapter 2. Introduction to Nonequilibrium Green’s function (NEGF)
method

Now on contour we can simply write

Gαβ(τ, τ
′) = − i

~
〈Tcûα(τ)ûTβ (τ ′)e−

i
~

∫
C
V̂(τ ′′)dτ ′′〉ρprod(t0), (2.72)

where the contour now runs from initial time t0 to the max(t, t′) and comes

back to t0. As mentioned before, this particular form is useful for pertur-

bative calculation.

Let us now compute the GCL(τ, τ
′) given as

GCL(τ, τ
′) = − i

~
〈TcûC(τ)ûTL(τ ′)e−

i
~

∫
C
V̂(τ ′′)dτ ′′〉ρprod(t0), (2.73)

and can be shown to satisfy the following equation

GCL(τ, τ
′) =

∫

dτ ′′GCC(τ, τ
′′)V CLgL(τ

′′, τ ′). (2.74)

Proof:

To prove the above equation we use an alternate method known as the equations

of motion approach for the contour-ordered Green’s functions. Let us write down

GCL(τ, τ
′) in the Heisenberg picture

GCL(τ, τ
′) = − i

~
〈TCuC(τ)u

T
L(τ
′〉ρNESS(0),

= − i

~

[

θ(τ, τ ′)〈uC(τ)uTL(τ ′)〉+ θ(τ ′, τ)〈uL(τ ′)uTC(τ)〉T
]

.(2.75)

Taking derivatives with respect to contour time τ ′ and using the relations ∂θ(τ, τ ′)/∂τ =
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δ(τ, τ ′) and ∂θ(τ ′, τ)/∂τ = −δ(τ, τ ′) we obtain

∂2GCL(τ, τ
′)

∂τ ′2
= − i

~
〈TCuC(τ)ü

T
L(τ
′)〉ρNESS(0), (2.76)

where we use [u̇L(τ), uC(τ)] = 0. Now using the equation of motion for uL on

contour,

üL(τ) = −KLuL(τ)− V LCuC(τ), (2.77)

we obtain the the equation of motion for GCL as

∂2GCL(τ, τ
′)

∂τ ′2
+GCL(τ, τ

′)KL = −GCC(τ, τ
′)V CL. (2.78)

This equation can be solved by defining a Green’s function of the left-lead, satisfy

the following differential equation

[ ∂2

∂τ2
+KL

]

gL(τ, τ
′) = −Iδ(τ, τ ′). (2.79)

By multiplying Eq. (2.78) by gL(τ, τ
′) on the right, and multiplying Eq. (2.79)

by GCL(τ, τ
′) on the left, then integrating by parts the subtraction of Eq. (2.78)

and Eq. (2.79), we obtain

GCL(τ, τ
′) =

∫

dτ ′′GCC(τ, τ
′′)V CLgL(τ

′′, τ ′)

+
∂GCL(τ, τ

′′)

∂τ ′′
gL(τ

′′, τ ′)−GCL(τ, τ
′′)
∂gL(τ

′′, τ ′)

∂τ ′′

∣

∣

∣

−t0−iǫ

−t0+iǫ
.(2.80)

At both ends of the contour, the center and the baths are decoupled. Therefore

for τ ′′ = −t0 ± iǫ, GCL(τ, τ
′′) = ∂GCL(τ,τ

′′)
∂τ ′′ = 0 and we obtain Eq. (2.74). This

equation can also be proved by performing perturbative expansion of Eq. (2.73).

(See [15])
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It is important to note that in deriving the above equation we didn’t assume

that the center is harmonic. Therefore this equation is also valid for the

interacting center. The only crucial requirement is that the leads are non-

interacting (harmonic). The Green’s function gα introduced in Eq. (2.79)

is known as the bare or free equilibrium Green’s functions calculated at

temperature Tα and is defined as

gαβ(τ, τ
′) = − i

~
Tr

[

ραTC ûα(τ)ûβ(τ
′)
]

δαβ α, β = L,C,R. (2.81)

Using Langreth’s rule we write the lesser and greater components of GCL

in real time as

G>,<
CL (t, t′) =

∫ t

t0

dt′′
[

Gr
CC(t, t

′′)V CLg>,<
L (t′′−t′)+G>,<

CC (t, t′′)V CLgaL(t
′′−t′)

]

.

(2.82)

Note that the bare Green’s functions are time-translationally invariant.

Then using Eq. (2.66) we get the expression for current as

〈IL(t)〉 =
i~

2

∫ t

t0

dt′′
∂

∂t′
Tr

[

Gr
CC(t, t

′′)ΣK
L (t

′′− t′)+GK
CC(t, t

′′)Σa
L(t
′′− t′)

]

t′=t
.

(2.83)

This expression is valid for any transient time t and also for interacting

center which could be explicitly time-dependent. Here ΣL = V CL gL V
LC

is the self-energy for the left lead. Similar definition also exist for the right

lead.
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The main task now is to calculate the center Green’s function GCC(τ, τ
′).

As before in the interaction picture we can write

GCC(τ, τ
′) = − i

~
〈TC ûC(τ)ûTC(τ ′)e−

i
~

∫
C
V̂(τ ′′)dτ ′′〉ρprod(t0). (2.84)

For the harmonic center GCC can be obtained exactly which we now denote

as G0
CC and using Feynman diagrams it is easy to show that G0

CC obeys a

Dyson equation

G0
CC(τ, τ

′) = gC(τ, τ
′) +

∫

C

dτ1

∫

C

dτ2 gC(τ, τ1)Σ(τ1, τ2)G
0
CC(τ2, τ

′). (2.85)

where Σ = ΣL + ΣR is the total self-energy. This equation is similar to

Eq. (2.43).

Proof:

Let us expand the exponential in Eq. (2.84) and consider the terms order by

order. The first term (0-th order in V̂) is given as

− i

~
〈TC ûC(τ)û

T
C(τ

′)〉ρC = − i

~
Tr

[

ρC ûC(τ)û
T
C(τ

′)
]

= gC(τ, τ
′). (2.86)

The second term contains average of odd number of uα, α = L,C,R which is

zero as ρprod(t0) is quadratic. The third term (2-nd order in V̂) can be written

as

1

2!

(−i

~

)3
∫

dτ1

∫

dτ2
〈

TC ûC(τ)û
T
C(τ

′)V̂(τ1)V̂(τ2)
〉

ρprod(t0)
. (2.87)

64



Chapter 2. Introduction to Nonequilibrium Green’s function (NEGF)
method

Let us consider ij component of this matrix. For the moment we consider only

the left-center coupling term in V̂ given in Eq. (2.71). The contribution due to

other coupling term is additive. We can write ij component of the integrand in

Eq. (2.87) as

〈

TC û
i
C(τ)û

j
C(τ

′)ûi1L (τ1)V
LC
i1,j1û

j1
C (τ1)û

i2
L (τ2)V

LC
i2,j2û

j2
C (τ2)

〉

ρprod(t0)
, (2.88)

where we write the coupling term ûTL(τ)V
LC ûC(τ1) = ûi1L (τ1)V

LC
i1,j1

ûj1C (τ1) (sum-

mation over repeated index is implied). Now since ρprod(t0) is decoupled we can

separate the contour-ordered as

〈

TC û
i
C(τ)û

j
C(τ

′)ûj1C (τ1)û
j2
C (τ2)

〉

ρC

〈

TC û
i1
L (τ1)û

i2
L (τ2)

〉

ρL
V LC
i1,j1V

LC
i2,j2 (2.89)

We see that the first term consists of 4 uC operators. According to Wick’s

theorem this can be separated as products of two uC operators, i.e.,

〈

TC û
i
C(τ)û

j
C(τ

′)ûj1C (τ1)û
j2
C (τ2)

〉

=
〈

TC û
i
C(τ)û

j
C(τ

′)
〉〈

TC û
j1
C (τ1)û

j2
C (τ2)

〉

+
〈

TC û
i
C(τ)û

j1
C (τ1)

〉〈

TC û
j
C(τ

′)ûj2C (τ2)
〉

+
〈

TC û
i
C(τ)û

j2
C (τ2)

〉〈

TC û
j1
C (τ1)û

j
C(τ

′)
〉

.

(2.90)

Out of these three terms, first term will give disconnected diagram which can be

shown to be zero [15] and other two terms are connected diagrams and contribute

identically which cancels 1/2! originating from the expansion of the exponential

in Eq. (2.87). The (−i/~)3 factor absorbs in three Green’s functions. Therefore
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this term can be written as

∫

dτ1

∫

dτ2g
i,j1
C (τ, τ1)Σ

j1,j2
L (τ1, τ2)g

j2,j
C (τ2, τ

′)
∫

dτ1

∫

dτ2

[

gC(τ, τ1)ΣL(τ1, τ2)gC(τ2, τ
′)
]

ij
, (2.91)

where Σj1,j2
L (τ1, τ2) = V j1,i1

CL gi1,i2L (τ1, τ2)V
i2,j2
LC . and similar equation exist if we

include the right-center coupling term. Therefore the total contribution in the

2-nd order is
∫

dτ1

∫

dτ2

[

gC(τ, τ1)Σ(τ1, τ2)gC(τ2, τ
′)
]

ij
. (2.92)

This feature repeats for the higher-order terms and for general n-th order (n is

even) it can be shown that

1

n!

(−i

~

)n+1
∫

dτ1

∫

dτ2 · · · dτn
〈

TCu
i
C(τ)u

j
C(τ

′)VI(τ1)VI(τ2) · · · VI(τn)
〉

ρ(t0)

=

∫

dτ1

∫

dτ2 · · ·
∫

dτn

[

gC(τ, τ1)Σ(τ1, τ2)gC(τ2, τ3)Σ(τ3, τ4) · · · gC(τn, τ1)
]

ij
,

(2.93)

and therefore we can write

G0
CC(τ, τ

′) = gC(τ, τ
′) +

∫ ∫

dτ1dτ2 gC(τ, τ1)Σ(τ1, τ2)gC(τ2, τ
′) + · · ·

+

∫ ∫

· · ·
∫

dτ1dτ2 · · · dτn gC(τ, τ1)Σ(τ1, τ2)gC(τ2, τ3) · · ·Σ(τn−1, τn)

gC(τn, τ
′)

= gC(τ, τ
′) +

∫

C
dτ1

∫

C
dτ2 gC(τ, τ1)Σ(τ1, τ2)G

0
CC(τ2, τ

′). (2.94)
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Steady state limit and Landauer formula

Steady state limit can be achieved by letting t0 → −∞. Then by perform-

ing Fourier transformation of Eq. (2.83) we obtain

〈IL〉 = −
∫ ∞

−∞

dω

4π
~ωTr

[

Gr
0[ω]Σ

K
L [ω] +GK

0 [ω]Σ
a
L[ω]

]

. (2.95)

(For notational simplicity we dropped the subscript CC in G0
CC). In the

frequency domain different components of G0 are obtained from the Dyson

equation given in Eq. (2.85) and are written as (see appendix (E))

Gr
0[ω] = grC [ω] + grC [ω]Σ

r[ω]Gr
CC [ω]

=
[

(ω + iη)2 −KC − Σr[ω]
]−1

,

Ga
0[ω] =

[

Gr
0[ω]

]†

,

GK
0 [ω] = Gr

0[ω]Σ
K [ω]Ga

0[ω], (2.96)

where for the isolated center grC[ω] = [(ω+iη)2−KC ]−1 (see appendix (F)).

Now we symmetrize the expression for current as

〈IL〉=
〈IL〉+

[

〈IL〉
]∗

2
=

∫ ∞

−∞

dω

8π
~ωTr

[

(

Ga
0[ω]−Gr

0[ω]
)

ΣK
L [ω]+G

K
0 [ω]

(

Σr
L[ω]−Σa

L[ω]
)

]

.

(2.97)

The lesser and greater components of the self-energy are given in the form

of fluctuation-dissipation relations i.e.,

Σ<
α [ω] = fα[ω]

(

Σr
α[ω]− Σa

α[ω]
)

,

Σ>
α [ω] = (1 + fα[ω])

(

Σr
α[ω]− Σa

α[ω]
)

, α = L,R, (2.98)

67



Chapter 2. Introduction to Nonequilibrium Green’s function (NEGF)
method

where fα[ω] = 1/
(

eβα~ωα−1
)

is the Bose distribution function for the leads.

We define the spectral function for the leads as

Γα[ω] = i
(

Σr
α[ω]− Σa

α[ω]
)

α = L,R. (2.99)

Using these relations and an important identity given by (see appendix

(E))

Ga
0[ω]−Gr

0[ω]= i G
r
0[ω]

(

ΓL[ω]+ΓR[ω]
)

Ga
0[ω], (2.100)

we can simplify the expression for current and obtain the Landauer formula

as

〈IL〉 =
∫ ∞

−∞

dω

4π
~ωTr

[

T (ω)
]

(fL[ω]− fR[ω]), (2.101)

where Tr
[

T [ω]
]

is known as the Transmission function and given by the

Caroli formula [31]

T [ω] = Gr
0[ω]ΓL[ω]G

a
0[ω]ΓR[ω]. (2.102)

From the expression for current, the conductance σ can be obtained as

σ(T ) = lim
TL→T ,TR→T

〈IL〉
TL − TR

=

∫ ∞

−∞

dω

4π
~ωTr

[

T (ω)
]∂f [ω]

∂T
, (2.103)

where T is the equilibrium temperature.
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Chapter 3

Full-counting statistics (FCS)

in heat transport for ballistic

lead-junction-lead setup

In the previous chapter we have introduced the lead-junction-lead setup

to study heat transport with the junction part considered as harmonic.

Based on this model, we study here the energy-counting statistics i.e.,

the statistics of heat (integrated current), transferred through the center

(denoted by C) (Fig. 3.1) during a given time interval [0, tM ]. In addition,

we consider the situation where the atoms in the junction part could be

driven by external time-dependent force. This opens up the possibility

to study energy-dissipation, heat-pumping behavior, and also Jarzynski

equality in the context of fluctuation theorems. Employing NEGF-Keldysh
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formalism we obtain the cumulant generating function (CGF) under this

general scenario. The developed formalism can deal with both transient

and steady-state on equal footing and also various initial conditions for the

density operator. Such investigations gives definite answer to some of the

very general queries in quantum dissipative transport such as

1. Under what conditions the system reaches steady state and whether

it is unique or not?

2. How initial conditions and quantum measurements affect the tran-

sient?

3. What are the effects of system parameters on the steady state.

In this chapter, we try to give answers to these questions. We also show

that the effect of energy measurement to obtain heat is reflected in CGF

via the shifted time argument for the self-energy. In the steady state we

obtain explicit expression for the CGF which is similar to the Levitov-

Lesovik formula [1, 2] for electrons and satisfy Gallavotti-Cohen(GC) [3, 4]

fluctuation symmetry. In the later part of this chapter we derive the CGF

corresponding to the joint probability distribution P (QL, QR), and discuss

the correlation between QL and QR.
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Figure 3.1: A schematic representation of lead-junction lead setup. The
left (L) and right (R) leads are at temperatures TL and TR respectively.
The leads are modeled as coupled harmonic oscillators. The center (C)
here consists of 3 atoms.

3.1 The general lattice model

Here we introduce a very general lattice model to study heat transport. As

before, the full system is divided into three parts the left, right and the

center. The leads are modeled as infinite collection of coupled harmonic

oscillators. Such heat baths are named after Rubin and often called as

Rubin heat baths [5, 6]. The Hamiltonian for these three parts are given

as

Hα =
1

2
pTαpα +

1

2
uTαK

αuα, α = L,C,R, (3.1)

where the meaning of pα, uα and Kα are the same, as explained in Chapter

2 (see Sec. 2.4). The center part can also have nonlinear interactions such

as phonon-phonon interactions and takes the following form

Hn =
1

3

∑

ijk

Tijk u
C
i u

C
j u

C
k +

1

4

∑

ijkl

Tijkl u
C
i u

C
j u

C
k u

C
l . (3.2)

The quartic interaction is important in stabilizing the system, as a purely

cubic term makes the energy unbounded from below. The coupling be-

tween the center and the leads is quadratic in position and the coupling
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matrix in our formalism could be time-dependent. Therefore the coupling

Hamiltonian is given as

HT (t) = uTL V
LC(t) uC + uTR V

RC(t) uC. (3.3)

Note that V LC(t) =
[

V CL(t)
]T

and similarly for V CR(t). T here stands

for the matrix transpose. Such time-dependent coupling are useful for ma-

nipulating current, developing devices such as thermal switch, heat pump

[7, 8] etc. The dynamic matrix of the full linear system is

K =













KL V LC(t) 0

V CL(t) KC V CR(t)

0 V RC(t) KR













. (3.4)

We assume that there is no direct interaction between the leads. For t > 0,

an external time-dependent force is applied to the center atoms, which

couples only with the position operators i.e.,

VC(t) = −fT (t) uC , (3.5)

where f(t) is the time-dependent force vector. The force can be in the form

of electromagnetic field. Choice of this particular type of coupling helps us

to obtain an analytical solution for the CGF, as the entire system is still

harmonic. Therefore the full Hamiltonian for t > 0 (in the Schrödinger

picture) is given as

H(t) = H(0−) + VC(t) = HC +HL +HR +HT (t) +Hn + VC(t). (3.6)
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In this chapter we will focus on the harmonic junction. i.e., Hn = 0 and

discuss the nonlinear effects in chapter 6.

3.2 Definition of current, heat and

entropy-production

In this thesis, we will be looking at the statistics of two nonequilibrium

quantities namely the heat and the entropy-production. Let us say that

we are interested in the energy flowing out of the left lead during the time

interval [0, tM ]. Then the heat operator is defined as the time integral of

the left lead current operator IL.

Heat operator for the left-lead

The left lead heat operator is given as the change of energy of left lead

Hamiltonian.

QL(tM) =

∫ tM

0

IL(t
′) dt′ = HL(0)−HH

L (tM), (3.7)

where the current operator IL(t), as defined previously, is the rate of change

of energy of the left-lead i.e.,

IL(t) = −dH
H
L (t)

dt
=
i

~
[HH

L (t),HH(t)] = pTL(t) V
LC(t) uC(t), (3.8)

Here the operators are in the Heisenberg picture. The dependence of t in
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V LC(t) is parametric. HL

[

= HL(0)
]

is the Schrödinger operator of the

free left lead and

HH
L (t) = U(0, t)HL U(t, 0). (3.9)

U(t, t′) is the evolution operator corresponding to the full HamiltonianH(t)

and satisfies the Schrödinger equation with the formal solution

U(t, t′) =















T exp
[

− i
~

∫ t

t′
H(t1) dt1

]

for t > t′

T̄ exp
[

i
~

∫ t′

t
H(t1) dt1

]

for t′ > t

where T (T̄ ) is the time order (anti-time ordered) operator which orders

the operators with increasing time from right (left) to left (right).

Entropy-production in the leads

Based on the idea of macroscopic thermodynamics, we also define the net

entropy-production in the leads due to exchange of heat as [9, 10]

Σ(tM ) = −
∑

α=L,R

βαQα(tM) =
∑

α=L,R

βα

(

HH
α (tM)−Hα(0)

)

(3.10)

with βα = 1/kBTα is related to the inverse temperature of the leads.

3.3 Characteristic function (CF)

The primary interest in FCS for charge/heat transport is to obtain the

probability distribution for the transferred quantity. However calculating
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these distributions directly is highly nontrivial if not impossible. The most

convenient approach to get the distribution is to work with the charac-

teristic function (CF) which is simply the Fourier transformation of the

probability distribution. Once the CF is known, physical observables i.e.,

the moments of charge/heat are then obtained by the derivatives of this

CF and the inverse Fourier transformation will give the probability distri-

bution.

CF for heat

Based on the definition of heat in Eq. (3.7) and following the derivation for

the CF using two-time measurement procedure, in the introduction chapter

(see Eq. (1.18)), we can identify operator A as HL and the transferred

quantity as QL = a0− atM where a0 and atM are the eigenvalues associated

with the measurement of HL at time 0 and tM respectively. (Note that Q

of non-calligraphic font is a classical variable). Here HL does not depend

on time explicitly. Thus the CF is simply given as [11]

Z(ξL) = 〈eiξLQL〉 = 〈eiξL(a0−atM )〉 =
∑

a0,atM

eiξL(a0−atM )P (atM , a0)

= 〈eiξLHL e−iξLH
H
L
(tM )〉ρ′(0)

= 〈eiξLHL/2 e−iξLH
H
L
(tM ) eiξLHL/2〉ρ′(0). (3.11)

The average here is with respect to the projected density matrix i.e.,

ρ′(0) =
∑

a0

Πa0 ρ(0)Πa0 , (3.12)
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which captures the information about the initial measurement. ρ(0) is

the density operator of the entire system. Note that the above expression

for the CF is valid for general interacting center and therefore is also the

starting point for calculations for anharmonic systems. Once this CF is

known the probability distribution for QL is obtained as

P (QL) =

∫ ∞

−∞

dξL
2π

e−iξLQL Z(ξL). (3.13)

Generalization of the CF

Based on this two-time measurement procedure, it is easy to generalize

the CF corresponding to the measurement of multiple operators. This is

possible only if the operators commute with each other at the same instant

of time. Then according to quantum mechanics such measurements are

allowed and Nelson’s theorem [12] guarantees that the probability distri-

bution in such case is well-defined.

For example, in this model, it is possible to measure the Hamiltonians

Hα, α = L,C,R for the leads and the center simultaneously as they all

commute with each other at any given time. Therefore if we perform two-

time measurement for these operators once at time t = 0 and then at the

final time t = tM the CF can be generalized as

Z(ξL, ξC , ξR) = 〈eiξLQL+iξCQC+iξRQR〉

= 〈ei
∑

α=L,C,R ξαHα e−i
∑

α=L,C,R ξαHH
α (tM )〉ρ′(0),(3.14)
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where we now modify the projected density operator as

ρ′(0) =
∑

a0,b0,c0

ΠL
a0
ΠC

b0
ΠR

c0
ρ(0) ΠL

a0
ΠC

b0
ΠR

c0
. (3.15)

Here a0,b0 and c0 are the eigenvalues of HL, HC and HR respectively

corresponding to the measurements at time t = 0. For this CF the in-

verse Fourier transformation will give the joint probability distribution

P (QL, QC , QR),

P (QL, QC , QR)=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

dξL
2π

dξC
2π

dξR
2π

e−(iξLQL+iξCQC+iξRQR)Z(ξL, ξC, ξR).

(3.16)

In the later part of this chapter we derive an explicit expression for a

restricted version of this CF which is Z(ξL, ξR) at ξC = 0 to obtain the

correlations between the left and the right lead heat and also the CF for

entropy-production.

Nazarov’s definition of CF

Another definition of CF which is used mostly for the electronic transport

case is given by Nazarov et al. [13, 14]. It is defined as

Z1(ξL) = 〈T̄ eiξLQL/2TeiξLQL/2〉. (3.17)

The time (or anti-time) order operator here is meant to apply to the inte-

grand when the exponential is expanded and QL is expressed as integral
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over IL as in Eq. (3.7) i.e.,

TeiξLQL/2=

∞
∑

n=0

1

n!

(iξL
2

)n
∫ tM

0

dt1

∫ tM

0

dt2 · · ·
∫ tM

0

dtn T [IL(t1)IL(t2) · · · IL(tn)].

(3.18)

In the last section of this chapter we will show how this CF can be de-

rived starting from Z(ξL) given in Eq. (3.11) under a particular assump-

tion and will present the long-time limit expression for Z1(ξL) for this har-

monic model. We will show that this CF does not respect the Gallavotti-

Cohen (GC) fluctuation symmetry, however the first two cumulants of heat

matches with the ones obtained from Z(ξL) which also followed from the

definitions.

3.4 Initial conditions for the density opera-

tor

In this chapter, we derive analytic expressions for the CF of heat Z(ξL)

for three different initial conditions of the density operator and discuss the

behavior of the moments (cumulants) of heat at transient as well as at long

time. We choose three different initial conditions as:

Product initial state:

We assume at t < 0, the three parts of the full system i.e., the center (C)

and the leads (L and R) are decoupled and equilibrated at their respective
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equilibrium temperatures Tα(α = L,C,R) by keeping them in weak con-

tacts with respective heat baths. Therefore each system will be in their

own equilibrium distributions. At t = 0 the heat baths are removed and

the connection between the system and the leads are switched on suddenly.

Therefore the initial density matrix at t = 0 is given by the direct product

state of L,C and R i.e.,

ρprod(0) = ρL ⊗ ρC ⊗ ρR, ρα =
e−βαHα

Tr[e−βαHα]
for α = L,C,R, (3.19)

where βα = 1/(kBTα) is the inverse temperature. Note that for such initial

condition the initial projection operators in Eq. (3.12) and Eq. (3.15) do

not play any role as [Hα,Πβ] = 0 (α, β = L,C,R) and therefore ρ′(0)

coincides with ρprod(0).

Steady state as initial state:

Here we consider the initial density operator as the nonequilibrium steady

state denoted as ρNESS(0). As mentioned before (while deriving the Lan-

dauer formula in chapter 2), this particular nonequilibrium state can be

achieved by starting with the decoupled initial state ρprod at t = −∞ and

then switching on the couplings between the center and the leads adiabat-

ically up to time t = 0 when the couplings become full i.e.,

HT (t) = (HLC +HRC)e
−ǫ|t|, for −∞ < t < 0, ǫ→ 0+,

= HLC(t) +HRC(t) for t > 0. (3.20)

We assume that at t = 0 the system reaches to a unique steady state,
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independent of the center temperature TC . We can then relate ρNESS(0)

with ρprod(0) by the following equation

ρNESS(0) = U(0,−∞)ρprod(−∞)U(−∞, 0). (3.21)

where U(0,−∞) = T exp
[

− i
~

∫ 0

−∞
H0 + (HLC + HRC)e

−ǫ|t|dt
]

and H0 =

HL +HC +HR.

Projected initial state:

To capture the effect of the initial measurement explicitly we consider

the projected density matrix ρ′(0) by choosing ρ(0) as the NESS. Since

[ρNESS,Πα] 6= 0, ρ′(0) does not coincide with ρNESS(0).

Consistent Quantum Framework

Based on the CF Z(ξL) the first moment or the heat is given as

〈QL(tM )〉 = ∂Z(ξL)

∂(iξL)

∣

∣

∣

ξL=0
= Tr

[

ρ′(0)
(

HL(0)−HH
L (tM )

)

]

, (3.22)

and the heat current is just the time derivative of the heat i.e.,

〈IL(tM )〉 = −Tr
[

ρ′(0)
dHH

L (tM )

dtM

]

. (3.23)

On the contrary, it is possible to calculate the current from the natural definition,

introduced in the previous chapter, and is given as

〈IL(tM )〉 = −Tr
[

ρ(0)
dHH

L (tM )

dtM

]

. (3.24)
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Note the difference in the density operator for these two cases. These two defini-

tions are certainly not consistent and therefore thermal current deriving from the

CF will not be equal to the natural definition of it. It is only for the product ini-

tial state when these two definitions matches and assures a consistent quantum

framework for the problem. For details see [15, 16].

In the following section we derive analytic expressions for the CF of heat

starting from Eq. (3.11) considering these three initial conditions.

3.5 Derivation of the CF Z(ξL) for heat

3.5.1 Z(ξL) for product initial state ρprod(0) using Feyn-

man diagrammatic technique

In this subsection we derive the CF for heat Z(ξL) starting with the product

initial state ρprod(0) Because in this case the initial projection does not play

any role the calculation for CF simplifies greatly. To obtain the CF we take

the following steps:

• Express the CF as an effective evolution of the unitary operators on

the Keldysh contour.
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• Write the CF in the interaction picture with respect to the decoupled

Hamiltonians i.e., H0 = HL +HR +HC and treating HT (t) + VC(t)

as interaction.

• Expand the CF in the interaction picture and use Wick’s theorem

and Feynman diagrammatic technique to obtain the final result.

Step 1: CF on Keldysh contour:

Following Eq. (3.11) we can write

Z(ξL) =
〈

eiξLHL/2 e−iξLHL(tM ) eiξLHL/2
〉

=
〈

eiξLHL/2 U(0, tM) e−iξLHL/2 e−iξLHL/2 U(tM , 0) eiξLHL/2
〉

=
〈

UξL/2(0, tM)U−ξL/2(tM , 0)
〉

, (3.25)

where we define the modified unitary operator Ux(t, t
′) (x = ±ξL/2) as

Ux(t, t
′) = eixHLU(t, t′)e−ixHL

=

∞
∑

n=0

(

− i

~

)n ∫ t

t′
dt1

∫ t1

t′
dt2 · · ·

∫ tn−1

t′
dtn

×eixHLH(t1)H(t2) · · ·H(tn)e
−ixHL

= T exp

{

− i

~

∫ t

t′
Hx(t

′)dt′
}

. (3.26)

which is an evolution operator associated with the modified total Hamilto-

nian Hx(t) and obeys the following Schrödinger equation

i~
dUx(t, t

′)

dt
= Hx(t)Ux(t, t

′), (3.27)
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with Hx given as

Hx(t) = eixHLH(t)e−ixHL ,

= H(t) +
(

uL(~x)− uL
)T
V LCuC , (3.28)

where uL(~x) = eixHLuLe
−ixHL is the free left lead Heisenberg evolution

to time t = ~x. Since the leads are harmonic uL(~x) can be explicitly

obtained.

uL(~x) = cos(
√

KL~x)uL +
1√
KL

sin(
√

KL~x)pL. (3.29)

The matrix
√
KL is well-defined as the matrix KL is positive definite. uL

and pL are the initial values at t = 0. The final expression for Hx(t) is

Hx(t) = H(t) +
[

uTLC(x) + pTLS(x)
]

uC , (3.30)

where

C(x) =
(

cos(~x
√

KL)− I
)

V LC ,

S(x) = (1/
√

KL) sin(~x
√

KL)V
LC . (3.31)

We see that the effective Hamiltonian now has two additional terms with

respect to the full H(t). The term uTLC(x)uC is like the harmonic coupling

term which modifies the coupling matrix V LC(t).

86



Chapter 3. Full-counting statistics (FCS) in heat transport for ballistic
lead-junction-lead setup

Now we will make use of NEGF technique, introduced in the previous

chapter. As explained before, if we read Eq. (3.25) from right to left, it

says given a state it will evolve from initial time t = 0 to a maximum time

tM under the unitary operator U−ξL/2(t, 0) and then evolves back from time

tM to 0 with unitary evolution U †ξL/2(t, 0). Therefore, we can represent the

CF on the Keldysh contour as

Z(ξL) = Tr
[

ρprod(0)TCe
− i

~

∫
C
Hx(τ)dτ

]

. (3.32)

and TC is the same contour-ordered operator defined in chapter 2 (opera-

tor later on contour placed at the left). If we transform back to the real

time, the upper (lower) branch corresponds to the evolution U−ξL/2(t, 0)

(U †ξL/2(t, 0)) (see subsection 2.3.2). Running with two different evolutions

on the two branches of the contour is the main essence of FCS study.

Note for ξL = 0 the normalization condition Z(0) = 1 is satisfied as

U †(t, 0)U(t, 0) = 1. We introduce the contour function x(τ) as (see Fig 3.2)

x±(t) =















∓ ξL
2

for 0 ≤ t ≤ tM

0 for t > tM

(3.33)

The plus and minus sign in the superscript of x corresponds to the upper

and lower branch of the contour respectively.

Step 2: Interaction picture with respect to decoupled Hamiltonian

Now we can write down Eq. (3.32) in the interaction picture with respect

to the decoupled Hamiltonian H0 =
∑

α=L,C,R Hα. Then the interaction
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0 tM

τ

τ ′

−ξL
2

+ξL2

Figure 3.2: The complex time contour C for product initial state. The
path of the contour begins at time 0 and goes to time tM with unitary evo-
lution U−ξL/2(tM , 0), and then returns to time t = 0 with unitary evolution

U †ξL/2(tM , 0). τ and τ ′ are complex-time variables along the contour.

part of the Hamiltonian on the contour C ≡ [0, tM ] is given as

V̂x(τ) = −fT (τ)ûC(τ)+ ûTR(τ)V
RC(τ)ûC(τ)+ ûTL

(

τ + ~x(τ)
)

V LC(τ)ûC(τ).

(3.34)

(The symbol caret is used to denote that the operators are in the inter-

action pictures with respect to the free Hamiltonian H0 e.g., ûC(τ) =

e
i
~
HCτuCe

− i
~
HCτ ) The density matrix ρprod(0) remains unaffected by this

transformation as it commutes with H0. Therefore the CF in the interac-

tion picture can be written as

Z(ξL) = Tr
[

ρprod(0)Tc e
− i

~

∫
C
V̂x(τ) dτ

]

. (3.35)

Step 3: Wick’s theorem and Feynman diagrammatic technique

Expanding the exponential in Eq. (3.35), we generate various terms of

product of uα. Since the density matrix is quadratic these terms can be

decomposed in pairs according to Wick’s theorem [17]. For a non-vanishing

contribution each type of u should come in an even number of times because

〈uC〉ρprod(0) = 0, 〈uCuL〉ρprod(0) = 0. We define the decoupled or free Green’s
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functions as

− i

~
〈TC ûα(τ)ûα′(τ ′)T 〉ρprod(0) = δα,α′gα(τ, τ

′), α, α′ = L,C,R. (3.36)

We collect the diagrams of all orders to sum the series. Since V̂x contains

only two-point couplings, the diagrams are all ring type. The combinatorial

factors can be worked out as 1/(2n) for a ring containing n vertices. We

now make use of linked-cluster theorem [18] which says lnZ contains only

connected graphs, and the disconnected graphs cancel exactly when we

take the logarithm. Therefore, the final result can be expressed as (in the

discrete contour time) (see appendix (A))

lnZ(ξL) = −1

2
Trj,τ ln

[

1− gCΣ̃
]

− i

2~
Trj,τ

[

G̃ f fT
]

. (3.37)

(Bold symbol refers to the matrix representation of the Green’s functions

in discrete contour time and functions with (̃ ) means they are counting

field dependent) Here we define Σ̃(τ, τ ′) as

Σ̃(τ, τ ′) ≡ ΣL(τ+~x(τ), τ
′+~x′(τ ′))+ΣR(τ, τ

′)=Σ(τ, τ ′)+ΣA
L(τ, τ

′), (3.38)

where Σ(τ, τ ′) ≡ ∑

α=L,R Σα(τ, τ
′) is the total self-energy coming from

the leads and defined as Σα(τ, τ
′) = V Cαgα(τ, τ

′)V αC . The notation Trj,τ

means trace over both in space index j and discretized contour time τ ,i.e.,

Trj,τ
[

AB · · ·C
]

≡
∫

C

∫

C

· · ·
∫

C

dτ1dτ2. . .dτn Trj
[

A(τ1, τ2)B(τ2, τ3) · · ·C(τn, τ1)
]

,

(3.39)
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with A,B, · · ·C are two point Green’s functions. Similarly Trj,τ

[

G̃f fT
]

reads as

Trj,τ

[

G̃ f fT
]

=

∫

C

∫

C

dτ1dτ2Trj
[

G̃(τ1, τ2)f(τ2)f
T (τ1)

]

, (3.40)

with G̃(τ, τ ′) satisfy the following Dyson’s equation

G̃(τ, τ ′) = gC(τ, τ
′) +

∫

C

∫

C

dτ1dτ2 gC(τ, τ1)Σ̃(τ1, τ2)G̃(τ2, τ
′). (3.41)

We introduce a new quantity ΣA
L defined via Eq. (3.38) as the difference

between the shifted self-energy and the usual one, i.e.,

ΣA
L(τ, τ

′) = ΣL

(

τ + ~x(τ), τ ′ + ~x(τ ′)
)

− ΣL

(

τ, τ ′
)

. (3.42)

This self-energy turns out to be the central quantity for this FCS problem.

Eq. (3.37) can also be written in a different form which will be useful later

for deriving long-time limit as well as for numerical calculations. As we

know that the steady state limit, for example, the Landauer formula for

heat current is expressed in terms of G0, the Green’s function in presence

of leads, we therefore express the bare Green’s function gC in terms of G0.

This can be achieved by introducing the Dyson’s equation for G0 for the

ballistic system as derived in chapter 2 (see Eq. (2.85))

G0(τ, τ
′) = gC(τ, τ

′) +

∫

C

∫

C

dτ1dτ2 gC(τ, τ1)Σ(τ1, τ2)G0(τ2, τ
′), (3.43)
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In discretized contour time we can write the above equation as

G0 = gC + gC ΣG0 (3.44)

which implies G−10 = g−1C −Σ. Using this we can simplify the term 1−gCΣ̃

as follows

1− gCΣ̃ = 1− gC(Σ+ΣA
L)

= gC(g
−1
C −Σ−ΣA

L) = gC(G
−1
0 −ΣA

L)

= gC G−10 (1−G0Σ
A
L) = (1− gCΣ) (1−G0Σ

A
L). (3.45)

The two factors above are in matrix (and contour time) multiplication.

Using the relation between trace and determinant, ln det(M) = Tr lnM,

and the fact, det(AB) = det(A) det(B), we find that the two terms give

two factors for Z. Now the factor due to 1 − gCΣ is a counting field

independent term and can be shown to be equal to 1 (see appendix (B)).

We then have [19, 20]

lnZ(ξL) = −1

2
Trj,τ ln

[

1−G0Σ
A
L

]

− i

2~
Trj,τ

[

G̃ f fT
]

, (3.46)

Using the same procedure as above G̃(τ, τ ′) in Eq. (3.41) can also be ex-

pressed in terms of G0(τ, τ
′) as

G̃(τ, τ ′) = G0(τ, τ
′) +

∫

C

∫

C

dτ1dτ2G0(τ, τ1)Σ
A
L(τ1, τ2)G̃(τ2, τ

′). (3.47)
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Contour time to real time and Keldysh Rotation :

As explained in chapter 2 that it is always convenient to perform a Keldysh

rotation (Eq. (2.49)) for the contour ordered Green’s functions and work

with the retarded, advanced and Keldysh components. Moreover as Keldysh

rotation is an orthogonal transformation, the trace appearing in the CGF

i.e., Trj,τ(1−G0Σ
A
L) as well as Trj,τ

[

G̃ f fT
]

remain invariant.

Proof

As defined in Eq. (3.39)), Trj,τ (AB · · ·C) is given as,

Trj,τ
[

AB · · ·C
]

≡
∫

C

∫

C
· · ·

∫

C
dτ1dτ2 . . . dτnTrj

[

A(τ1, τ2)B(τ2, τ3) · · ·C(τn, τ1)
]

(3.48)

Changing from contour to real-time integration i.e., using
∫

dτ =
∑

σ=±1

∫

σdt

we have

Trj,τ [AB · · ·C] =
∑

σ1,σ2,··· ,σn

∫

dt1

∫

dt2 · · ·
∫

dtnTrj
[

σ1A
σ1σ2(t1, t2)σ2B

σ2σ3(t2, t3)

· · · σnCσnσn+1(tn, t1)
]

. (3.49)

By absorbing the extra σ into the definition of branch components it can be

easily seen that

Trj,τ
[

AB · · ·C
]

=

∫

dt1

∫

dt2 · · ·
∫

dtnTrj,σ
[

Ā(t1, t2)B̄(t2, t3) · · · C̄(tn, t1)
]

,

≡ Trt,j,σ
[

ĀB̄ · · · C̄
]

. (3.50)
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where Ā = σzA with σz = diag(1,−1). Now since the Keldysh rotation is an

orthogonal transformation transforming the matrix Ā to Ă such that Ă = OT ĀO

(see Eq. (2.49) in chapter 2) we can easily see that,

Trt,j,σ
[

ĀB̄ · · · C̄
]

= Trt,j,σ
[

ĂB̆ · · · C̆
]

. (3.51)

Therefore we have

Trj,τ
[

AB · · ·C
]

= Trt,j,σ[ĀB̄ · · · C̄] = Trt,j,σ
[

ĂB̆ · · · C̆
]

. (3.52)

For later convenience, we also perform two-frequency Fourier transformation

defined as

Ă[ω, ω′] =

∫ +∞

−∞
dt

∫ +∞

−∞
dt′Ă(t, t′)ei(ωt+ω′t′). (3.53)

Then from Eq. (3.50) we can compute the trace in frequency domain as,

Tr(j,τ)
[

AB · · ·C
]

=

∫

dω1

2π

∫

dω2

2π
· · ·

∫

dωn

2π
Tr

[

Ā[ω1,−ω2]B̄[ω2,−ω3] · · · C̄[ωn,−ω1]
]

≡ Trj,σ,ω
[

ĀB̄ · · · C̄
]

= Trj,σ,ω
[

ĂB̆ · · · C̆
]

. (3.54)

The last line defines what we mean by trace in the frequency domain.

If the Green’s functions are counting field independent e.g., G0(τ, τ
′) then

in the Keldysh space,

Ğ0 =







Gr
0 GK

0

0 Ga
0






. (3.55)
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However this is not the case for ΣA
L(τ, τ

′) as well as for G̃(τ, τ ′) as they

depend on the counting field ξL. For example, using Eq. (3.42), in real

time different components for ΣA
L(τ, τ

′) are given as

Σσσ′

A (t, t′) = Σσσ′

L

(

t+ ~xσ(t), t′ + ~xσ
′

(t′)
)

− Σσσ′

L

(

t, t′
)

,

= Σσσ′

L

(

t− t′ + ~(xσ(t)− xσ
′

(t′))
)

− Σσσ′

L

(

t− t′
)

,(3.56)

which is time-translationally invariant because the lead is always in thermal

equilibrium. Now using the values x±(t) = ∓ξL/2 we obtain the compo-

nents as

Σt
A(t) = Σt̄

A(t) = 0,

Σ>
A(t) = Σ>

L (t+ ~ξL)− Σ>
L (t) ≡ a(t),

Σ<
A(t) = Σ<

L (t− ~ξL)− Σ<
L (t) ≡ b(t). (3.57)

for 0 ≤ t ≤ tM and is zero outside the measurement time interval i.e.,

t > tM . Therefore after Keldysh rotation Σ̆A
L matrix is given as (0 < t < tM )

Σ̆A
L(t) =







a(t)−b(t) a(t)+b(t)

−a(t)−b(t) −a(t)+b(t).






. (3.58)

Note that the K̄ component is non-zero here. Finally we obtain the CF in

the Keldysh space as
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lnZ(ξL) = −1

2
Trj,t,σ ln

[

1− Ğ0Σ̆
A
L

]

− i

2~
Trj,t,σ

[

˘̃G ˘f fT
]

, (3.59)

The external force f(t) does not depend on the branch index σ. Therefore

the matrix ˘f fT in the Keldysh space reads ,

˘f fT =







0 2 f fT

0 0






. (3.60)

Importance of the final result

Eq.(3.59) is one of the central result of this chapter which got the following

importance for this particular model:

• The expressions for the CGF is valid for any arbitrary measurement

time tM which need not to be large and hence one can study both

transient and steady state properties.

• The effect of measurements of HL to obtain heat, is to shift the

contour time argument of the corresponding self-energy by an amount

~x i.e., ΣL(τ, τ
′) → ΣL(τ + ~x, τ ′ + ~x′).

• The expression is valid for finite size of the heat baths and it is there-

fore interesting to study the corresponding effects on the cumulants.

• The CGF is valid for arbitrary time-dependent coupling between the

leads and the junction.
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• The expression is valid in higher dimension for the system and for

the heat-baths.

• The force constant matrix for the center KC may be time-dependent.

In that case the bare Green’s functions for the center i.e., gC(t, t
′) is

no more time-translationally invariant. However the Dyson equation

(Eq. (3.43)) is still valid. A recent study [21] has investigated what

happens to the thermal current in such case.

In the following we will derive the CGF for two other initial conditions i.e.,

ρNESS(0) and ρ
′(0) based on Feynman path-integral formalism.

3.5.2 Feynman path-integral formalism to derive Z(ξL)

for initial conditions ρNESS(0) and ρ′(0)

In this subsection we derive the CF starting from Eq. (3.11) for the initial

conditions ρNESS(0) and ρ′(0) using path-integral approach. The major

problem for formulating the path integral for these initial conditions is

that they do not commute with the initial projection operator Πa unlike the

product initial state. However we can remove this projection operator by

putting it into part of an evolution ofHL by introducing another integration

variable λ. The key observation is that, the projector can be represented

by the Dirac δ function i.e., Πa = δ(a − HL) =
∫∞

−∞ dλ/(2π) e
−iλ(a−HL).

Substituting the Fourier integral representation into the expression for ρ′(0)
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we obtain

ρ′(0) ∝
∫

daΠa ρNESS(0) Πa (3.61)

=

∫

dλ

2π
eiλHLρNESS(0)e

−iλHL. (3.62)

Then using the expression for Z(ξL) in Eq. (3.11) we write

Z(ξL) = 〈eiξLHL/2e−iξLHL(t)eiξLHL/2〉′

∝
∫

dλ

2π
Tr

{

ρ(0)UξL/2−λ(0, tM)U−ξL/2−λ(tM , 0)
}

=

∫

dλ

2π
Z(ξL, λ). (3.63)

The proportionality constant will be fixed later by the condition Z(0) = 1.

As before, the CF on Keldysh contour can be written as

Z(ξL, λ) = Tr
[

ρNESS(0)TCe
− i

~

∫
C
Hx(τ)dτ

]

, (3.64)

which can be expressed in terms of the product initial state ρprod using the

relation in Eq. (3.21) connecting ρprod and ρNESS(0). Then we obtain

Z(ξL, λ) = Tr
[

ρprod(−∞)TCe
− i

~

∫
K
Hx(τ)dτ

]

. (3.65)

Note that for product initial state, the contour C was running from 0 to

tM and back to 0, while in this case the contour K is running from −∞

to tM and back to −∞ (see Fig (3.3)). We define the function x(τ) on the
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−∞ tM

τ

τ ′

−ξL
2 − λ

+ξL2 − λ

0

Figure 3.3: The complex time contour K for projected initial state. The
path of the contour begins at time −∞, goes to time tM , and then goes
back to time −∞. τ and τ ′ are complex-time variables along the contour.
The function x(τ) is nonzero in the interval 0 ≤ t ≤ tM .

contour K as

x±(t) =















∓ ξL
2
− λ for 0 ≤ t ≤ tM

0 for t < 0 and t > tM .

Here we take the following steps to get the final result,

• First we write down Z(ξL, λ) in the path integral representation.

• Then we obtain the Lagrangian corresponding to the modified Hamil-

tonian Hx.

• Then integrate out the bath variables to obtain the influence func-

tional.

• Finally we get an effective action and integrate it over the center

variables to obtain the CF.
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Step 1: Path integral representation of Z(ξL, λ)

Using Feynman path integral technique we can write Eq. (3.64) as

Z(ξL, λ) =

∫

D[uC ]D[uL]D[uR] ρprod(−∞) e(i/~)
∫
K

dτ(LC+LL+LR+LLC+LCR),

(3.66)

where D[uα] are the integration volume elements and ρprod(−∞) is short-

hand notation for the matrix element 〈u′Lu′Cu′R|ρprod(−∞)|uL, uC , uR〉.

Step 2: The Lagrangian corresponding to Hx

The Lagrangians associated with the Hamiltonian Hx are:

L = LL + LC + LR + LLC + LCR,

Lα =
1

2
u̇2α − 1

2
uTαK

αuα, α = L,R

LC =
1

2
u̇2C + fTuc −

1

2
uTC

(

KC − STS
)

uC,

LLC = −u̇TLSuC − uTL
(

V LC + C
)

uC ,

LCR = −uTRV RCuC . (3.67)

where C and S are defined in Eq. (3.31) but with a different meaning for

x(τ) which is now defined on the contour K. For notational simplicity, we

have dropped the argument τ in the Lagrangians. The vector or matrices

f , C, and S are parametrically dependent on the contour time τ . They are

zero except on the interval 0 < t < tM .

Step 3: Influence functional on contour

Following Feynman and Vernon [22], we can eliminate the leads by per-

forming Gaussian integrals. Since the coupling to the center is linear, the
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result will be a quadratic form in the exponential, i.e., another Gaussian.

Therefore the influence functional for the left lead is given by [23]

IL[uC(τ)] ≡
∫

D[uL]ρL(−∞)e
i
~

∫
dτ(LL+LLC)

= Tr
[e−βLHL

ZL
Tce
− i

~

∫
dτ V̂x(τ)

]

= exp
[

− i

2~

∫ ∫

dτdτ ′ûTC(τ)ΠL(τ, τ
′)ûC(τ

′)
]

, (3.68)

V̂x(τ) = ûTL
(

τ + ~x(τ)
)

V LC(τ)ûC(τ) +
1

2
ûTC(τ)STSûC(τ). (3.69)

In the above expressions, the contour function ûC(τ) is not a dynamical

variable but only a parametric function. Note that V̂x is the interaction

picture operator with respect to HL, as a result, eitHL/~ûL(~x)e
−itHL/~ =

ûL(t+ ~x).

We now define the important influence functional self-energy on the contour

as

ΠL(τ, τ
′) = ΣA

L(τ, τ
′) + ΣL(τ, τ

′) + STSδ(τ, τ ′), (3.70)

ΣA(τ, τ ′) + ΣL(τ, τ
′) = V CL(τ)gL

(

τ + ~x(τ), τ ′ + ~x(τ ′)
)

V LC(τ ′)

= ΣL

(

τ + ~x(τ), τ ′ + ~x(τ ′)
)

, (3.71)

δ(τ, τ ′) here is the Dirac delta function on the contour. Equation (3.71)

is similar to what we got for the product initial state (Eq. 3.38) with two

differences

• The Green’s functions are defined on the contour which is running
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from −∞ to tM and back to −∞.

• The meaning of the parameter x(τ) is different as it got a λ depen-

dence coming from the initial projection operator.

Similarly the influence functional for the right lead can be obtained as

IR[uC(τ)] = exp
[

− i

2~

∫ ∫

dτdτ ′uTC(τ)ΣR(τ, τ
′)uC(τ

′)
]

. (3.72)

This is the usual influence functional as no measurement is performed using

the right lead Hamiltonian HR.

Step 4: Effective action and the CGF

The CF can now be written as

Z(ξL, λ) =

∫

D[uC]ρC(−∞)e(i/~)
∫
dτLCIL[uC]IR[uC ]

=

∫

D[uC]ρC(−∞)e
i
~
Seff (3.73)

where

Seff =
1

2

∫

dτ

∫

dτ ′uTC(τ)D(τ, τ ′)uC(τ
′) +

∫

fT (τ)uC(τ)dτ (3.74)

and we define the differential operator D(τ, τ ′) as

D(τ, τ ′) = −
[

(

I
∂2

∂τ 2
+KC

)

δ(τ, τ ′) + Σ(τ, τ ′)
]

− ΣA
L(τ, τ

′)

= D0(τ, τ
′)− ΣA

L(τ, τ
′). (3.75)
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Therefore the final CF is obtained by doing another Gaussian integration

and is of the following form

Z(ξL) ∝ det(D)−1/2e−
i
2~

fT D−1f . (3.76)

We can identify that Green’s function G0(τ, τ
′) in Eq. (3.43) and G̃(τ, τ ′)

in Eq. (3.47) satisfying the following equations

∫

D0(τ, τ
′′)G0(τ

′′, τ ′)dτ ′′ = Iδ(τ, τ ′). (3.77)
∫

D(τ, τ ′′)G̃(τ ′′, τ ′)dτ ′′ = Iδ(τ, τ ′). (3.78)

We view the differential operator (integral operator) D and D−1 as matri-

ces that are indexed by space j and contour time τ . The proportionality

constant in Eq. (3.76) can be fixed by noting that Z(ξL = 0, λ = 0) = 1.

Since, when ξL = 0 and λ = 0, we have x = 0 and thus ΣA
L(τ, τ

′) =

ΣL(τ + ~x, τ ′ + ~x′)− ΣL(τ, τ
′) = 0, so D = D0. The properly normalized

CF is

Z(ξL, λ) = det
(

D−10 D)−1/2e−
i
2~

fT D−1f . (3.79)

Finally making use of the formulas for operators or matrices det(M) =

eTr lnM, and ln(1− y) = −∑∞
k=1

yk

k
we can write the CGF in terms of ΣA

L
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for the projected initial condition ρ′(0) as,

lnZ(ξL) = lim
λ→∞

lnZ(ξL, λ)

= lim
λ→∞

{

−1

2
Trj,τ ln(1−G0Σ

A
L)−

i

2~
Trj,τ(G̃ f fT )

}

= lim
λ→∞

∞
∑

n=1

1

2n
Tr(j,τ)

[

(G0Σ
A
L)

n
]

− i

2~
Trj,τ

[

G̃f fT
]

,

where to obtain Z(ξL) from Z(ξL, λ) we took the limit λ → ∞ because

Z(ξL, λ) approaches a constant as |λ| → ∞ and therefore the value of the

integral is dominated by the value at infinity. Following the same technique

as before the above CGF in the Keldysh space reads

lnZ(ξL) = lim
λ→∞

{

−1

2
Trj,t,σ ln

[

1− (Ğ0Σ̆
A
L)
]

− i

2~
Trj,t,σ

[

˘̃G ˘f fT
]

}

. (3.80)

Now for steady state initial condition ρNESS(0) the CGF can be immediately

written down as

lnZ(ξL) = lim
λ→0

lnZ(ξL, λ). (3.81)

Conclusion

For all three different initial conditions the CGF for heat is written in a

compact way. The CGF is a sum of infinite terms with products of G0

and ΣA
L which are in convolutions. The meaning of these Green’s functions

depends on the initial conditions and accordingly is defined either on the
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contour C[0, tM ] with parameter x±(t) = ∓ξL/2 for (0 < t < tM) or on the

contour K[−∞, tM ] with parameter x±(t) = ∓ξL/2 − λ for (0 < t < tM )

and zero otherwise.

CF for the right lead

Similar relations also exist if we want to calculate the CGF for the right

lead heat QR. In that case one has to measure the right lead Hamiltonian

HR at two times. The final formula for the CGF remains the same except

that ΣA
L should be replaced by ΣA

R.

3.6 Long-time limit (tM → ∞) and steady

state fluctuation theorem (SSFT)

For the long-time limit calculation we can use either Eq. (3.46) or Eq. (3.80).

For convenience of taking the large time limit, i.e., tM large, we prefer to

set interval to (−tM/2, tM/2). In this way, when tM → ∞, the interval

becomes the full domain and Fourier transforms to all the Green’s func-

tions and self-energy can be performed (where the translational invariance

is restored). Applying the convolution theorem to the trace formula in

Eq. (3.59), we find that there is one more time integral left with integrand

independent of t. This last one can be set from −tM/2 to tM/2, obtaining

an overall factor of tM and we have

Tr(j,τ)
[

AB · · ·C
]

= tM

∫

dω

2π
Trj,σ

[

Ă(ω)B̆(ω) · · · C̆(ω)
]

. (3.82)
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Proof

In the long-time limit, the time-translational invariance of the Green’s functions

implies

Ă[ω, ω′] = 2πĂ[ω]δ(ω + ω′) (3.83)

Thus from Eq. (3.54) we write

Tr(j,τ)(AB · · ·C) = δ(0)

∫

dωTrj,σ
[

Ă[ω]B̆[ω] · · · C̆[ω]
]

. (3.84)

We write δ(0), which got the dimension of inverse frequency, as tM/2π.

In the long-time limit, ΣA
L [ω] is obtained by the Fourier transformation of

Eq. (3.58) and given as

a[ω] ≡ Σ>
L [ω]

(

e−i~ωξL−1
)

= −i(1 + fL[ω])ΓL[ω]
(

e−i~ωξL−1
)

, (3.85)

b[ω] ≡ Σ<
L [ω]

(

ei~ωξL − 1
)

= −ifL[ω]ΓL[ω]
(

ei~ωξL−1
)

, (3.86)

where we use the fluctuation-dissipation relations for the self-energy. Γα[ω] =

i
(

Σr
α[ω]−Σa

α[ω]
)

, α = L,R is the spectral function and fα[ω] = 1/(eβα~ω−1)

is the Bose-Einstein distribution function for the leads. Note that ΣA
L is

supposed to depend on both ξ and λ. However in the long-time limit, the

λ dependence drops out which makes the steady state result independent

of the initial distribution. Finally, the CGF for large tM is given as
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lnZ(ξL)=−tM
∫

dω

4π
Tr ln

[

1−Ğ0[ω]Σ̆
A
L [ω]

]

− i

~

∫

dω

4π
Tr

[

˘̃G[ω]F̆ [ω,−ω]
]

,

(3.87)

where ˘̃G[ω] is obtained by solving the Dyson equation given in Eq. (3.47)

in frequency domain. F̆ [ω,−ω] is written as

F̆ [ω,−ω] =







0 f [ω]fT [−ω]

0 0






. (3.88)

So for the linear system the full CGF is separated into two parts. The first

part is independent of the driving force and depends on the temperature

of the leads. The second part is the contribution coming from the driving

force. Therefore we write the CGF as

lnZ(ξL) = lnZs(ξL) + lnZd(ξL). (3.89)

In the following and subsequent sections we discuss about Zs(ξL) and will

return to Zd(ξL) in the next chapter.

Explicit expression for lnZs(ξL) in long-time

In order to obtain the explicit expression for lnZs(ξL) in the long-time we

need to compute the matrix product

Ğ0[ω]Σ̆
A
L [ω] =

1

2







Gr
0 GK

0

0 Ga
0













a− b a + b

−(a + b) b− a






. (3.90)
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(we omit the argument ω from Gr,K,a
0 , a and b for notational simplicity) We

rewrite the term Tr ln(1−M) as a determinant i.e., ln det(1−M) and use

the formula

det







A B

C D






= det(A− BD−1C) det(D) = det(AD − BC), (3.91)

assuming [C,D] = 0 and D to be an invertible matrix. This two conditions

are satisfied here. By doing this the dimensions of the determinant matrix

reduces by half. Finally using the steady state solutions for Gr,K,a
0 and ΣA

L

we obtain the steady state solution for Zs(ξL) which reads

lnZs(ξL) = −tM
∫

dω

4π
ln det

[

I −Gr
0ΓLG

a
0ΓR K(ω; ξL)

]

,

K(ω; ξL) = (eiξL~ω−1)fL(1 + fR) + (e−iξL~ω−1)fR(1 + fL). (3.92)

If we consider the full system as a one-dimensional linear chain with nearest-

neighbor interaction, then because of the special form of Γα matrices (only

one entry of the Γ matrices are non-zero) it can be easily shown that

det[I −
(

Gr
0ΓLG

a
0ΓR

)

K(ω; ξL)] = 1− Tr
[

T [ω]
]

K(ω; ξL) (3.93)

where T [ω] = (Gr
0ΓLG

a
0ΓR) is the transmission matrix and Tr

[

T [ω]
]

is the

transmission function and known as the Caroli formula [24, 25]. For one-

dimensional linear chain, this steady state result was first derived by Saito

and Dhar [26] in the phononic case.
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Gallavotti-Cohen symmetry

The CF Zs(ξ) in the steady state obeys the following symmetry

Zs(ξL) = Zs
(

− ξL + i (βR − βL)
)

, (3.94)

where βR−βL is known as the thermodynamic affinity. This can be shown

by using the relation fR(1 + fL) = fL(1 + fR)e
(βL−βR)~ω. This particu-

lar symmetry of the CF is known as Gallavotti-Cohen (GC) symmetry

[3, 4]. The immediate consequence is that the probability distribution

for transferred heat QL, given by the Fourier transform of the CF, i.e.,

PtM (QL) =
1
2π

∫∞

−∞
dξZ(ξL) e

−iξLQL obeys the following relation in the large

tM limit,

PtM (QL) = e(βR−βL)QL PtM (−QL). (3.95)

or equivalently

lim
tM→∞

ln
[ PtM (QL)

PtM (−QL)

]

= (βR − βL)QL. (3.96)

This relation is known as the steady state fluctuation theorem which quan-

tifies the ratio of positive and negative heat flux and therefore make precise

statement about the violation of second law of thermodynamics.

First two cumulants of heat

The cumulants of heat can obtained by taking derivative of the CGF with
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respect to the counting field ξL at ξL = 0 i.e.,

〈〈Qn〉〉 = ∂n lnZ(ξL)

∂(iξL)n
∣

∣

ξL=0
(3.97)

The first cumulant is given as

〈IL〉 ≡
〈〈QL〉〉
tM

=

∫ ∞

−∞

dω

4π
~ωTr

[

T (ω)
]

(fL − fR), (3.98)

which is the Landauer-like formula in thermal transport. An alternate

derivation starting from the definition of current is shown in chapter 2.

Similarly the second cumulant 〈〈Q2
L〉〉 = 〈Q2

L〉−〈QL〉2, which describes the

fluctuation of the heat transferred, can be written as [26–28],

〈〈Q2
L〉〉

tM
=

∫ ∞

−∞

dω

4π
(~ω)2

{

Tr
[

T 2(ω)
]

(fL−fR)2+Tr
[

T (ω)
]

(fL+fR+2 fLfR)
}

.

(3.99)

The higher cumulants can also be obtained systematically.

In the following section we present details about numerical calculations

for obtaining the cumulants of heat in one-dimensional linear chain system

connected with Rubin heat baths and also for graphene junction for these

three different initial conditions.

109



Chapter 3. Full-counting statistics (FCS) in heat transport for ballistic
lead-junction-lead setup

3.7 Numerical Results for the cumulants of

heat

The central quantity to calculate the CGF numerically is the shifted self-

energy ΣA
L which is given by

ΣA
L(τ, τ

′) = ΣL

(

τ + ~x(τ), τ ′ + ~x(τ ′)
)

− ΣL

(

τ, τ ′
)

. (3.100)

The main computational task for a numerical evaluation of the cumulants

using Eq. (3.37,3.59) is to compute the matrix series − ln(1 −M) = M +

1
2
M2 + · · · where M ∝ Ğ0Σ̆

A
L . It can be seen due to the nature of ΣA

L that

for the product initial state, exact n terms up to Mn is required for the

n-th culumants, as the infinite series terminates due to ΣA
L(ξL = 0) = 0.

Numerically, we also observed for the projected initial state ρ′(0), exactly

3n terms is required (although we don’t have a proof) if calculation is

performed in time domain.

We need to perform convolution integrations in the time or frequency do-

main. For projected and steady state initial condition all components of

G0 are time translationally invariant, as they are calculated at the steady

state, it is advantageous to work in the frequency domain (see appendix

(C)). But for the product initial state there is no such preference and one

has to solve the Dyson equation given in Eq. (3.43) (see appendix (D))

numerically. The cumulants are then obtained by taking derivatives i.e.,

〈〈Qn〉〉 = ∂n lnZ
∂(iξL)n

|ξL=0.
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Results for projected ρ′(0) and product initial state ρprod(0)

In Fig. 3.4 and 3.5 we show results for the first four cumulants of heat

for both left and right lead QL and QR starting with the projected ρ′(0)

and product state ρprod(0) respectively. The system is a one-dimensional

(1D) linear chain connected with Rubin heat baths. (One can consider

other type of heat baths such as Ohmic or Lorentz-Drude bath [6]. In such

cases the self-energy expressions should be modified.) By Rubin baths

[5, 6] we mean a uniform linear chain with all spring constant k and a

small onsite k0. We consider only one atom at the center. The atoms of

the left and right side of the center are considered baths. The expressions

for G0 and the self-energy are given in appendix (E) and (F). We choose

k = 1 eV/(uÅ2) and the onsite potential k0 = 0.1 eV/(uÅ2) in all our

calculations. For pure harmonic chain the onsite potential is important to

achieve the steady state dynamically [29]. Few important observations for

the cumulants are mentioned in the following:

• First of all we see that the cumulants greater than two are nonzero,

which confirms that the distribution for heat P (QL) or P (QR) is non-

Gaussian. This can also be seen from the steady state expression for

CGF.

• The generic features are almost the same for both these initial con-

ditions. However the fluctuations are larger for the product initial

state ρprod(0) as the couplings between the center and the leads are

switched on suddenly. On the contrary, for the initial state ρ′(0) the

fluctuations are relatively small and the system reaches steady state
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Figure 3.4: The cumulants 〈〈Qn
L〉〉 and 〈〈Qn

R〉〉 for n=1, 2, 3, and 4 for one-
dimensional linear chain connected with Rubin baths, for the projected
initial state ρ′(0). The black (solid) and red (dashed) curves corresponds
to 〈〈Qn

L〉〉 and 〈〈Qn
R〉〉 respectively. The temperatures of the left and the

right lead are 310 K and 290 K, respectively. The center (C) consists of
one particle.
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Figure 3.5: The cumulants 〈〈Qn
L〉〉 and 〈〈Qn

R〉〉 for n=1, 2, 3, and 4 for one-
dimensional linear chain connected with Rubin baths for product initial
state ρprod(0). The black (solid) and red (dashed) curves corresponds to
〈〈Qn

L〉〉 and 〈〈Qn
R〉〉 respectively. The temperatures of the left, the center

and the right lead are 310 K, 300 K and 290 K, respectively.
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Figure 3.6: The cumulants 〈〈Qn
L〉〉 and 〈〈Qn

R〉〉 for n=1, 2, 3, and 4 for one-
dimensional linear chain connected with Rubin baths for steady state initial
state ρNESS(0). The black (solid) and red (dashed) curves corresponds to
〈〈Qn

L〉〉 and 〈〈Qn
R〉〉 respectively. The temperatures of the left and the right

lead are 310 K and 290 K, respectively.

much faster as compared with the product initial state.

• For ρ′(0) due to the effect of the measurement, at starting time heat

flux or the current (derivative of 〈Q〉 with tM) (see Fig. 3.4) goes into

the leads, which is quite surprising. But for ρprod(0) although initial

measurement do not play any role, energy still goes into the leads.

This can also be shown analytically (see Appendix (G)).

• At the starting time the behavior of both QL and QR are very similar

and can be intuitively understood as both the leads are identical and

the effect of temperature difference is not realized in such a short

time scale. At longer times the odd cumulants starts differing and
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Figure 3.7: The structure of a graphene junction with 6 degrees of freedom
with two carbon atoms as the center.

finally grows linearly with time tM and agrees with the corresponding

long-time predictions.

Result for steady-state initial condition ρNESS(0)

In Fig. 3.6 we show the results for the steady state initial condition, ρNESS(0)

by taking the limit λ→ 0. Since in this case the measurement effect is ig-

nored the dynamics of the full system starts with the actual steady state.

Therefore the first cumulant of heat increases linearly from the starting

time at t = 0 and 〈QL〉 = t〈IL〉 where the slope gives the correct predic-

tion with the Landauer-like formula. However, higher order cumulants still

shows transient behavior. In this case the whole system achieve steady

state much faster as compared to the other two initial conditions.

Result for graphene junction

We also present numerical results for graphene system. In Fig. (3.7) we

show the structure for the graphene junction system. The center region
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Figure 3.8: The cumulants 〈〈Qn〉〉 as a function of tM for graphene junction
for n = 1, 2, 3 and 4. The curves are for the product initial state; the
circles are for steady-state initial state. The dotted line is for the classical
limit (~ → 0 keeping λ finite) for the steady-state initial condition. The
temperature of the left lead is 330 K and that of the right lead is 270 K.
For the product initial state, the center temperature is 300 K.
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consists of two atoms with six degrees of freedom, while the two leads are

symmetrically arranged as strips (with periodic boundary conditions in the

vertical direction). We obtained the force constants using the second gener-

ation Brenner potential. The computational effort required for convergence

is huge for the graphene junction.

From the Fig. (3.8) we can see that similar to the 1D case, in graphene junc-

tion also, fluctuations are much larger for ρprod(0) as compared to ρNESS(0).

As before for product initial state current goes into the leads at the begin-

ning. If the system were classical, the measurement could not disturb the

system. We should expect the current to be constant once the steady state

is established. The dotted line in the figure correspond to the classical

limit. The nonlinear tM dependence observed here in 〈Q〉 is fundamentally

quantum mechanical in origin.

3.8 CF Z(ξL, ξR) corresponding to the joint

probability distribution P (QL, QR)

In this section we derive the CFZ(ξL, ξR) for ξC = 0 introduced in Eq. (3.14).

This CF corresponds to the joint probability distribution P (QL, QR). Here

we only consider the product initial state ρprod(0). Other initial conditions

can be handled as before. Following the same technique developed earlier
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the generalized CGF reads

lnZ(ξL, ξR) = −1

2
Tr(j,τ) ln

[

1−
[

G0(Σ
A
L +ΣA

R)
]

]

, (3.101)

where an additional term ΣA
R appears as an additive term due to the mea-

surement of right Hamiltonian HR. Therefore we now need to shift the

contour-time arguments for both left and right lead self-energies, i.e.,

ΣA
α (τ, τ

′) = Σα

(

τ + ~xα(τ), τ
′ + ~xα(τ

′)
)

− Σα(τ, τ
′), α = L,R

x±α (τ) =















∓ ξα
2

for 0 < t < tM

0 for t > tM

The CGF for the left-lead heat can be recovered trivially by substituting

ξR = 0.

Long time limit of the generalized CGF

In the long-time limit due to time-translational invariance Z(ξL, ξR) be-

comes a function of difference of the counting fields [30, 31] i.e., ξL−ξR.

The final expression for the CGF is the same as lnZs(ξL) except that now

the counting field ξL should be replaced by ξL−ξR. Therefore we have

lnZs(ξL−ξR) = −tM
∫

dω

4π
ln det

[

I − T [ω]K(ω; ξL − ξR)
]

K(ω; ξL−ξR) = (ei(ξL−ξR)~ω−1)fL(1+fR) + (e−i(ξL−ξR)~ω−1)fR(1+fL).

(3.102)

G0 satisfies the same Dyson equation as before. Here we assume
[

ΓL,ΓR

]

=
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Figure 3.9: First three cumulants of the correlations between left and right
lead heat flux for one dimensional linear chain connected with Rubin baths,
starting with product initial state ρprod(0). The left graph corresponds to
〈〈QLQR〉〉 and the right graph corresponds to cumulants 〈〈Q2

LQR〉〉 (black
curve, solid) and 〈〈Q2

RQL〉〉 (red curve, dashed). The left, center and right
lead temperatures are 310 K, 290 K and 300 K respectively. The center
(C) consists of one particle.

0. By performing Fourier transformation of the CGF the joint probability

distribution is given as P (QL, QR) = P (QL) δ(QL +QR). The appearance

of the delta function is a consequence of the steady state which also implies

that if we calculate the CGF for heat for the center part, then it will be

independent of the counting field in the long-time limit.

The cumulants for the correlation between left and right lead heat flux

can be obtained from by taking derivative of the CGF with respect to the

counting fields ξL and ξR, i.e.,

〈〈Qn
LQ

m
R 〉〉 =

∂n+m lnZs(ξL−ξR)
∂(iξL)n∂(iξR)m

∣

∣

∣

ξL=ξR=0
. (3.103)

In the steady state the cumulants obey 〈〈Qn
LQ

m
R 〉〉 = (−1)m〈〈Qm+n

L 〉〉 =
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(−1)n〈〈Qm+n
R 〉〉. The first cumulant give us the left and right lead correla-

tion 〈〈QLQR〉〉 = 〈QLQR〉 − 〈QL〉〈QR〉 and in the steady state is equal to

−〈〈Q2
L〉〉.

Results for correlations of left and right lead heat flux

In Fig. (3.9) we plot first few cumulants for the correlations of heat for

one dimensional linear chain connected with Rubin bath and the center

consists of only one atom. Initially the cumulant 〈〈QLQR〉〉 is positively

correlated as both QL and QR are negative, however in the longer time

since QL = −QR the correlation becomes negative. We also give plots for

〈〈Q2
LQR〉〉 (black, solid lines) and 〈〈Q2

RQL〉〉 (red, dashed lines) which in

the long-time limit are negative and positively correlated respectively and

match with the long-time predictions.

Results for Entropy production in the reservoir

From the two parameter CGF in Eq. (3.101) we can immediately write

down the CGF for total entropy production in the leads given as Σ =

−βLQL − βRQR. In order to calculate this CGF we just make the substi-

tutions ξL → −βLξ and ξR → −βRξ in Eq. (3.101). In the long-time limit

the expression for entropy-production is similar to lnZ(ξL, ξR) with ξL−ξR
replaced by A and therefore it becomes an explicit function of thermody-

namic affinity βR−βL [30, 31]. The CGF now satisfy the GC symmetry as

Z(ξ) = Z(−ξ+i). In Fig. (3.10) we give results for the first four cumulants

of the entropy production. All cumulants are positive and in the long-time

limit give correct predictions.
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Figure 3.10: The cumulants of entropy production 〈〈Σn〉〉 for n=1, 2, 3,
4 for one dimension linear chain connected with Rubin baths, for product
initial state ρprod(0). The left, center and right lead temperatures are 510
K, 400 K, and 290 K respectively. The center (C) consists of one particle.
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3.9 Classical limit of the CF

In this section we will give the classical limit of the steady state expression

for the CGF’s lnZs(ξL) given in Eq. (3.92). First of all we note that

retarded and advanced Green’s functions, i.e., Gr
0 and Ga

0 are the same for

quantum and classical case which can also be seen from the definitions as

commutators gets replaced by the Poisson brackets. We know that in the

classical limit fα → kBTα

~ω
and also eix = 1+ix+ (ix)2

2
+· · · , where x = ξL~ω.

Using this we obtain the classical limit of Zs(ξL) as

lnZs
cls(ξL)=−tM

∫ ∞

−∞

dω

4π
ln det

[

I−T [ω]
iξL
βLβR

(iξL+(βR−βL))
]

. (3.104)

This result reproduces that of Ref. [32] which was obtained from Langevin

dynamics with white noise reservoirs. However above formula is valid for

arbitrary colored noise which are written in terms of the self-energy of the

leads. Similar to the quantum case, here the CGF obeys the GC symmetry,

i.e., Zs
cls(ξL) = Zs

cls(−ξL + i(βR − βL)).

It is worth mentioning that very recently, the above study is extended for

a general lead-junction-lead model including direct coupling between the

leads and it is found that the long-time CGF can be written in a similar

form as given in Eq. (3.92) with a different transmission function but the

form of the counting-field dependent function is the same and therefore
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satisfy GC symmetry. For details see Ref. [16, 33]

3.10 Nazarov’s definition of CF and long-

time limit expression

In this section we first derive Nazarov’s CF [13, 14, 26] given by Eq. (3.17),

starting from the CF derived using two-time measurement concept (see

Eq. (3.11)) and then obtain the long-time limit expression for the harmonic

lead-junction-lead model.

Derivation for Nazarov’s CF from two-time measurement CF

Employing two-time measurement method the CF is written as

Z(ξL) = 〈eiξLHL e−iξLH
H
L
(t)〉

=
〈

UξL/2(0, t)U−ξL/2(t, 0)
〉

. (3.105)

where Ux(t, 0) = T exp[− i
~

∫ t

0
Hx(t

′)dt′] and the modified Hamiltonian is

given as

Hx(t) = eixHLH(t)e−ixHL ,

= H(t) +
(

uL(~x)− uL
)T
V LCuC , (3.106)

Now let us consider small x = ±ξL/2 limit. Then the modified Hamiltonian
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can be approximated as

Hx(t) ≈ H(t) + ~xIL(0) +O(x2), (3.107)

where IL(0) = uTLV
LCuC . The modified unitary operator then written as

Ux(t, 0) = T exp
[

− i

~

∫ t

0

(

H(t̄) + ~xIL(0)
)

dt̄
]

. (3.108)

Now we can consider ~xIL(0) as the interaction Hamiltonian and write the

full unitary operator Ux as a product of two unitary operators as following

Ux(t, 0) = U(t, 0)U I
x(t, 0),

U(t, 0) = T exp
[

− i

~

∫ t

0

H(t′) dt′
]

U I
x(t, 0) = T exp

[

− i

~

∫ t

0

~xIL(t
′)dt′

]

, (3.109)

with IL(t
′) = U †(t′, 0) IL(0)U(t′, 0) is the current operator in the Heisen-

berg picture. It is important to note that U is the usual unitary operator

which evolves with the full Hamiltonian H(t) in and has no counting-field

dependence. Therefore in the small ξL approximation and using the ex-

pressions for Ux we can write the CF as

Z1(ξL) = Tr
[

ρprod(0)U I
ξL/2

(0, t)U I
−ξL/2

(t, 0)
]

, (3.110)

where we use the property of unitary operator, i.e., U †(t, 0)U(t, 0) = 1.
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Finally using the definition of heat operator QL the CF reads

Z1(ξL) =
〈

T̄ eiξQL(t)/2 TeiξQL(t)/2
〉

, (3.111)

which is the same as in Eq. (3.17).

Long-time limit for Nazarov’s CF

In the following we will give the long-time limit expression for this CGF. In

order to calculate the CGF, we go to the interaction picture with respect to

the Hamiltonian H0 = HL+HC+HR, as we know how to calculate Green’s

functions for operators which evolves with H0 and treat the rest part as

the interaction Vx = Hint + ~xIL(0). So the CF on contour C =
[

0, tM
]

can be written as

Z1(ξL) =
〈

Tce
− i

~

∫
V̂x(τ)dτ

〉

, (3.112)

where V̂x(τ) is now given by

V̂x(τ) = ûTL(τ)V
LC ûC(τ) + ûTR(τ)V

RC ûC(τ) + ~x(τ)p̂L(τ)V
LC ûC(τ),

(3.113)

where pL = u̇L. The time-dependence τ is coming from the free evolu-

tion with respect to H0. x(τ) has the similar meaning as before, i.e., on

the upper branch of the contour x+(t) = −ξL/2 and on the lower branch

x−(t) = ξL/2. Now using the same idea as before, we expand the series,

use Wick’s theorem and finally obtain the CGF as

lnZ1(ξL) = −1

2
Trj,τ ln

[

1−G0Σ
A
L

]

. (3.114)
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Here G0 is the same as in Eq. (3.43). In this case however the shifted

self-energy ΣA
L is different and is written as

ΣA
L(τ, τ

′) = ~ x(τ) ΣpLuL
(τ, τ ′)+~ x(τ ′) ΣuLpL(τ, τ

′)+~
2 x(τ) x(τ ′) ΣpLpL(τ, τ

′).

(3.115)

The notation ΣAB(τ, τ
′) means

ΣAB(τ, τ
′) = − i

~

[

V CL 〈 TcA(τ)BT (τ ′) 〉 V LC
]

. (3.116)

The average here is with respect to equilibrium distribution of the left

lead. It is possible to express the correlation functions such as ΣpLuL
(τ, τ ′)

in terms of the ΣuL,uL
(τ, τ ′) = ΣL(τ, τ

′) correlations. ΣpLuL
(τ, τ ′) and

ΣuLpL(τ, τ
′) is simply related to ΣL(τ, τ

′) by the contour-time derivative

whereas for ΣpLpL(τ, τ
′) the expression is

ΣpLpL(τ, τ
′) =

∂2ΣuLuL
(τ, τ ′)

∂τ∂τ ′
+ δ(τ, τ ′)ΣI

L. (3.117)

Where ΣI
L = V CLV LC . Now in the frequency domain different components

of ΣA
L takes the following form

Σt
A[ω] =

~2ξ2Lω
2

4
Σt

L[ω] +
~2ξ2L
4

ΣI
L,

Σt̄
A[ω] =

~2ξ2Lω
2

4
Σt̄

L[ω]−
~2ξ2L
4

ΣI
L,

Σ<
A[ω] =

(

i~ξLω − ~2ξ2Lω
2

4

)

Σ<
L [ω],

Σ>
A[ω] =

(

− i~ξLω − ~
2ξ2Lω

2

4

)

Σ>
L [ω]. (3.118)
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Finally using the fluctuation-dissipation relations between the self-energy,

the long-time limit of the CGF can be explicitly written down as,

lnZ1(ξL) = −tM
∫

dω

4π
ln det

[

1− (iξL~ω)T [ω] (fL − fR)

−(iξL~ω)
2

4

(

T [ω](1 + 2fL)(1 + 2fR)−Ga
0Σ

r
L

+Gr
0Σ

a
L −Gr

0ΓLG
a
0ΓL

)

+ J (ξ2L, ξ
4
L)
]

, (3.119)

where J (ξ2L, ξ
4
L) is given by

J (ξ2L, ξ
4
L) = −~2ξ2L

4

(

Ga
0 +Gr

0

)

ΣI
L − 1

4

(iξL~ω)
2

2

~2ξ2L
2

+
(

Gr
0Σ

a
LG

a
0Σ

I
L +Gr

0Σ
I
LG

a
0Σ

r
L

)

+
1

4

(iξL~ω)
4

4

Gr
0Σ

a
LG

a
0Σ

r
L +

1

4

(~4ξ4L)

4
Gr

0Σ
I
LG

a
0Σ

I
L. (3.120)

This CGF does not obey the GC fluctuation symmetry. However it gives

the correct first and second cumulant as the definitions turn out out to be

the same for both the CF’s Z(ξL) and Z1(ξL) and are given as

〈〈Q〉〉 = 〈Q〉 = ∂ lnZ(ξL)

∂(iξL)
=
∂ lnZ1(ξL)

∂(iξL)
=

∫ t

0

dt1〈IL(t1)〉,

〈〈Q2〉〉 = 〈Q2〉 − 〈Q〉2 = ∂2 lnZ(ξL)

∂(iξ)2
=
∂2 lnZ1(ξL)

∂(iξL)2

=

∫ t

0

dt1

∫ t

0

dt2〈IL(t1)IL(t2)〉 −
[

∫ t

0

dt1〈IL(t1)〉
]2

. (3.121)

Expressions for higher cumulants are different for the two CF and therefore

the final expressions for the CGF’s are completely different from each other.
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3.11 Summary

In summary, we present an elegant way of deriving the CGF for heat for

a harmonic system connected with two heat baths. Using two-time mea-

surement concept we derive the CGF based on NEGF and path-integral

technique. We generalize the model by including time-dependent driving

force at the center and also making the coupling between the leads and

the center time-dependent. The leads in our formalism could be finite.

The CGF is obtained for arbitrary transient time tM . For this harmonic

junction the CGF is written as a sum of two contributions. In this chap-

ter we discuss the temperature bias part of the CGF which is written in

terms of the center Green’s function and shifted self-energy of the measured

lead. We found that the counting of the energy is related to the shifting in

contour time for the corresponding self-energy. For the electron case also

similar conclusion can be drawn (see appendix (H)). In addition to the

energy measurement, for electrons, particle number measurement gener-

ates a contour-time dependent phase in the self-energy. We consider three

different initial conditions for the density operator and show numerically

that for 1D harmonic chain, connected with Rubin baths, transient be-

haviors significantly differ from each other but eventually reaches a unique

steady state in the long-time limit. We also present results for graphene

junction. An intriguing feature is that a measurement, even in the steady

state, causes energy flow into the leads. We give explicit expressions of the

CGF in the steady state invoking the time translational invariance of the

center Green’s functions. The CGF obeys the GC fluctuation symmetry.
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We also obtain a two-parameter CGF which is useful for calculating the

correlations between heat flux and also the total entropy production in the

leads. The classical limit for the CGF is obtained which also satisfy the GC

symmetry. We would like to point out that the effect of magnetic field can

be similarly studied by including an additional term in the Hamiltonian

given in the form uTCApC where A is an antisymmetric matrix and depends

on the magnetic field. Such a model is used to explain a recently discovered

phenomena known as Phonon Hall effect [34–36].
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Chapter 4

Full-counting statistics (FCS)

and energy-current in the

presence of driven force

Understanding the general features of energy current in a force-driven sys-

tem is of significant interest. One of the major goal here is to control the

current by applying periodic driving force and to convert the system to

act like a heat pump [1–4]. i.e., to direct heat against thermal bias by

using external force. As an example, Ai et al [5] showed the heat pumping

behavior in Frenkel- Kontorova (FK) chain by adjusting the frequency of

the ac driving force. On the contrary, Marathe et al [6] showed that under

periodic driving two coupled harmonic oscillators connected with thermal

reservoirs fails to act as a heat pump.
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On the other hand, a recent study on driven quantum Langevin model for

any arbitrary time-dependent potential shows that the energy dissipation

flow to thermal environment is related to the violation of the fluctuation-

dissipation relation [7, 8]. Moreover, for systems driven arbitrarily far

from equilibrium it is possible to relate the work done during the nonequi-

librium process with the free energy difference between two equilibrium

states through Jarzynski’s equality (JE) [9–11]. Finding explicit forms of

nonequilibrium distribution functions for work and henceforth averages for

different systems is another major interest in this field [12–15].

In the previous chapter, for a forced-driven harmonic lead-junction-lead

model we found that the full CGF can be separated into two terms (see

Eq. (3.89)). The force independent term in the long-time limit reduces to

the Levitov-Lesovik like formula for phonons. In this chapter we investigate

the other term of the CGF coming due to the driving force. We first

obtain the long-time limit expression for the CGF and then generalize it

by introducing another counting field for the right lead heat to study driven

force induced entropy production in the leads. This also satisfy fluctuation

symmetry. For periodic driving we derive an explicit expression for the

CGF when the system is connected with Rubin heat baths and then explore

the effects on steady state energy current due to system size and applied

frequency. In addition we compare the effects of Rubin [16] and Ohmic [17]

heat baths on energy current. We also present an alternate derivation for

transient energy current starting from the basic definition of the current

operator.
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4.1 Long-time result for the driven part of

the CGF lnZd(ξL)

In this section we derive an explicit expression for the forced-driven CGF

lnZd(ξL) in the long-time limit (for periodic driven force) which is given

by (Eq. (3.87))

lnZd(ξL) = − i

~

∫

dω

4π
Trj,σ

[

˘̃G[ω]F̆ [ω,−ω]
]

, (4.1)

where G̃ is the counting field dependent Green’s function and satisfy the

Dyson equation on the contour C[0, tM ]

G̃(τ, τ ′) = G0(τ, τ
′) +

∫

C

∫

C

dτ1dτ2G0(τ, τ1)Σ
A
L(τ1, τ2)G̃(τ2, τ

′). (4.2)

and the force matrix F̆ [ω,−ω] is given as

F̆ [ω,−ω] =







0 f [ω]fT [−ω]

0 0






. (4.3)

Using Keldysh rotation and invoking time-translation invariance in the

long-time limit (G̃ does not depend on time-depdnent force and therefore

it will have a proper long-time limit) i.e., ˘̃G(t, t′) = ˘̃G(t − t′), we obtain

the solution for ˘̃G[ω] in terms of G0 and ΣA
L as

˘̃G[ω] =
[

I − Ğ0[ω]Σ̆
A
L [ω]

]−1

Ğ0[ω], (4.4)
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with

Ğ0[ω] =







Gr
0[ω] GK

0 [ω]

0 Ga
0[ω]






and Σ̆A

L [ω] =
1

2







a−b a+b

−(a+b) −(a−b)






,

(4.5)

a ≡ Σ>
L [ω]

(

e−i~ωξL − 1
)

,

b ≡ Σ<
L [ω]

(

ei~ωξL − 1
)

. (4.6)

Equation (4.4) can be solved by calculating the inverse of a 2 × 2 matrix.

Let us now make an assumption that the product of f(t) and f(t′) is a

time translationally invariant function, i.e., f(t)fT (t′) = F (t− t′) in order

to get rid of t + t′ dependent term. In the Fourier domain this means

f [ω]fT [ω′] = 2πF [ω]δ(ω + ω′). Therefore we have F̆12[ω,−ω] ∝ δ(0)F [ω]

with δ(0) = tM/2π. Using these results the CGF can be expressed as

lnZd(ξL) = itM

∫

dω

4π~

1

N (ξL)
Tr

[

Gr
0[ω](a+ b)Ga

0[ω]F [ω]
]

, (4.7)

Using the fluctuation-dissipation relations for the self-energy i.e., Σ<
L [ω] =

fL(Σ
r
L[ω]− Σa

L[ω]) = −ifLΓL and Σ>
L [ω] = eβL~ωΣ<

L [ω], ΓL[ω] = i(Σr
L[ω]−

Σa
L[ω]) the CGF reduces to

lnZd(ξL) = tM

∫

dω

4π~

ML(ω; ξL)

N (ω; ξL)
Tr

[

SL[ω]
]

, (4.8)
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with

SL[ω] = Gr
0[ω]ΓL[ω]G

a
0[ω]F [ω],

ML(ω; ξL) = (eiξL~ω−1)fL + (e−iξL~ω−1)(1 + fL),

N (ω; ξL) = det
[

I−T [ω]K(ω; ξL)
]

,

K(ω; ξL) = (eiξL~ω−1)fL(1+fR) + (e−iξL~ω−1)fR(1+fL). (4.9)

We call SL[ω] as the force-driven transmission matrix which is independent

of ~ and the temperature of the heat baths. Also note that ML(ω; ξL)

depends only on left lead temperature and follow the symmetry relation

ML(ω; ξL) = ML(ω;−ξL−iβL). Therefore we immediately obtainZd(−iβL) =

1 which is completely independent of the right lead information. If we con-

sider the two leads at the same temperature (βL = βR = β), this particular

form of symmetry is then closely related to the Jarzynski equality (JE)

[9–11]. However since N (ω; ξL) is not invariant under this transformation

ξL = −ξL − iβL (it remains invariant when ξL → −ξL + i(βR − βL)) in

general Zd(ξL) 6= Zd(−ξL − iβL). This however does not violate JE as the

CF Zd(ξL) is defined for the quantity heat, not for the work done by the

external force as defined by Jarzynski.

It is also possible to generalize the CGF by introducing another counting

field ξR corresponding to Qd
R (d here refers to the contribution due to

the driven force), as done in chapter 2. Then the force induced entropy

production in the leads can be computed easily. It can be shown that the

effect of measuring other lead is additive to the final CGF because the

137



Chapter 4. Full-counting statistics (FCS) and energy-current in the
presence of driven force

Dyson equation in Eq. (4.2) gets an additional term Σ̃A
R(τ, τ

′), i.e.,

G̃(τ, τ ′) = G0(τ, τ
′) +

∫

C

∫

C

dτ1dτ2G0(τ, τ1)(Σ
A
L + ΣA

R)(τ1, τ2)G̃(τ2, τ
′).

(4.10)

and we obtain in the long-time limit

lnZd(ξL, ξR)= tM

∫

dω

4π~

1

N (ω; ξL−ξR)
∑

α=L,R

Mα(ω; ξα)Tr
[

Sα[ω]
]

. (4.11)

Note that the forced-driven CGF is not a function of the difference of the

counting fields. The functional form for Mα is the same as before i.e.,

Mα(ω; ξα) = (eiξα~ω−1)fα + (e−iξα~ω−1)(1 + fα) α = L,R (4.12)

We now see that this CGF is invariant under the transformation ξα =

−ξα − iβα α = L,R i.e., Mα(ξα) = Mα

(

− ξα − iβα
)

and N (ξL − ξR) =

N (−(ξL − ξR) + i(βR − βL)). (we omitted the ω argument for simplic-

ity) Therefore in the long time limit the work-induced entropy production

satisfies Zd(−iβL,−iβR) = 1 or equivalently 〈eβLQ
d
L+βRQd

R〉 = 1.

First two cumulants

Let us now give explicit expressions for the first and second cumulant

of forced-driven heat flowing out of the left lead by taking derivatives of

lnZd(ξL) with respect to the counting field ξL and evaluating at ξL = 0.
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The first cumulant, same as the first moment, is given as [18]

〈Id
L〉 ≡

〈〈Qd
L〉〉

tM
≡ 1

tM

∂ lnZd(ξL)

∂(iξL)

∣

∣

∣

ξL=0
= −

∫

dω

4π
ωTr

[

SL[ω]
]

. (4.13)

Note that since ωSL[ω] is positive the energy current always goes into the

lead. Therefore the average rate of work done is positive which is consistent

with the second law of thermodynamics. Also the current is independent

of temperature and the expression is same in classical and quantum case.

The second and similarly the higher order cumulants however depend on

temperature of the baths. For example, the second cumulant reads

〈〈(Qd
L)

2〉〉
tM

=

∫

dω

4π~
(~ω)2Tr

[

SL[ω]
]

[

(1 + 2 fL)− 2Tr
[

T (ω)
]

(fL − fR)
]

.

(4.14)

Similarly all higher order cumulants can be obtained from the CGF. There-

fore we can conclude that the distribution P (Qd) is non-Gaussian.

4.2 Classical limit of lnZd(ξL, ξR)

Let us now get the classical limit (~ → 0) for the generalized CGF lnZd(ξL, ξR)

using Eq. (4.11). Following above relations the functionMα(ξα) in the limit

~ → 0 reduces to

Mcls
α (ω, ξα) = −~ω

(

iξα +
ξ2α
βα

)

. (4.15)
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The transmission matrices SL[ω] and SR[ω] remain the same as they are

independent of ~. So in the classical limit lnZd(ξL, ξR) reduces to

lnZd
cls(ξL, ξR) = −tM

∫

dω

4π

ω

Ncls(ξL−ξR)
∑

α=L,R

(

iξα +
ξ2α
βα

)

Tr
[

Sα[ω]
]

,

(4.16)

where Ncls(ω; ξL) = det
[

I −T [ω] iξL
βLβR

(iξL+(βR−βL)
]

. This classical limit

is also invariant with respect to ξα = −ξα − iβα, α = L,R and therefore

satisfy the fluctuation theorem.

From now on we will consider a specific form of the force given as f(t) =

f0e
−iω0t + c.c where f0 is a column vector with complex amplitude and ω0

is the driven frequency. Here c.c means the complex conjugate. Then we

have

F [ω] = 2π
[

δ(ω − ω0) + δ(ω + ω0)
]

f0f
†
0 . (4.17)

Because of the presence of delta function, the integrand in (4.11) picked

the value at the driving frequency ω0. Therefore the CGF reads

lnZd(ξL, ξR) =
tM

~N (ω0; ξL−ξR)
∑

α=L,R

Mα(ω0, ξα)Tr
[

Sα[ω0]
]

, (4.18)

where we use the property that Mα(ω, ξα) (Kα(ω, ξα)) is an odd (even)

function of ω. In the later part we will use this CGF and derive an explicit

expression for an one-dimensional harmonic junction connected with Rubin

and Ohmic heat baths.
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4.3 The expression for transient current un-

der driven force

In this section, starting from the basic definition of the current operator, we

derive an alternative expression for the transient current flowing out of the left

lead in the presence of driving force. The current is simply expressed in terms

of the average displacement of the center atoms and the self-energy of the left

lead. The main quantity to calculate here is the one and two point correlation

functions involving uC operators. By knowing these correlations it is possible

to obtain the moments or the cumulants for Jarzynski’s work as well as for

mechanical work [13].

Let us once again write down the expression for the transient current for arbitrary

junction part (see Eq. (2.83))

〈IL(t)〉 =
i~

2

∫ t

t0

dt′′
∂

∂t′
Tr

[

Gr
CC(t, t

′′)ΣK
L (t′′ − t′) +GK

CC(t, t
′′)Σa

L(t
′′ − t′)

]

t′=t
.

(4.19)

The important point to note is that hereGCC(t, t
′) does not have time-translational

invariance because of the presence of time-dependent force whereas the self-

energy ΣL obeys this property as it is calculated at equilibrium. Our main task

now is to calculate the center Green’s function.

One-point Green’s function for the center

Let us first consider the one-point contour-ordered Green’s function for the center

which is defined as

GC
j (τ) = − i

~
〈TCu

C
j (τ)〉, (4.20)

where TC is the contour-ordering operator. For one-point Green’s function this
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operator does not play any role. uCi (τ) is the operator in the Heisenberg picture

evolving with the full H(t) given in Eq. (3.6) with Hn = 0 (V LC and V RC

are considered to be time independent here). Note that the starting time t0 is

chosen arbitrary. Transforming to the interaction picture with respect to the

Hamiltonian H′0 = HL + HR + HC + HLC + HRC and taking the interaction

Hamiltonian as V(t) = −θ(t − t0)f
T (t)uC we can write the contour ordered

Green’s function as

GC
j (τ) = − i

~

〈

TC û
C
j (τ)e

∑
k

i
~

∫
dτ ′fk(τ

′)ûk(τ
′)
〉

G0

, (4.21)

(The symbol caret is used to denote that the operators are in the interaction

picture with respect to the Hamiltonian H′0) Here G0 is the Green’s function

calculated with the Hamiltonian H′0 i.e., in the presence of the leads. Now if we

expand the exponential function, the terms with odd numbers of uC will be zero

since the average is with respect to a quadratic Hamiltonian. So the expression

will contain terms with even number of uC(τ) and odd number of f(τ) and finally

can be written in the matrix form as

GC(τ) =
i

~

∫

dτ ′G0(τ, τ
′)f(τ ′) + higher order terms, (4.22)

(For notational simplicity we have omitted the superscript CC on the two-point

Green’s function of center). In Fig. (4.1) we draw Feynman diagrams for GC
i (τ)

up to third order of force. The contribution from the first diagram is nonzero.

But the next and all the higher order terms contain the same type of vacuum

diagrams which are zero. Vacuum diagram is defined as a diagram where all

variables are integrated and the result is independent of space or time. The
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+ higher order terms+

F
j

F
j

F
l

F
m

Figure 4.1: The Feynman diagram for one-point Green’s function of the
center in the presence of time-dependent force.

expression for such a diagram in terms of contour variable can be written as

∫ ∫

dτdτ ′fT (τ)GCC
0 (τ, τ ′)f(τ ′)

=
∑

σ,σ′

∫ ∫

σdt σ′dt′fσ(t)TGσ,σ′

0 (t, t′)fσ′(t′). (4.23)

The last line is obtained by going to the real time using Langreth’s rule. Since

the driven force f does not depend on the branch index f+(t) = f−(t) = f(t),

we can take the summation inside and obtain [19]

∑

σ,σ′

σσ′Gσ,σ′

0 = Gt
0 +Gt̄

0 −G<
0 −G>

0 = 0. (4.24)

It can be easily shown that all higher order terms in this series contain such

vacuum diagrams and hence do not contribute to the one-point Green’s function.

So the exact expression for 〈uC(τ)〉 is now given by

〈uC(τ)〉 = −
∫

dτ ′G0(τ, τ
′)f(τ ′). (4.25)

From this expression it is also clear that 〈uC(τ)〉 does not depend on the branch

index i.e.,
〈

u+C(t)
〉

=
〈

u−C(t)
〉

. So in real time we obtain

〈uC(t)〉 = −
∫ t

t0

dt′Gr
0(t− t′)f(t′). (4.26)
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where Gr
0 is the retarded Green’s function and also known as the response func-

tion in the linear response theory. In fact, the same result, Eq. (4.26), can also

be derived from the standard linear response theory.

Two-point Green’s functions for the center

Similarly the two-point Green’s function in the interaction picture is also calcu-

lated and is given as

Gjk(τ, τ
′) = − i

~
〈TC û

C
j (τ)û

C
k (τ

′)e
∑

m
i
~

∫
dτ ′′fm(τ ′′)ûm(τ ′′)〉G0

. (4.27)

As discussed above we can expand the exponential and the terms greater then

O(f2) vanishes as they contain vacuum diagrams. The exact expression can be

written as

Gjk(τ, τ
′) = G0,jk(τ, τ

′)− i

~

∑

ms

∫

dτ1dτ2G0,jm(τ, τ1)G0,ks(τ
′, τ2)fm(τ1)fs(τ2).

(4.28)

In terms of 〈uC(τ)〉, the center Green’s function now become

G(τ, τ ′) = G0(τ, τ
′)− i

~
〈uC(τ)〉〈uC(τ ′)〉T . (4.29)

From the above equation we can writeG = G0+δG with δG = − i
~
〈uC(τ)〉〈uC (τ ′)〉T .

Now using the property of 〈uC(τ)〉 we can write

δG++ = δG+− = δG−+ = δG−− (4.30)

which implies that δGr = δGa = 0 and δG< = δG> = δḠ = − i
~
〈uC(t)〉〈uC(t′)〉T .
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So using Eq. (4.19) the expression for the current reduces to

〈IL(t)〉 = i~
∂

∂t′

∫ t

t0

dt′′Tr
[

Σ̄L(t
′ − t′′)Ga

0(t
′′, t) + Σr

L(t
′ − t′′)Ḡ0(t

′′, t)
]

t′=t

+

∫ t

t0

dt′′Tr
[

〈uC(t)〉〈uC(t′′)〉T
∂

∂t′
Σa
L(t
′′ − t′)

]

t′=t
(4.31)

= 〈Is
L(t)〉+ 〈Id

L(t)〉.

By writing 〈IL(t)〉 in this form it is clear that the contribution to the energy

current is separated into two parts. 〈Id
L(t)〉 is the current due to driven force

and 〈Is
L(t)〉 is due to the temperature difference between the heat baths. This

separation is possible because the system is linear and the driving force is not

correlated with the heat baths. In the long time limit i.e, t → ∞, 〈Is
L(t)〉 is the

steady-state heat flux and is given by the Landauer like formula [19]

〈Is
L〉 =

1

4π

∫ ∞

−∞
dω ~ωTr

[

T [ω]
]

(fL − fR). (4.32)

If we consider the two heat baths at the same temperature, i.e., ∆T = TL−TR =

0, then 〈Is
L〉 is zero. So in the linear case the final expression for current with

∆T = 0 is

〈Id
L(t)〉 =

∫ t

t0

dt′′Tr
[

〈uC(t)〉〈uC(t′′)〉T
∂

∂t′
Σa
L(t
′′, t′)

]

t′=t
, (4.33)

where Σa
L(t
′′ − t′) = 0 if t′′ − t′ ≥ 0. This equation can be used to calculate the

current both in transient as well as in the steady state with arbitrary form of

force. This expression is valid for systems connected with finite heat baths and

in higher dimensions.

Current due to periodic driven force
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We consider the form of force given by f(t) = f0e
−iω0t + c.c where f0 is a

column vector with complex amplitude and ω0 is the driven frequency. Then

from Eq. (4.26) 〈uC(t)〉 can be written as

〈uC(t)〉 = Gr
0[ω0]f0e

−iω0t + c.c. (4.34)

where Gr
0[ω0] is given by

Gr
0

[

ω0

]

=
[

(ω0 + iη)2I−KC−Σr
L[ω0]−Σr

R[ω0]
]−1

, (4.35)

with η → 0+ and I is the identity matrix. We set t0 → −∞ for steady state

oscillation and finally average over a time period Īd
L = 1

τ

∫ τ
0 〈Id

L(t)〉 dt where

τ = 2π/ω0 is the time period of the driving field, we finally get from Eq. (4.33),

Īd
L = −ω0 SL[ω0], (4.36)

SL[ω0] = Gr
0[ω0]ΓL[ω0]G

a
0 [ω0]f0f

†
0 , (4.37)

where ΓL[ω0] = i
[

Σr
L[ω0]−Σa

L[ω0]
]

is the spectral function for the left lead. For

this particular case the same result can also be obtained using linear response

theory. This result matches with the one obtained using CGF in Eq. (4.18).

We can write the expression for current in another form by using the following

relation between Gr
0 and Ga

0, obtained from Eq. (4.35),

Gr
0[ω0]−Ga

0[ω0] = −iGr
0[ω0]

(

ΓL[ω0] + ΓR[ω0]
)

Ga
0[ω0], (4.38)

then we can write

Īd
L = −Īd

C − Īd
R, (4.39)
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which is a consequence of energy conservation. Here Īd
C = i ω0Tr

[

(Gr
0[ω0] −

Ga
0[ω0])f0f

†
0

]

which is simply related with the density of states of the center.

We also like to point out that using the solutions for one and two point Green’s

functions the moments (cumulants) for Jarzyski’s workWJ = −
∫ t
t0
ḟT (t′)uC(t

′)dt′

and also for the mechanical work W =
∫ t
t0
fT (t′)uC(t

′)dt′ can be obtained. In the

classical case since P (W ) is Gaussian, the JE can be easily checked by verifying

the relation 〈〈W 2
J 〉〉 = 2

β

[

〈WJ〉 −∆F
]

where β is the inverse of the equilibrium

temperature and ∆F is the free energy change.

4.3.1 Application to 1D chain

In this subsection we study energy transport properties for 1D chain con-

nected with different type of heat baths such as Rubin or Ohmic.

Rubin bath

Here we consider a 1D chain with inter-particle spring constant k. We

divide the full infinite system into three parts, the center, the left and the

right lead. We want to study the energy current contribution only due to

the driven force and hence kept the leads at the same temperature with

the center. Then we drive the center with the force f(t) and evaluate the

forced-driven transmission function Sα[ω].
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The classical equation of motion for the center atoms is given by

üj = k
(

uj−1 − 2uj + uj+1

)

+ fj(t), 1 ≤ j ≤ NC , (4.40)

where NC is the number of particles in the center. The leads obey similar

equations with fj(t) = 0. Here we will consider the force fj(t) = f j
0e
−iω0t+

c.c. where f j
0 = (−1)jf0 which mimic the structure of a crystal having

alternate charges at the sites.

Solution for Gr
0[ω0] for pure harmonic chain

To obtain an explicit expression for the transmission function we need to

solve the equilibrium Green’s function Gr
0[ω0] given in Eq. (4.35). Since the

full system is homogeneous the retarded Green’s function can be obtained

by solving [20] [(ω0 + iη)2 − K]Gr
0[ω] = I, where K is the force constant

matrix for the full linear system and is infinite in both directions with 2k

along the diagonals and −k on the first off-diagonals. The solution for the

Green’s function is translationally invariant in space index and is given as

(see appendix (E))

Gr
0,jk[ω0] =

λ|j−k|

k(λ− 1
λ
)
, (4.41)

with

λ = − Ω

2k
± 1

2k

√
Ω2 − 4k2 ≡ e±i q, (4.42)

Ω = (ω0 + iη)2 − 2k = −2k cos q. (4.43)

The last equation is the phonon dispersion relation for one-dimensional har-

monic chain with nearest-neighbor interaction. Here q is the phonon wave

148



Chapter 4. Full-counting statistics (FCS) and energy-current in the
presence of driven force

vector. The choice between plus and minus sign is made by the condition

|λ| ≤ 1. Because of the nearest-neighbor interaction the surface Green’s

function for Rubin bath in frequency space is given by (see appendix (E))

(Σr
L)jk[ω0] = −kλδjk δj1,

(Σr
R)jk[ω0] = −kλ δjk δjNC

. (4.44)

It is clear from the expression of λ that it is complex within the phonon

bandwidth i.e., 0 ≤ ω0 ≤ 2
√
k and is real outside this range. Therefore the

spectral function ΓL is zero outside the phonon band.

Calculation for Tr
[

SL[ω]
]

Knowing all the Green’s functions we can now calculate the transmis-

sion function for the driven part Tr
[

SL[ω]
]

considering the force fj(t) =

(−1)jf0e
−iω0t + c.c.. We can write

Tr
[

SL[ω0]
]

= Tr
[

Gr
0[ω0)]ΓL[ω0]G

a
0[ω0]f0f

†
0

]

=
∑

ijkl

(−1)i+jGr
0,i1(ΓL)11G

a
0,1j|f0|2

=















2|f0|2kImλ
(

∑

i(−1)iGr
0,i1

)(

∑

j(−1)jGa
0,1l

)

, 0 ≤ ω0 ≤ 2
√
k

0 for ω0 ≥ 2
√
k

Using the solution for Gr
0[ω0] in Eq. (4.41) and Ga

0[ω] = (Gr
0[ω])

† we obtain

Tr
[

SL[ω0]
]

=















|f0|2

2k sin q

[

1−(−1)NC cos(NCq)
1+cos q

]

for 0 ≤ ω0 ≤ 2
√
k

0 for ω0 ≥ 2
√
k
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Similarly SR[ω] can also be calculated and in this case it is same as SL[ω]

because of the translational invariance of the full system. Therefore one

parameter CGF is written as

lnZd(ξL) =















tMML(ω0;ξL)
~N (ω0;ξL)

|f0|2

2k sin q

[

1−(−1)NC cos(NCq)
1+cos q

]

for 0 ≤ ω0 ≤ 2
√
k

0 for ω0 ≥ 2
√
k,

withN (ω; ξL) = det[1−K(ω; ξL)] as Tr
[

T [ω]
]

= Tr
[

Gr
0[ω]ΓL[ω]G

a
0[ω]ΓR[ω]

]

=

1 (within the phonon band otherwise it is zero) for homogeneous system.

4.4 Behavior of energy-current

Rubin bath:

The expression for current can be easily obtained from the CGF and is

given as

Īd
L =















−ω0|f0|2

2k

(

1−(−1)NC cos(NC q)
)

sin q
(

1+cos q
) , for 0 ≤ ω0 ≤ 2

√
k,

0, for ω0 ≥ 2
√
k.

(4.45)

Here Īd
L is of order 1 and q is given by the dispersion relation ω2

0 = 2k(1−

cos q).

In Fig. 4.2 and 4.3, we plot energy current as a function of applied frequency

for different system size. The value of force constant is chosen as k = 1

eV/(uÅ2) and f0 = 1nN in all our calculation. In Fig. 4.3, the current
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Figure 4.2: Energy current Īd
L as a function applied frequency for different

system size of one-dimensional chain with force fj(t) = (−1)jf0e
−iω0t+ c.c.

(a) NC=4, (b) NC=6, (c) NC=8, (d) NC=10. k=1 eV/(uÅ2).

is nonzero at zero frequency because the system as a whole is not charge

neutral. For NC = 1 the current Īd
L is proportional to the density of states

(DOS).

More importantly the current is exactly zero when the applied frequency

matches with the normal mode frequency of the system and the corre-

sponding wave number is given by for even NC , q = 2πn/NC and for odd

NC , q = (2n + 1)π/NC with n = 0, 1, ..., NC − 1. Therefore the number

of resonance peaks and number of zero’s depends on the eigenfrequencies

and hence on the size of the center system. The average current diverges
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Figure 4.3: Energy current |Īd
L| as a function applied frequency for dif-

ferent system sizes of one-dimensional linear chain with force fj(t) =
(−1)jfoe

−iω0t + c.c. (a) NC=1, (b) NC=3, (c) NC=5, (d) NC=7. k=1
eV/(uÅ2).
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Figure 4.4: Energy current |Īd
L| versus length of the center for different

applied frequencies for one-dimensional linear chain. Here (a) ω0=0.39, (b)
ω0=0.78, (c) ω0=0.98, (d) ω0=1.40. The frequencies are given in 1014(Hz)
unit. The other parameters same as in Fig. 4.3.
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at ω0 = 2
√
k as the DOS of the full system diverges at the maximum fre-

quency of the whole system. For ω0 ≥ 2
√
k the system does not allow

energy to pass through. Similarly one can calculate the right lead current

Īd
R and the expression is the same with Eq. (4.45). Since we apply force

on all the atoms of the center by symmetry argument we can say that the

total input current Īd
C divides into two equal parts and goes into the leads

i.e., |Īd
L| = |Īd

R| = |Īd
C |/2.

In Fig. 4.4, we give results for energy current as a function of total number

of particles in the center for different values of external frequency. For finite

systems the current oscillates with system size and depending on the values

of ω0 it shows periodicity with respect to NC . The maximum amplitude of

the average current is fixed and is proportional to ω0f
2
0 /2K.

Ohmic bath

Here we consider that the center part is connected with two Ohmic baths.

The difference between Rubin and Ohmic bath is that, the self energy

in this case is approximated as Σr[ω0] = −iγω0 where γ is the friction

coefficient. More precisely the Σr
L and Σr

R matrices are given by

(Σr
L)jk[ω0] = −i γ ω0 δjk δj1,

(Σr
R)jk[ω0] = −i γ ω0 δjk δjNC

. (4.46)

Using this form of self-energy the forced-driven transmission function is
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Figure 4.5: Energy current |Īd
L| as a function applied frequency for different

values of friction coefficient γ of one-dimensional linear chain with force
fj(t) = (−1)jfoe

−iω0t + c.c. (a) γ=0.01, (b) γ=0.5, (c) γ=3.0, (d) γ=5.0.
k=1 eV/(uÅ2) and NC =8.
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given as

Tr
[

SL[ω0]
]

= 2 γ ω0|f0|2
∣

∣

∣
g[ω0]

∣

∣

∣

2

g[ω0] =

NC
∑

j=1

(−1)jGr
1j [ω0] (4.47)

Therefore the CGF for this case is written as

lnZd(ξL) =
tMML(ω0; ξL)

~N (ω0; ξL)
2 γ ω0|f0|2

∣

∣

∣
g[ω0]

∣

∣

∣

2

(4.48)

As before we will focus on the first cumulant or the energy current which

is given as

Īd
L = −2 γ ω2

0 f
2
0

∣

∣

∣
g[ω0]

∣

∣

∣

2

(4.49)

From the above expression it is clear that energy current depends on the

denominator A[ω0] = |det
[

D[ω0]
]

|2 where D[ω0] = (ω2
0 I −KC + iω0 γL +

iω0 γR) is NC × NC matrix. The matrix elements are given by Dij =

δi,j
(

ω2
0 − 2 k− iω0 γ(δi,1+ δi,N)

)

− k δi,j+1− k δi,j−1. If we denote PNC
[ω0] =

det(ω2
0 − KC) to be the characteristic polynomial of the matrix KC with

NC particles then it can be shown that [1]

A[ω0] =
[

PNC
[ω0]− γ2 ω2

0PNC−2[ω0]
]2

+ 4γ2 ω2
0 P

2
NC−1

[ω0], (4.50)

where PNC−1[ω0] is the polynomial of the (NC−1)×(NC−1) force constant

matrix KC with first row and column or last row and column taken out

from KC and similarly PNC−2[ω0] is the polynomial of the (NC − 2) ×

(NC − 2) matrix by taking out the first and last rows and columns from
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KC . The resonance and the zero’s of current corresponds to the minimum

and maximum value of A[ω0] respectively. It is difficult to obtain explicit

solution in this case. However the equation become simple for small and

large value of γ, the friction coefficient. For small friction it is clear from

Eq. (4.50) that A[ω0] = P 2
NC

[ω0]. So the resonant frequencies depends on

NC eigenfrequencies of the force constant matrix KC . In the opposite limit

i.e, for large γ we obtain A[ω0] = P 2
NC−2

[ω0]. So depending on the value of

γ the resonance peaks shift from NC to NC − 2.

In Fig. 4.5, we plot the current with applied frequency for different values

of damping coefficient γ. The value of γ is chosen in proper units. The

zero values of the current is same as in Rubin’s case. However there is a

gradual shift in the resonance peak depending on the parameter γ. The

current doesn’t diverge at ω0 = 2
√
k and the width of the peaks depends

of γ. We check numerically the behavior of Īd
L with system length and we

found that the behavior is similar with Rubin baths. In this case also we

have |Īd
L| = |Īd

R| = |Īd
C |/2.

As mentioned before similar Ohmic model was also investigated by Marathe

et. al [6] for NC = 2 where they conclude that this model cannot work

either as a heat pump or as a heat engine. Our calculation agrees with

their results. It is also possible to calculate current in the overdamped

regime by dropping the term (ω0+ iη)
2 in Gr[ω0] given in Eq (4.35). In this

regime for N = 1 our result agrees with the result obtained by Jayannavar

et. al [14] for magnetic field B = 0.
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Comparison between Rubin and Ohmic bath for driving force

on single site

As we have seen that if we apply force on all the atoms of the center because

of the symmetry of the problem if we interchange the left and right lead

(which we assume to be the same) the value of the current should not

change and hence we have the only possible solution |Īd
L| = |Īd

R| = |Īd
C |/2.

But this is not the case, at least for Ohmic bath if we apply force on a

single or multi-particles but not on all. If we consider the force on the αth

particle as fi(t) = δiα
(

f i
0 e
−iω0t + c.c

)

then for the Rubin bath case using

Eq. (4.36) and Eq. (4.37) we get

Īd
L = −2ω0 k Im(λ) fα

0 (fα
0 )
∗ |G0,α1|2

Īd
R = −2ω0 k Im(λ) fα

0 (fα
0 )
∗ |G0,Nα|2 (4.51)

Using the solution for Gr
0[ω0] given in Eq. (4.41) we obtain

Īd
L = Īd

R =















− ω0

2k sin q
fα
0 (fα

0 )
∗, for 0 ≤ ω0 ≤ 2

√
k,

0, for ω0 ≥ 2
√
k.

(4.52)

which says that, because the full system is translationally invariant in space,

the magnitude of current does not depend on which site the force is applied

and hence |Īd
L| = |Īd

R| = |Īd
C |/2 is the only possible solution. The result is

similar with NC = 1 in Eq. (4.45).

However,this scenario is not valid for Ohmic bath. In this case the full

translational symmetry is broken and hence applying force on different
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Figure 4.6: Energy current |Īd
L| and |Īd

R| as a function of applied fre-
quency for driven force at different site of one-dimensional chain connected
to Ohmic bath. (a) and (b) are for α=1 and (c) and (d) are for α = 3,
NC =16. k = 1 eV/(uÅ2).
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sites generate different magnitudes of current on left and right lead. In

Fig. 4.6, we plot the heat current Īd
L and Īd

R for one-dimensional chain as

a function applied driving frequency at different sites. Clearly Īd
L and Īd

R

are different in magnitudes. Hence by applying force on different sites it is

possible to control current in both the leads for Ohmic case.

Heat pump

Heat pump by definition transfers heat from cooler region to hotter region.

One-dimensional linear system with force applying on any number of sites

fails to work as a heat pump. To understand the reasoning we look at the

total current coming out of the left lead ĪL which is a sum of two terms.

If we assume TL > TR then the temperature dependent term in Eq. (4.32)

gives the steady state heat is positive i.e, current goes from left to right

lead and the driving term which does not depend on temperature, always

contribute a negative value to both ĪL and ĪR. Hence ĪR is always negative

independent of whether we apply force on one site or on all the sites. So it

is not possible to transfer heat from right lead to left lead in this case.

4.5 Summary

In summary, for a forced-driven harmonic junction connected with two

thermal baths we present an analytic expression for the driven part of the

CGF in the long time limit. It is expressed in terms of force dependent

transmission function. By introducing two parameter CGF we show that
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the driven force induced entropy production in the leads satisfy fluctuation

symmetry. Exploring the translational symmetry for one dimensional linear

chain connected with Rubin heat baths we obtain an explicit expression for

the CGF under periodic driven force. The effect on energy current due to

two different types of heat baths is analyzed in detail. For ballistic model

we found that the driven current is temperature independent and is the

same in classical and quantum regime but the fluctuations are not. An

alternative expression for the transient current is also derived using the

basic definition for the current operator.
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Chapter 5

Heat exchange between

multi-terminal harmonic

systems and exchange

fluctuation theorem (XFT)

In this chapter, we generalize the FCS study for transferred heat and

entropy-production for multi-terminal systems without the presence of a

finite junction (see Fig. (5.1)). Such a setup is important from the point

of view of verifying exchange fluctuation theorem (XFT), mentioned in

the introduction chapter. Also for two-terminal case without junction this

reduces to an interface problem which is relevant for many experimental
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studies [1–4]. For this general setup we obtain the expression for the gen-

eralized cumulant generating function (CGF), on the contour, involving

counting fields for heat, flowing out from all the terminals. We discuss

both transient and steady-state fluctuation theorems for heat and entropy

production. For two-terminal case, we obtain a new transmission function

which is similar to the Caroli formula involving the junction part. We also

address the effect of coupling strength on the XFT. Finally we discuss the

effect of finite heat baths on the cumulants of heat.

Using principle of micro-reversibility of the underlying Hamiltonian dynam-

ics, Jarzynski and Wójcik [5] first showed the identity 〈e−∆βQL〉tM = 1 for

two weakly connected systems L andR. Here ∆β = βR−βL, βα = 1/(kBTα)

and QL is the amount of heat transferred from the left system over the time

interval [0, tM ]. A more generalized version of this XFT for multi-terminal

system was later derived by Saito and Utsumi [6] and Andrieux et al [7–

9] which states that 〈e−Σ〉tM = 1, where Σ = −∑r
α=1 βαQα is the total

entropy-production and r is the number of reservoirs. This relation is valid

for arbitrary time-dependent coupling between the systems (see the proof

in section 1.3) and reduces to Jarzynski and Wójcik relation for r = 2 in

the limit of weak coupling. Recently an experimental verification of the

XFT’s is reported for electrons [10]. For phonons nanoresonator seems to

be a potential candidate for performing such FCS experiments.
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Figure 5.1: A schematic representation for exchange fluctuation theorem
setup consists of multi-terminals without a junction. The terminals are at
their respective equilibrium temperatures Tα = (kBβα)

−1. The reservoirs
are interacting via the Hamiltonian HT (t) which is switched on at t = 0.

5.1 Model Hamiltonian

We consider r phonon reservoirs each consists of finite number of coupled

harmonic oscillators and is given by the Hamiltonian

Hα =
Nα
∑

i=1

(pαi )
2

2
+

Nα
∑

i,j=1

1

2
Kα

iju
α
i u

α
j α = 1, 2, · · · r, (5.1)

where as before pαi is the momentum of the i-th particle in the α-th reser-

voir, uαi is the mass normalized position operators. They obey the Heisen-

berg commutation relations
[

uαj (t), p
β
k(t)

]

= i~ δjk δ
αβ , α, β = 1, 2, · · · r.

Nα is the number of oscillators in each system. Kα is the force constant

matrix. In the limit Nα → ∞ each system behaves like a heat bath. The in-

teraction Hamiltonian HT (t) between the systems is taken in the following
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form

HT (t) =
1

2

∑

α6=β

uTαV
αβ(t)uβ. (5.2)

The interaction is switched on at t > 0. Therefore the total Hamiltonian

after the connection is

H(t) =

r
∑

α=1

Hα +HT (t), t > 0. (5.3)

In this chapter, we present numerical results for the cumulants of ex-

changed heat between two-terminals (denoted as L and R) for two spe-

cific types of the coupling V LR(t) = V LR θ(t), where θ(t) is the Heaviside

step function. Such form of coupling corresponds to the sudden connec-

tion between the two systems. Another form of the coupling we choose as

V LR(t) = V LR tanh(ωd t), where ωd is the driving frequency. This particu-

lar form of the coupling is useful to study when the coupling between the

device is switched on gradually. Note that one can recover Heaviside step

function from this coupling in the limit ωd → ∞. Other forms of coupling

can also be handled easily in this formalism.

5.2 Generalized characteristic function Z({ξα})

In order to work with generalized CF, defined below, we perform two-time

measurements for all system Hamiltonians Hα, α = 1, 2, · · · r, at t = 0 and

at t = tM . Following the same recipe as before we construct the generalized
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CF as [6]

Z({ξα}) = 〈W † U †(tM , 0)W 2 U(tM , 0)W †〉, (5.4)

where {ξα} = (ξ1, ξ2, · · · ξr) is the set of counting fields corresponding to

{Qα} and W =
∏r

α=1Wα =
∏r

α=1 exp(−iξαHα/2) contains the counting

field for energy measurement. For simplicity we choose the the initial den-

sity matrix as product initial state

ρprod(0) =
r
∏

α=1

e−βαHα

Tr(e−βαHα)
, (5.5)

As before we write the CF on the Keldysh contour as

Z({ξα}) =
〈

U−~ξ/2(0, tM)U~ξ/2(tM , 0)
〉

, (5.6)

where U~x(t, 0) = T exp
[

− i
~

∫ t

0
dtH~x(t)

]

and

H~x(t) = ei~x·
~H0H(t)e−i~x·

~H0

=

r
∑

α=1

Hα +
1

2

∑

α,β

uTα(~xα)V
αβ(t)uβ(~xβ), (5.7)

where ~H0 = ({Hα}) and ~x = ({xα}).

Transforming to the interaction picture with respect to H0 =
∑r

α=1Hα

and making use of linked-cluster theorem the cumulant generating function
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(CGF) lnZ({ξα}) reads as

lnZ({ξα}) = −1

2
ln det

(

I− Vgx
)

= −1

2
Trj,τ ln

(

I− Vgx
)

, (5.8)

where V is a r × r off-diagonal matrix with matrix elements Vαβ(t) with

α, β = 1, 2, · · · r given as

Vαβ(τ, τ
′) = δ(τ, τ ′)Vαβ(τ), (5.9)

and gx is a r × r diagonal matrix with matrix elements g̃α where

g̃α(τ, τ
′) = − i

~
〈Tcuα(τ+~xα(τ) u

T
α(τ

′+~xα(τ
′)〉, (5.10)

with x±α (t) = ∓ξα/2 for 0 ≤ t ≤ tM and zero otherwise. The meaning of

trace is same as before. Note that in the above expression only g̃ depends

on counting fields {ξα}. The CGF can be further simplified to explicitly

satisfy the normalization condition and can be re-written as

lnZ({ξα}) = −1

2
ln det

(

I− (I+ VG)VgA
)

. (5.11)

This expression is valid for both transient and stationary state and for arbi-

trary time-dependent couplings between the leads. The matrix G consists

of elements Gαβ(τ, τ
′) and satisfies the Dyson equation in the matrix form

G(τ, τ ′) = g(τ, τ ′) +

∫

c

dτ1

∫

dτ2 g(τ, τ1)V(τ1, τ2)G(τ2, τ
′), (5.12)
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and we define gA(τ, τ ′) = g̃(τ, τ ′)− g(τ, τ ′) which is also a diagonal matrix.

It is now easy to see that for ξα = 0, gA = 0 and therefore Z({0}) satisfy

the normalization condition. Note that due to the presence of the coupling

matrix V only surface-Green’s functions are required to compute the cu-

mulants and thus reduces the complexity of the problem. The explicit form

of these matrices for two-terminal case is discussed in the later part. From

this generalized CGF, the cumulants of heat can be obtained as

〈〈Qα〉〉 =
∂ lnZ({0})
∂(iξα)

,

〈〈QαQβ〉〉 =
∂2 lnZ({0})
∂(iξα)∂(iξβ)

. (5.13)

Note that the CGF for heat Qα can be obtained trivially from Z({ξα}) by

substituting all counting parameters to zero except ξα .

5.3 Long-time result for the CGF for heat

In this section, we derive the long-time limit expression for the CGF of

heat. In order to achieve the stationary state with infinite recurrence time

the we need the following criterions to be satisfied,

• The size of all the systems should be infinite, i.e., Nα → ∞, α =

1, 2, · · · r which are then called dissipative leads, so that the waves

can’t scatter back from the boundaries. The effect of finite boundaries

are discussed at the end of this chapter.

170



Chapter 5. Heat exchange between multi-terminal harmonic systems and
exchange fluctuation theorem (XFT)

• The final measurement time tM should approach to infinity.

• The coupling V αβ(t) between the systems should be time-independent

or reach a constant value in short time scale.

Let us calculate the heat flowing out from the α-th lead. Using the matrix

form for V and G, Eq. (5.11) in the frequency domain is written as

lnZ(ξα) = −tM
∫ ∞

−∞

dω

4π
ln det

[

I−
(

ğ−1α Ğαα − I
)

ğ−1α ğAα

]

, (5.14)

where,

ğα =







grα gKα

0 ga1






, Ğαα =







Gr
αα GK

αα

0 Ga
αα






, (5.15)

ğAα =
1

2







a− b a + b

−a− b −a + b






, (5.16)

a = g>α
(

e−iξ~ω − 1
)

, b = g<α
(

eiξ~ω − 1
)

An important quantity to define in this case is Γ̃α

Γ̃α[ω] = i
[

(

gaα
)−1

[ω]−
(

grα
)−1

[ω]
]

. (5.17)

For any finite size system using the solution for gr,aα [ω] = [(ω± iη)2−Kα]−1

(see appendix (F)) it can be easily shown that Γ̃α[ω] = 4ωη is zero in the

limit η → 0+. However for infinite system size this is not valid.
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Now in order to get final expression for the steady-state CGF we need to

know the different components of the matrix Ğαα. Two important relations

that are required to derive the CGF are

G<
αα[ω] = −i

r
∑

γ=1

fjG
r
αγ[ω]Γ̃γ[ω]G

a
γα[ω]

Gr
αα[ω]−Ga

αα[ω] = −i
r

∑

γ=1

Gr
αγ [ω]Γ̃γ[ω]G

a
γα[ω], (5.18)

which are obtained by simplifying the Dyson equation given in Eq. (5.12)

in the frequency domain. When all the systems are in thermal equilibrium

the above equations are related by fluctuation-dissipation theorem.

Substituting the expressions for different components of G<,r,a
αα and after a

lengthy calculation the long-time limit expression for the CGF for heat is

given as

lnZ(ξα) = −tM
∫ ∞

−∞

dω

4π
ln det

[

1−
r

∑

γ 6=α=1

Tαγ [ω]Kγα(ω; ξα)
]

, (5.19)

where the function Kγα(ω; ξα) is the same as before and written as

Kγα(ω; ξα) = fα(1 + fγ)(e
iξα~ω − 1) + fγ(1 + fα)(e

−iξα~ω − 1). (5.20)

This function satisfies the Gallavotti-Cohen type symmetry Kγα(ω; ξα) =

Kγα(ω;−ξα+i(βγ−βα)) and Tαγ [ω] is the new transmission matrix between
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the system α and γ and is of the following form

Tαγ [ω] = Gr
αγΓ̃γG

a
γαΓ̃α. (5.21)

This new transmission matrix reduces to the transmission function for one-

dimensional case and is useful for the interface study in two-terminal situ-

ation. Note that the CGF for heat does not have Gallavotti-Cohen fluctu-

ation symmetry for more than two-terminal situation.

5.4 Special Case: Two-terminal situation

In this section we present numerical results for heat Q for two-terminal

case r = 2 denoted as the left (L) and the right (R) lead. We first derive

the CGF for heat, valid for arbitrary time tM , using Eq. (5.11) and then

give the numerical details. The matrix V and G introduced in Eq. (5.11)

for r = 2, are given as

V(τ, τ ′) = δ(τ, τ ′)







0 V LR(τ)

V RL(τ) 0






,G(τ, τ ′) =







GLL(τ, τ
′) GLR(τ, τ

′)

GRL(τ, τ
′) GRR(τ, τ

′)






,

(5.22)

and since we are interested in the CGF for heat, only the left-lead Hamil-

tonian is measured twice. Therefore

gA(τ, τ ′) =







gAL (τ, τ
′) 0

0 0






. (5.23)
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For the calculation of entropy-production the second diagonal element of

gA will be non-zero. Multiplying the matrices explicitly the CGF for heat

is given as

lnZ(ξL) = −1

2
Trj,τ ln

[

1−GRRΣ
A
L

]

, (5.24)

where ΣA
L = V RLgALV

LR and GRR obeys the Dyson equation

GRR(τ, τ
′) = gR(τ, τ

′) +

∫

dτ1

∫

dτ2gR(τ, τ1)ΣL(τ1, τ2)GRR(τ2, τ
′). (5.25)

Similarly the expression for the entropy-production can also be obtained.

Note that the above expression is similar to the one obtained in the third

chapter. However the meaning of GRR and ΣA
L are different. The long-time

limit result can be obtained following the same steps as previous and it is

given as

lnZ(ξL)=−tM
∫

dω

4π
ln det

[

I−
[

Gr
RRΓ̃RG

a
RRΓL

]

K(ω; ξL)
]

. (5.26)

The new transmission matrix for the interface is of the following form

TRL[ω] = Gr
RRΓ̃RG

a
RRΓL, (5.27)

where ΓL = i(Σr
L − Σa

L) is the spectral function. Note the difference of Γ

matrices for left and right lead. We call this transmission matrix as the

Caroli formula for ballistic interface.
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Explicit formula for interface transmission function T [ω] for

One-dimensional linear chain:

Here we derive an explicit expression for the transmission function for one-

dimensional harmonic chain with single interface i.e., the left and right leads

are directly connected and the center part is removed. The transmission func-

tion reads

TI [ω] = Tr
[

Gr
RRΓ̃RG

a
RRΓL

]

(5.28)

Let us consider that the force constant for left and the right leads are k1 and k2

respectively and the interface coupling strength is k12 with additional on-site po-

tential k0 on all the atoms. This is a quite general scenario for a one-dimensional

harmonic chain. Therefore the form of the semi-infinite force constant matrix

say KL consisting of k12 + k1 + k0 as the first diagonal and 2k1 + k0 along rest

of the diagonals and −k1 along the first off-diagonals. Similarly for KR with k1

replaced by k2. In order to obtain the explicit form for TI [ω] we need to compute

the retarded component of the surface Green’s function grα for both the leads.

Knowing grα, G
RR can be obtained from Eq. (5.25).

Let us calculate the surface Green’s function for the left lead. Then for the right

lead it can be obtained just by replacing k1 with k2. Retarded green’s function

for the left lead satisfies the following equation

[

(ω + i0+)2 −KL
]

grL[ω] = I (5.29)

Now we write KL = KL
0 +∆K where ∆K is the semi-infinite matrix with only

first element nonzero ∆K11 = k12 − k1. K
L
0 is now a familiar matrix which also

appears in the Rubin bath case with all force constants same. Using ∆K as a
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perturbation we can write

grL[ω] = grL,0[ω] + grL,0[ω]∆KgrL[ω] (5.30)

Since in this case only first atom of the left lead is connected with the first atom

of the right lead we only need (1, 1)th element of grL. Now

[gr,0L ]1,1[ω] = −λ1

k1
, |λ1| ≤ 1, (5.31)

with λ1 = − Ω
2k1

± 1
2k1

√

ω2 − 4k21 and Ω = (ω + iη)2 − 2k1 − k0. Therefore we

obtain

[grL]1,1[ω] =
1

k1 − k12 − k1/λ1
, |λ1| ≤ 1, (5.32)

and similarly the self-energy for the lead is given as

[Σr
L]1,1[ω] =

k212
k1 − k12 − k1/λ1

, |λ1| ≤ 1 (5.33)

Knowing this Green’s function we can easily obtain TI [ω] which reads

TI [ω] = − k1k2k
2
12(λ1 − λ∗1)(λ2 − λ∗2)

∣

∣(k1 − k12 − k/λ1)(k2 − k12 − k/λ2)− k212
∣

∣

2 (5.34)

where λ2 is similarly defined as λ1 with k1 replaced by k2. We note that it

matches exactly with the result in Ref [4], where this expression is obtained

from a wave-scattering method. As a special case for pure chain i.e., if k1 =

k2 = k12 = k then we have perfect transmission meaning TI [ω] = 1 for ω within

the phonon band width k0 ≤ ω2 ≤ 4k + k0 and 0 outside this region.
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5.4.1 Numerical Results and discussion

In this section we present numerical results for the first four cumulants

of heat, obtained from Eq. (5.24) by taking derivative of the CGF with

respect to the counting field ξL i.e, 〈〈Qn
L〉〉 = d lnZ(ξL)

d(iξL)n
|ξL=0, as a function

of measurement time tM . We choose two identical semi-infinite (Nα = ∞)

one-dimensional linear harmonic chain with only nearest-neighbor interac-

tions and connected via time-dependent coupling, for performing numerical

simulations . In order to obtain the cumulants we need to solve the Dyson

equation for GRR obtained from Eq. (5.12) and the shifted self-energy ΣA
L

in the time-domain which can be obtained from the surface Green’s func-

tions. Since the baths are at their respective equilibrium knowing one

Green’s function is sufficient to obtain the rest. In this particular case, the

analytical form of the retarded component of surface Green’s function is

known in the frequency domain and is given as

gα,rij [ω] = −λ
k
λ|i−j|, 1 ≤ i, j ≤ Nα, α = L,R, (5.35)

where

λ = − Ω

2k
± 1

2k

√
Ω2 − 4k2 ≡ eiq, (5.36)

where q is the wave vector and Ω = (ω + iη)2 − 2k − k0 = −2k cos q. The

choice between plus and minus sign is made on satisfying |λ| < 1. For

nearest-neighbor coupling we need only g11 component. Note that the in-

verse Fourier transformation for lesser and greater components are easy to

perform as the range of integration in ω space is confined within the phonon
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Figure 5.2: The cumulants of heat 〈〈Qn
L〉〉 for n=1, 2, 3, and 4 for one-

dimensional linear chain for two types of coupling as a function of mea-
surement time. The solid line corresponds to V LR(t) = k12 θ(t). The
dash, dash-dotted and dash-dotted-dotted lines corresponds to V LR(t) =
k12 tanh(ωdt) with ωd = 1.0[1/t], 0.5[1/t], 0.25[1/t] respectively. The tem-
peratures of the left and the right lead are 310 K and 290 K, respectively.
k = k12 = 1 eV/(uÅ2) and k0 = 0.1 eV/(uÅ2).

band k0 < ω2 < 4k + k0. Then using the relation gr − ga = g> − g< we

get both the retarded and advanced Green’s functions in the time-domain.

Obtaining gr,aα (t) directly from grα[ω] by inverse Fourier transform is numer-

ically difficult as there is no such cut-off in the frequency space. Therefore

the non-equilibrium Green’s functions i.e, G<,>,r,a
RR can be calculated from

the integrals of this equilibrium Green’s functions.

Time-dependent behavior of the cumulants
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Figure 5.3: Plot of current as a function of measurement time tM for
different couplings V LR(t). Fig (a) corresponds to V LR(t) = k12θ(t).
Fig (b),(c) and (d) corresponds to V LR(t) = k12 tanh(ωdt) with ωd =
1.0 [1/t], 0.5 [1/t], 0.25 [1/t] respectively. The temperatures of the left and
the right lead are 310 K and 290 K, respectively. k = k12 = 1 eV/(uÅ2)
and k0 = 0.1 eV/(uÅ2). Dashed lines are the steady state values obtained
using Landauer formula with unit transmission.
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In Fig. (5.2) we show the time-dependent behavior of the first four cumu-

lants of heat 〈〈Qn
L〉〉 for two different forms of the coupling V LR(t) = k12θ(t)

and V LR(t) = k12 tanh(ωdt) where k12 is the interface force constant. The

form of this couplings decides how the device is switched on. We set the

inter-particle and interface coupling k = k12 = 1 eV/(uÅ2) and the on-site

potential k0 = 0.1 eV/(uÅ2). These choices of units fix the time scale

of our problem which we also use as the unit of time [t] = 10−14s. We

observe that the fluctuations are larger for the sudden switch on case as

compared to the slow switch on of the couplings using hyperbolic tangent

form. By gradually reducing the driving frequency ωd the system evolves

to the unique steady state with less and less oscillations.

In Fig. (5.3) we plot the current 〈IL〉 by taking derivative of the first cu-

mulant with respect to the measurement time tM . We also obtain the

steady-state values of the current using Landauer formula with unit trans-

mission within the phonon band which are also shown with dashed lines.

In all cases, at the initial time current is negative, i.e., heat flows into the

left lead as before. The current that goes into the leads is in the form of

mechanical energy which is coming from the work that is required to couple

both the systems at t = 0. We also see that at earlier times the amplitude

of the current depends on the values of ωd. Higher driving frequency pro-

duce larger transient currents. However at later times the coupling reaches

to a constant value k12 and the current settles down to the value predicted

by Landauer formula.
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5.4.2 Exchange Fluctuation Theorem (XFT)

In this section we examine the validity of XFT for different coupling strength

k12 for the sudden switch on case. This particular fluctuation theorem was

first discussed by Jarzynski and Wójcik which states that 〈e−∆βQL〉tM = 1

for two weakly connected systems. The relation is true for any transient

time tM . We use Eq. (5.24) and calculate the CGF for ξL = i∆β. In

Fig. (5.4) we plot 〈e−∆βQL〉 as a function of tM for different values of

interface coupling strength k12 and absolute temperatures TL and TR of

the baths. For weak coupling (k12 = 0.001k) the fluctuation symmetry

is satisfied [11] and for higher values of the coupling strength the quan-

tity 〈e−∆βQL〉 − 1 increases. It is important to note that the meaning of

weak coupling, in order to satisfy XFT, also depends on the absolute tem-

peratures of the heat baths. This is simply due to the presence of the

factor ∆βQL in the exponent. Since the cumulants of heat depends on the

interface coupling strength (In the long-time limit 〈〈Qn
L〉〉 ∝ k212 in weak

coupling (k12) limit and in the presence of on-site potential k0), keeping

the value of k12 constant, if we lower the value of ∆β maintaining the same

temperature difference it is possible to reduce the value of 〈e−∆βQL〉 − 1,

as shown by the dashed lines for two values of k12 = 1.0 eV/(uÅ2) and 0.1

eV/(uÅ2). So both the weak-coupling as well as the absolute temperature

of the baths are important to check the validity of XFT. Also note that in

the long-time limit (tM → ∞) according to SSFT [12] 〈e−∆βQL〉 = 1 which

is true for arbitrary coupling strength and can be proved trivially from the

relation 〈e−Σ〉 = 1 as in the steady state QL = −QR. In Fig. (5.4), in the
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Figure 5.4: Plot of 〈e−∆βQL〉 as a function measurement time tM for differ-
ent values of interface coupling strength k12 and absolute temperatures of
the heat baths for sudden switch on case. The solid lines corresponds to
temperatures of the left and the right lead 310 K and 290 K respectively
and for dashed lines the temperatures are 510 K and 490 K respectively.
The unit of force constants is in eV/(uÅ2)

182



Chapter 5. Heat exchange between multi-terminal harmonic systems and
exchange fluctuation theorem (XFT)

long time limit 〈e−∆βQL〉 6= 1. However this is not a violation to SSFT

as the theorem is valid only to the leading order of tM . In general, the

next order correction to the CGF is a constant in tM and can be written

as follows [6]

Z(ξL) = b(ξL) e
−tMa(ξL) + lower orders in tM . (5.37)

where a(ξL) is given in Eq. (5.26) and b(ξ) is the correction to the leading

order. Since 〈e−∆βQL〉 is calculated taking into account the contributions

due to all order of tM , it is not equal to one in the long-time limit. Note

that the correction term b(ξL) is often important to know for obtaining

the large deviation function corresponding to the probability distribution

P (QL). For classical harmonic chain model this correction term is obtained

analytically by Kundu et al [13–15]. For the quantum case obtaining b(ξL)

requires further investigations.

5.5 Effect of finite size of the system on the

cumulants of heat

In this section we examine the impact of finite size of the systems on

the cumulants of heat [16]. We only focus on the coupling of the form

V LR(t) = k12 θ(t). In the case for finite number of one-dimensional coupled

harmonic oscillators with nearest-neighbor coupling the (1, 1) component
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for the surface Green’s function can be written as

(

grα[ω]
)

11
= −λ

k

1− λ2Nα

1− λ2Nα+2
, α = L,R, (5.38)

where the meaning of λ is same as before. In the limit Nα → ∞ one can

recover the surface Green’s function for the lead. Unlike for the leads grα[ω]

for finite system is not a smooth function of ω but rather consists of delta

peaks determined by the normal-mode frequencies. Fourier transformations

for such functions are difficult to obtain numerically. So we evaluate these

Green’s functions directly in the time-domain by solving the Heisenberg

equations of motion with fixed boundary conditions. As before knowing

one Green’s function is enough to determine the rest. We write down the

expression for greater component given as

gα,>ij (t) = − i

~
〈uαi (t)uαj (0)〉, α = L,R,

= − i

~

Nα
∑

k=1

Sα
ik

[

~

2ωα
k

(1+2fα
k ) cos(ω

α
k t)−

i~

2

sinωα
k t

ωα
k

]

Sα
jk,(5.39)

where
(

ωα
k

)2
= 2k[1−cos

(

nπ
N+1

)]+k0, n = 1, 2, · · ·Nα are the normal mode

frequencies and the eigenfunctions are given by ǫnj =
√

2
N+1

sin( nπj
N+1

). The

symmetric matrix S consists of this eigenfunctions which diagonalizes the

force constant matrixKα which is aNα×Nα tridiagonal matrix with 2k+k0

along the diagonals and −k along the two off-diagonals.

In Fig. (5.5) we show the results for the cumulants of heat for two finite

harmonic chain connected suddenly at t = 0. We see that all the cumulants
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Figure 5.5: Plot of the cumulants of heat 〈〈Qn
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two finite harmonic chain connected suddenly at t = 0. The black (solid)
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respectively. The temperatures of the left and the right lead are 310 K and
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185



Chapter 5. Heat exchange between multi-terminal harmonic systems and
exchange fluctuation theorem (XFT)

reaches to a quasi-steady state [17] with a finite recurrence time tr which

is the product of the total length of the system and the velocity of sound

waves. After time tr the phonon modes travelling from L to R gets reflected

from the boundary and then interfere with the incoming waves from L

resulting in the cumulants to oscillate rapidly. In the limit when the leads

are semi infinite Nα → ∞ we observe complete irreversible behavior of the

cumulants. The FT in this case is valid only in the range 0 < t < tr.

5.6 Proof of transient fluctuation theorem

In this section we proof the transient fluctuation theorem given as 〈e−Σ〉tM =

1 where Σ = −∑

α βαQα. The important relation that goes into the proof

is the generalized version of the Kubo-Martin-Schwinger (KMS) condition

[18] for the correlation functions, given as

g<α (t− ~ξα) = g<α (−t+ ~ξα + iβα~) = g>α (t−~ξα−iβα~), α = 1, 2, · · · r.

(5.40)

For ξα = 0 correlations functions satisfy the standard KMS condition i.e.,

g<α (t + iβα~) = g>α (t) and in the frequency space it reads as the detailed

balanced condition i.e., g>α (ω) = eβα~ωg<α (ω).

To prove the fluctuation theorem we proceed from Eq. (5.8) and consider

the 2n-th term of the log series which can be written in the contour time
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τ as

A2n =

∫

dτ1

∫

dτ2· · ·
∫

dτ2nTrj

[

V(τ1,τ2)g
x(τ2,τ3)· · ·V(τ2n−1,τ2n)gx(τ2n,τ1)

]

.

(5.41)

Now using V(τ, τ ′) = δ(τ, τ ′)V(τ) we have

A2n =

∫

dτ1

∫

dτ2· · ·
∫

dτnTrj

[

V(τ1)g
x(τ1,τ2)· · ·V(τn)gx(τn,τ1)

]

. (5.42)

Let us define a new matrix Gx(τ, τ
′) = V(τ)gx(τ, τ ′), then in the real time

we can write

A2n =

∫

dt1

∫

dt2· · ·
∫

dtn
∑

σ1σ2···σn

Trj

[

σ1Gσ1σ2

x (τ1,τ2)· · ·σnGσnσ1

x (τn,τ1)
]

, (5.43)

which in a compact notation can also be written as

A2n =

∫

dt1

∫

dt2· · ·
∫

dtnTrj,σ

[

Ḡx(t1,t2)· · ·Ḡx(tn,t1)
]

, (5.44)

where we define Ḡx = σzGx and σz is the third-Pauli matrix. The explicit

form of Ḡx is

Ḡx(t, t
′) =







V(t)gt(t− t′) V(t)g<(t− t′ − ~(x+ − x−))

−V(t)g>(t− t′ − ~(x− − x+)) −V(t)g t̄(t− t′)






.

(5.45)

Now substituting ξα = −iβα, ∀α = 1, 2 · · · r and using KMS boundary con-

dition we immediately see that the lesser and greater Green’s functions gets

interchanged whereas time-ordered and anti-time ordered Green’s functions

stay the same, as they are independent of the counting fields. Therefore
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after the substitution we have

Ḡxα=iβα
(t, t′) =







V(t)gt(t− t′) V(t)g>(t− t′)

−V(t)g<(t− t′) −V(t)g t̄(t− t′)






. (5.46)

Now performing Keldysh rotation to this matrix we obtain

Ğxα=iβα
(t, t′) = OT Ḡxα=iβα

(t, t′)O

=







V(t)ga(t− t′) V(t)gk(t− t′)

0 V(t)gr(t− t′)






, (5.47)

which is a tridiagonal matrix. And because the Keldysh rotation is an or-

thogonal transformation the trace in Eq. (5.44) remain invariant. Therefore

we write

A2n =

∫

dt1

∫

dt2· · ·
∫

dtnTrj,σ

[

Ğiβα
(t1,t2)· · ·Ğiβα

(tn,t1)
]

, (5.48)

Now as the product of the tridiagonal matrices are tridiagonal, then finally

the trace over the branch index will give

A2n =

∫

dt1

∫

dt2· · ·
∫

dtnTrj

[

V(t1)g
a(t1−t2)V(t2)ga(t2−t3) · · ·V(tn)ga(tn−t1)

+ V(t1)g
r(t1−t2)V(t2)gr(t2−t3) · · ·V(tn)gr(tn−t1)

]

. (5.49)

This expression is zero because t1 > t2 · · · tn > t1 or t1 < t2 · · · tn < t1 is

never satisfied. Therefore lnZ({ξα = −iβα}) = 0 which implies 〈e−Σ〉tM =

1 for arbitrary tM and time-dependent coupling.
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We also like to point out that similar analysis can be carried out in the

presence of a finite junction connected with multiple terminals. In this case

the the long-time CGF for the heat flowing out from α-th terminal is given

as [19]

lnZ(ξα) =−tM
∫

dω

4π
ln det

[

1−
r

∑

γ 6=α=1

(

Gr
0ΓαG

a
0Γγ

)

Kγα(ω; ξα)
]

. (5.50)

5.7 Summary

In summary, we have extended the study of FCS for heat transport from

a lead-junction-lead setup to a multi-terminal system without the junction

part. We found a concise expression for the generalized CGF on contour.

In the stationary state the expression for CGF for heat is obtained. The

transient and steady-state fluctuation theorems are explicitly verified. For

two-terminal case the effect on the cumulants and current for two specific

form of the coupling are shown. It is interesting to study the heat-current

for other forms of time-dependent coupling as studied in Ref. [1] to manip-

ulate the heat flow through the leads and model it to act as a heat-pump.

In the long-time limit, invoking time translational invariance we show that

the CGF can be expressed in terms of a new transmission function which is

useful for the study of interface effects. We also discuss the effect of inter-

face coupling and absolute temperature of the heat baths on XFT which

are important for the validity of the theorem. The consequences on the

cumulants of heat due to finite size of the systems is also studied.
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Chapter 6

Full-counting statistics in

nonlinear junctions

Up to now our main focus was on the FCS for transferred heat in ballistic

systems. The task is now to develop a formalism to study FCS theory for

general anharmonic junctions. It is a well known fact that nonlinearity

plays an important role in thermal transport. For example it is crucial for

umklapp scattering which gives rise to finite thermal conductivity for bulk

systems as pointed out by Peierls [1]. The nonlinearity, such as the phonon-

phonon interaction, has been found of special importance in the construc-

tion of many phononic devices such as thermal rectifier, heat pump [2–4].

In addition, recently it has been noted that the nonlinearity of interaction

is crucial to the manifestation of geometric heat flux. [5, 6] Therefore, it

is desirable to establish a systematic and practical formalism to properly
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deal with cumulants of heat transfer in the presence of nonlinearity.

Some works have already been devoted to the analysis of fluctuation con-

sidering the effect of nonlinearity in the electronic transport such as the

FCS in molecular junctions with electron-phonon interaction [7–9], Ander-

son impurity model, quantum dot in Aharonov-Bohm interferometer [10]

and in the classical limit through Langevin dynamics [11, 12]. Also, many

of these developed approaches dealing with nonlinear FCS problems mainly

focus on single-particle systems, such as in Ref. [13].

In this chapter we study the FCS for heat transfer flowing across a quantum

junction in the presence of general phonon-phonon interactions. Based on

the nonequilibrium version of Feynman-Hellmann theorem we construct a

concise and rigorous cumulant generating function (CGF) expression for the

heat transfer in this general situation which is valid for arbitrary transient

time. As an illustration of this general formalism we consider a single

site junction with a quartic nonlinear on-site pinning potential and obtain

the CGF exact up to first order of the nonlinear interaction strength. We

also employ a self-consistent scheme to numerically illustrate the nonlinear

effects on first three cumulants of heat transfer. We explicitly verify the

Gallavotti-Cohen fluctuation symmetry in the first order.

193



Chapter 6. Full-counting statistics in nonlinear junctions

6.1 Hamiltonian Model

As before, we consider the lead-junction-lead model initially prepared in a

product state ρ(t0) =
∏

α=L,C,R
e−βαHα

Tr(e−βαHα)
. It can be imagined that left lead

(L), center junction (C), and right lead (R) in this model were in contact

with three different heat baths at the inverse temperatures βL = (kBTL)
−1,

βC = (kBTC)
−1 and βR = (kBTR)

−1, respectively, for time t < t0. At time

t = t0, all the heat baths are removed, and couplings of the center junction

with the leads HLC = uTLV
LCuC and HCR = uTCV

CRuR and the nonlinear

term Hn appearing in the center junction are switched on abruptly. Now

the total Hamiltonian is given by

H =HL +HC +HR +HLC +HCR +Hn, (6.1)

where Hα = 1
2
pTαpα +

1
2
uTαK

αuα, α = L,C,R, represents coupled harmonic

oscillators. The formalism developed here does not require to specify the

explicit form of Hn.

Nonequilibrium version of Feynman-Hellman theorem

Based on the two-time observation protocol the characteristic function (CF)

for heat transfer during the time tM − t0 is written as before [14–17],

Z (ξ) =
〈

Uξ/2 (t0, tM)U−ξ/2 (tM , t0)
〉

ρ(t0)
, (6.2)

The key step to derive the nonequilibrium Feynman-Hellman theorem is

to generalize the CF by introducing two different parameters λ1 and λ2 on
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the upper and lower branches respectively and construct a general CF as

Z (λ2, λ1) ≡ 〈Uλ2
(t0, tM)Uλ1

(tM , t0)〉ρ(t0) =
〈

TCe
− i

~

∫
C
dτTλ(τ)

〉

ρ(t0)
, (6.3)

with Tλ(τ) is in the interaction picture, given as

Tλ (τ) = ûx,TL (τ) V LC ûC (τ) + ûTC (τ) V CRûR (τ) + Ĥn (τ) . (6.4)

(a caret is put above operators to denote their τ dependence with re-

spect to the free Hamiltonian H0 = HL + HC + HR such as ûC (τ) =

e
i
~
HCτuCe

− i
~
HCτ ), and ûxL (τ) = ûL (τ + ~x(τ)) with x(τ) = λ1 (λ2) for

τ = t+ (t−) on the upper (lower) branch of the contour C.

Now we define an adiabatic potential U (t, λ2, λ1) satisfying [13]

Z (λ2, λ1) = exp
[

− i

~

∫ tM

t0

dtU (t, λ2, λ1)
]

, (6.5)

so that we could apply the nonequilibrium version of the Feynman-Hellmann

theorem [18] to get

∂

∂λ1
U (t, λ2, λ1) =

1

Z (λ2, λ1)

〈

TC
∂Tλ (t

+)

∂λ1
e−

i
~

∫
C
dτTλ(τ)

〉

≡
〈

TC
∂Tλ (t

+)

∂λ1

〉

λ

. (6.6)

Note that in Eq. (6.6) we define the λ dependent average as

〈

A(t+)
〉

λ
=

〈

TCA(t+)e−
i
~

∫
dτTλ(τ)

〉

(6.7)
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and similarly for the multipoint averages. Also note that
〈

A(t+)
〉

λ
6=

〈

A(t−)
〉

λ
. Therefore in this formulation, to obtain the adiabatic poten-

tial one needs to calculate these λ dependent Green’s functions.

Generalized Meir-Weingreen formula

Computing the derivative ∂Tλ/∂λ1 we obtain

∂Tλ(t
+)

∂λ1
= ~

∂u̇TL(t+)

∂t+
V LC uC(t

+). (6.8)

After the treatment of symmetrization on Eq. (6.6), we can write

∂ lnZ (λ2, λ1)

∂λ1
=

~

2

∫ tM

t0

dt
∂

∂t′
Tr

[

G̃t
CL (t, t

′)V LC + G̃t
LC (t′, t) V CL

]

t′=t
.

(6.9)

The contour-ordered version for G̃LC(τ, τ
′) is given as

G̃LC (τ1, τ2) =− i

~

〈

Tτ ûL (τ1) û
T
C (τ2)

〉

λ

=

∫

C

dτ g̃L (τ1, τ) V
LCG̃CC (τ, τ2) , (6.10)

where the shifted bare Green’s function for the left-lead is given by

g̃L (τ1, τ2)jk = − i

~

〈

Tτ û
x
L,j (τ1) û

x
L,k (τ2)

〉

ρL(t0)
, (6.11)

and V CL =
(

V LC
)T

. Similar expression is also valid for G̃CL (τ1, τ2). Here
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G̃CC is defined as

[

G̃CC (τ1, τ2)
]

jk
≡− i

~
〈TC ûC,j (τ1) ûC,k (τ2)〉λ (6.12)

=







G̃t
CC (t1, t2) G̃<

CC (t1, t2)

G̃>
CC (t1, t2) G̃t̄

CC (t1, t2)






,

Using these in Eq. (6.9) we obtain a generalized Meir-Wingreen formula

[19] as

∂ lnZ (λ2, λ1)

∂λ1
=−~

2

∫ tM

t0

dtdt′Tr
[

G̃>
CC (t, t′)

∂Σ̃<
L (t′, t)

∂t′
+G̃<

CC (t, t′)
∂Σ̃>

L (t′, t)

∂t

]

,

(6.13)

where the lesser and greater version of Σ̃L is defined as Σ̃<,>
L = V CLg̃<,>

L V LC .

Here we employ the procedure of symmetrization to get rid of the time-

ordered version of G̃CC (τ1, τ2), which will appear in Eq. (6.13) without

symmetrization. The components for the shifted self energy are written in

terms of the ordinary self energy as

Σ̃<
L (t′, t) = Σ<

L (t′−t+~λ1−~λ2)

Σ̃>
L (t′, t) = Σ>

L (t′−t+~λ2−~λ1) . (6.14)

Furthermore, later after realizing that Z (λ2, λ1) = Z (λ2 − λ1), and setting

λ1 = −ξ/2 and λ2 = ξ/2, Eq. (6.13) can be lumped into a compact form
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∂ lnZ
∂ (iξ)

=
1

2

∫

C

dτ

∫

C

dτ ′Tr

[

G̃CC (τ, τ ′)
∂Σ̃L (τ

′, τ)

∂ (iξ)

]

, (6.15)

which shows that the derivative of the connected vacuum diagrams are

closely related to the contour-ordered Green’s functions, and could be also

obtained based on the field theoretical/diagrammatic method [20, 21]. The

tilde on the Green’s functions emphasizes the fact that they are counting

field ξ-dependent. And if needed, the proper normalization for the CGF,

i.e., lnZ (ξ), can be determined by the constraint lnZ (0) = 0.

Ballistic case Hn = 0

For harmonic junction we previously obtain an analytic expression for

lnZ(ξ). Here we show that the derivative of the CGF for the ballistic

system can also be written in the above form. The CGF as shown previ-

ously reads as (see Eq. (3.46))

lnZ(ξ) = −1

2
Trj,τ ln

[

1−G0Σ
A
L

]

, (6.16)

Let us now consider the n-th order term of the log series and take the

derivative with respect to the counting field ξ. Note that here the counting

field dependence is only through ΣA
L .

198



Chapter 6. Full-counting statistics in nonlinear junctions

The n-th order term in the continuous contour time is written as

∫

dτ1

∫

dτ2 · · ·
∫

dτn
1

2n
Trj

[

G0(τ1, τ2)Σ
A
L(τ2, τ3) · · ·G0(τn−1, τn)Σ

A
L(τn, τ1)

]

.

(6.17)

The derivative of the above expression with respect to iξ will generate n

terms, which are all equal due to the dummy integration variables and

therefore cancel the factor n sitting in the denominator. We may then

write

∫

dτ1

∫

dτ2 · · ·
∫

dτn
1

2
Trj

[

G0(τ1, τ2)Σ
A
L(τ2, τ3) · · ·G0(τn−1, τn)

∂Σ̃L(τn, τ1)

∂(iξ)

]

,

(6.18)

Where ΣA
L = Σ̃L −Σ and ∂ΣA

L/∂(iξ) = ∂Σ̃L/∂(iξ). So the derivative of the

CGF can be written as

∂ lnZ
∂(iξ)

= −1

2
Trj,τ

[

(

G0 +G0Σ
A
LG0 + · · ·

) ∂Σ̃L

∂(iξ)

]

. (6.19)

Now defining a new Green’s function G̃0 = G0 +G0Σ
A
LG0 + · · · , we write

the above equation as

∂ lnZ
∂(iξ)

= −1

2
Trj,τ

[

G̃0
∂Σ̃L

∂(iξ)

]

, (6.20)

or more explicitly (in the continuous contour time notation) it reads

∂ lnZ
∂(iξ)

= −1

2

∫

dτ

∫

dτ ′Tr
[

G̃0(τ, τ
′)
∂Σ̃L(τ

′, τ)

∂(iξ)

]

. (6.21)

Note that in the absence of Hn G̃CC defined in Eq. (6.12) is equal to G̃0.
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Interaction-interaction picture

In order to evaluate lnZ, a closed equation for G̃CC (τ1, τ2) is needed, which

could be deduced by a transformation from Ô (τ) to OI (τ) taking t+0 as a

fixed reference time such as uIC (τ) = V
(

t+0 , τ
)

ûC (τ)V
(

τ, t+0
)

, with

V
(

τ, t+0
)

= TCe
− i

~

∫

C[τ, t+0 ]
dτ ′[ûx,T

L
V LC ûC+ûT

CV CRûR]
, (6.22)

and V
(

t+0 , τ
)

= V
(

τ, t+0
)−1

, where the subscript C
[

τ, t+0
]

denotes the path

along the contour C from t+0 to τ . Instructively, alternative forms for

V
(

τ, t+0
)

can be given as

V
(

t−, t+0
)

=e
i
~
htU0

λ2
(t, tM)U0

λ1
(tM , t0) e

− i
~
ht0 (6.23)

V
(

t+, t+0
)

=e
i
~
htU0

λ1
(t, t0) e

− i
~
ht0 , (6.24)

Where, the superscript 0 in U0
λ1
(tM , t0) denotes that the nonlinear term

Hn = 0 in the corresponding Uλ1
(tM , t0). Based on this form, we easily

notice that the group property V (τ3, τ1) = V (τ3, τ2)V (τ2, τ1) hold on the

contour. The present transformation defined on the contour C is necessary,

since the coupling Hamiltonian with counting field is different on the upper

and lower branch respectively.
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Then according to Eq. (6.12), G̃CC (τ1, τ2) can be rewritten as

[

G̃CC (τ1, τ2)
]

jk
= − i

~
Tr

[

ρI(t0)TCu
I
C,j (τ1)u

I
C,k (τ2) e

− i
~

∫
C
dτHI

n(τ)
] 1

Zn
,

(6.25)

in terms of ρI(t0) = ρ(t0)A/Z0 (Tr
(

ρI(t0)
)

= 1) and Zn = Z/Z0, where

Z0 =
〈

TCe
− i

~

∫
C
dτ(ûx,T

L
V LC ûC+ûT

CV CRûR)
〉

, (6.26)

is the CF when Hn = 0 and A ≡ V
(

t−0 , tM
)

V
(

tM , t
+
0

)

. Now the benefit of

the transformation to the second interaction picture defined on the contour

is remarkable, that is, the extra term A always appearing at the left-most

position after contour-ordering can be taken out of TC to combine with

ρ(t0)/Z0 to yield ρI(t0).

Still in this transformed picture I the Wick theorem is valid, which is

directly inherited from the validity of Wick’s theorem in the interaction

picture with respect to h, and thus the Dyson equation for G̃CC is obtained

from Eq. (6.25) as

G̃CC (τ1, τ2) = G̃0
CC (τ1, τ2) +

∫

C

∫

C

dτdτ ′G̃0
CC (τ1, τ) Σ̃n (τ, τ

′) G̃CC (τ ′, τ2) ,

(6.27)

which in the matrix (in discretized contour time) representation is written

as G̃CC = G̃0
CC + G̃0

CCΣ̃nG̃CC and G̃0
CC = − i

~
Tr

[

ρI(t0)Tτu
I
C (τ1)u

I,T
C (τ2)

]

is given as

G̃0
CC = gC + gC

(

Σ̃L +ΣR

)

G̃0
CC , (6.28)

Note that the nonlinear self energy Σ̃n constructed by G̃0
CC is solely due to
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the nonlinear Hamiltonian Hn.

After introducing the Dyson equation for the ballistic system

G0
CC = gC + gC (ΣL +ΣR)G

0
CC , (6.29)

and combining it with Eqs. (6.27) and (6.28), the closed Dyson equation

for G̃CC (τ1, τ2) could be obtained as

G̃CC =G0
CC +G0

CC

(

ΣA
L + Σ̃n

)

G̃CC , (6.30)

where the shifted self energy ΣA
L ≡ Σ̃L−ΣL, which first appear in Ref. [14],

accounts for the FCS in ballistic systems. Now it is clear that Z (λ2, λ1) =

Z (λ2 − λ1), since the elementary block G̃0
CC constructing the nonlinear self

energy Σ̃n satisfy Eq. (6.28) and Σ̃L depends only on λ2 − λ1.

From now on, for notational simplicity, all the subscripts CC of the Green’s

functions will be suppressed and the superscript 0 in both G̃0
CC and G0

CC

will be re-expressed as a subscript.

6.2 Steady state limit

Proceeding to study cumulants of steady-state heat transfer explicitly, one

simply set t0 → −∞ and tM → +∞ simultaneously, and technically assume

that real-time versions of G̃ (τ1, τ2) are time-translationally invariant. Then
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going to the Fourier space, Eq. (6.15) for ∂ lnZ
∂(iξ)

in steady state could be

rewritten as

1

tM−t0
∂ lnZ(ξ)

∂(iξ)
=

∫ ∞

−∞

dω
~ω

4π
Tr

[

G̃<[ω]Σ>
L [ω]e

−i~ωξ − G̃[ω]>Σ<
L [ω]e

i~ωξ
]

,

(6.31)

which after taking into account G̃> [−ω] = G̃< [ω]T and Σ<
L [−ω] = Σ>

L [ω]T

can also be written as

1

tM − t0

∂ lnZ(ξ)

∂(iξ)
=

∫ ∞

−∞

dω
~ω

2π
Tr

[

G̃<Σ>
Le
−i~ωξ

]

. (6.32)

In the Fourier space, due to Eq. (6.30) exact result for G̃ [ω] could be yielded

as

G̃ [ω] =
(

G0 [ω]
−1 − ΣA [ω]− Σ̃n [ω]

)−1

, (6.33)

when keeping in mind the convention that the contour-order Green’s func-

tion such as G̃ (τ1, τ2) in frequency space is written as

G̃ [ω] =







G̃t [ω] G̃< [ω]

−G̃> [ω] −G̃t̄ [ω] .






(6.34)

(Note that here G̃[ω] is already multiplied with the Pauli σz matrix)

One step forward, solving Eq. (6.33) for the less component of G̃ [ω] , the
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CGF in Eq. (6.32) can be explicitly written as

lnZ (ξ) = i (tM − t0)

∫

dξ

∫ ∞

−∞

dω
~ω

2π
e−i~ωξTr

{

Σ>−1
η Σ>

L

×
[

I + Σ>−1
η

(

ga−1C + Σt̄
η

)

Σ<−1
η

(

gr−1C − Σt
η

)

]−1 }

, (6.35)

with

Σ>
η [−ω]T =Σ<

η [ω] = Σ<
R [ω] + Σ<

L [ω] ei~ωξ + Σ̃<
n [ω] (6.36)

Σt
η [ω] =Σt

R [ω] + Σt
L [ω] + Σ̃t

n [ω] (6.37)

Σt̄
η [ω] =Σt̄

R [ω] + Σt̄
L [ω] + Σ̃t̄

n [ω] . (6.38)

6.3 Application and verification

Monoatomic molecule with a quartic on-site pinning potential

Now we apply the general formalism developed above to study a Monoatomic

molecule with a quartic nonlinear on-site pinning potential, that is,

Hn =
1

4
λu4C,0, (6.39)

in Eq. (6.1). In this case, nonlinear contour-order self energy exact up to

first order in nonlinear strength

Σ̃n (τ, τ
′) = 3i~λG̃0 (τ, τ

′) δ (τ, τ ′) , (6.40)

204



Chapter 6. Full-counting statistics in nonlinear junctions

where the generalized δ-function δ (τ, τ ′) is the counterpart of the ordinary

Dirac delta function on the contour C. Thus the corresponding frequency-

space nonlinear self energy is

Σ̃n [ω] = 3i~λ







G̃t
0 (0) 0

0 G̃t̄
0 (0)






. (6.41)

Consequently, exact up to first order in nonlinear strength the CGF for the

molecular junction could be given as

1

(tM−t0)
∂ lnZ (ξ)

∂ (iξ)
=−

∫ ∞

−∞

dω

4π

{∂ lnD [ω]

∂ (iξ)
− 3i~λ

×
[

G̃t
0 (0)G

t
0 [ω]− G̃t̄

0 (0)G
t̄
0 [ω]

] ∂

∂ (iξ)

1

D [ω]

}

, (6.42)

with

D[ω] ≡ det
[

I −G0 [ω] Σ
A
L [ω]

]

= det
[

I − Ğ0 [ω] Σ̆
A
L [ω]

]

= 1−Tr
[

T [ω]
]

[

(

eiξ~ω−1
)

fL(1+fR)+
(

e−iξ~ω−1
)

fR(1+fL)
]

, (6.43)

and G̃t,t̄
0 (0) =

∫∞

−∞
dω
2π
Gt,t̄

0 [ω] /D [ω], where Tr
[

T [ω]
]

= Tr (Gr
0ΓRG

a
0ΓL) is

the transmission coefficient in the ballistic system, and fα = [exp (βα~ω)− 1]−1

is the Bose-Einstein distribution function for the phonons in the leads. Ğ0

is in the Keldysh space. Here Gr
0 = Gt

0−G<
0 and Ga

0 = G<
0 −Gt̄

0 are retarded

and advanced Green’s functions, respectively. Also Γα = i [Σr
α − Σa

α], re-

lated to the spectral density of the baths, are expressed by retarded and

advanced self energies similarly defined as Green’s functions.
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Gallavotti-Cohen symmetry

Eq. (6.42) satisfies Gallavotti-Cohen symmetry [23] for the derivatives,

sinceD [ω] remains invariant under the transformation ξ → −ξ+i (βR − βL),

as shown before, while the derivative ∂D [ω] /∂ (iξ) changes the sign.

Recovering ballistic result

For λ = 0 in Eq. (6.42) the integration over ξ can be performed explicitly

and the CGF can be written down as

lnZ(ξ) = −(tM−t0)
∫

dω

4π
ln det

[

1− Ğ0[ω]Σ̆
A
L [ω]

]

, (6.44)

which is the ballistic result [11, 15, 16] derived in Chapter 3.

First two cumulants

One could easily use this CGF in Eq. (6.42) to evaluate cumulants. The

steady current out of the left lead is closely related to the first cumulant

so that

IL ≡ d

dtM

(∂ lnZ(ξ)

∂(iξ)

∣

∣

∣

∣

ξ=0

)

=

∫ ∞

−∞

dω

4π
~ω(1 + Λ[ω])Tr

[

T [ω]
]

(fL − fR), (6.45)

Λ [ω] ≡ 3i~λGt
0 (0) (G

a
0 [ω] +Gr

0 [ω]) , (6.46)

is the first-order nonlinear correction to the transmission coefficient.

The fluctuation for steady-state heat transfer in the molecular junction

is obtained by taking the second derivative with respect to iξ, and then
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setting ξ = 0:

〈〈Q2〉〉
(tM − t0)

=

∫ ∞

−∞

dω

4π

{

(~ω)2Tr
[

T 2[ω]
]

(1 + 2Λ[ω]) (fL − fR)
2

+ 3~2λω
[

Gt̄
0[ω]δG̃

t̄
0−Gt

0[ω]δG̃
t
0

]

Tr
[

T [ω]
]

(fL − fR)

+ (~ω)2Tr
[

T [ω]
]

(1 + Λ[ω])(fL+fR+2fLfR)
}

, (6.47)

where,

δG̃t,t̄
0 ≡ ∂G̃t̄,t

0 (0)

∂ξ

∣

∣

∣

∣

ξ=0

=−i
∫ ∞

−∞

dω

2π
~ωTr

[

T [ω]
]

(fL − fR)G
t̄,t
0 [ω]. (6.48)

Higher-order cumulants can be also systematically given by corresponding

higher-order derivatives.

Special case: Pure harmonic chain

It is worth mentioning that for a special case of a homogeneous spring

chain plus one-site quartic nonlinear on-site potential, Gr
0[ω] is imaginary

(see appendix (E)) meaning Λ[ω] = 0. In this situation, therefore, the first-

order correction in nonlinear strength to the steady current Eq. (6.45) does

not exist, while for the fluctuation the correction to the ballistic result is

given only by the second term in Eq. (6.47).

6.3.1 Numerical results

In the following, we will give a numerical illustration to the first few cu-

mulants for heat transfer in this molecular junction using a self-consistent
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procedure [8], which means that the nonlinear contour-order self energy is

taken as

Σ̃n (τ, τ
′) = 3i~λG̃ (τ, τ ′) δ (τ, τ ′) . (6.49)

Very recently, it is shown that such self-consistent calculation gives ex-

tremely accurate results for the current in the case of a single site model

as compared with master equation approach, [25] thus we believe that it

should leads to excellent predictions for the FCS.

Specifically we self-consistently calculate G̃ [ω], ∂G̃[ω]
∂(iξ)

and higher derivatives

based on Eq. (6.33), then the first few cumulants are obtained by the

corresponding derivative of lnZ (ξ) in Eq. (6.32) with respect to iξ at the

point ξ = 0. In order to obtain m-th order cumulant one needs to solve

(m− 1)-th derivative of G̃ iteratively. For example, the iterative equation

for computing the first derivative of G̃ is given as

∂G̃[ω]

∂(iξ)

∣

∣

∣

ξ=0
= G[ω]

(∂Σ̃L[ω]

∂(iξ)

∣

∣

∣

ξ=0
+
∂Σ̃n[ω]

∂(iξ)

∣

∣

∣

ξ=0

)

G[ω], (6.50)

where G[ω] = G̃[ω]
∣

∣

ξ=0
. The equation transforms to a linear equation for

∂G̃[ω]/∂(iξ) by using the modified Σ̃n[ω], which is then solved numerically

by iteration. Equations for the higher derivatives can be similarly obtained.

In this numerical illustration, the Rubin baths are used, that is, Kα, α =

L, R in Eq. (6.1) are both the semi-infinite tridiagonal spring constant

matrix consisting of 2k + k0 along the diagonal and −k along the two off-

diagonals. And only the nearest interaction V LC
−1,0 and V CR

0,1 between the

molecular and the two bathes are considered and HC = 1
2
p2C,0 +

1
2
KCu

2
C,0.

208



Chapter 6. Full-counting statistics in nonlinear junctions

3.0×10
-4

3.5×10
-4

4.0×10
-4

4.5×10
-4

Iss
  [e

V
/s

]

0 2 4 6 8

λ [eV/(amu
2
Å

4
)]

3.9×10
-6

4.2×10
-6

4.5×10
-6

4.8×10
-6

<
<

Q
3 >

>
/(

t M
-t

0) 
   

[(
eV

)3 /s
]

0 2 4 6 8

λ [eV/(amu
2
 Å

4
)]

7.8×10
-5

8.4×10
-5

9.0×10
-5

9.6×10
-5

<
<

Q
2 >

>
/(

t M
-t

0) 
   

[(
eV

)2 /s
]

(a) (b)

Figure 6.1: The first three steady-state cumulants with nonlinear coupling
strength λ for k = 1 eV/

(

uÅ2
)

, k0 = 0.1k, KC = 1.1k, and V LC
−1,0 = V CR

0,1 =
−0.25k. The solid (dashed) line shows the self-consistent (first-order in λ )
results for the cumulants. The temperatures of the left and right lead are
660 K and 410 K, respectively.

Figure 6.1 shows the plot for the first three cumulants with nonlinear

strength λ. The effect of nonlinearity is to reduce the current as well

as higher order fluctuations, and the fact that third and higher order cu-

mulants are small but nonzero implies that the distribution for transferred

energy is not Gaussian. For certain parameters (not shown) the third cu-

mulant can change sign from positive to negative. Similar effect was also

observed for a classical system [11].

Figure 6.2 shows the behavior of thermal conductance, defined as,

σ(T ) = lim
TL→T,TR→T

I

TL − TR
, (6.51)
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Figure 6.2: Thermal conductance with temperature for different coupling
strength λ in unit of eV/

(

amu2Å4
)

using self-consistent method for k =

1 eV/
(

amuÅ2
)

, k0 = 0.1k, KC = 1.1k, and V LC
−1,0 = V CR

0,1 = −0.25k. Inset
shows the thermal conductance calculated using self-consistent procedure
(solid line) and using Eq. (6.45) (dotted line) for λ = 2 eV/

(

amu2Å4
)

.

with equilibrium temperature T for different nonlinear strength λ. The

similar self-consistent method is employed in Eq. (6.32) for ξ = 0 to obtain

the conductance for the above mentioned model. Reduction in conductance

with nonlinearity is observed even at low-temperature regime in the chosen

model.

In both the figures (see inset in Fig (6.2)) it is noted that for weak non-

linearity the first-order perturbation results coming from the established

formalism, presented as dotted lines, are comparative with the correspond-

ing self-consistent ones.
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6.4 Summary

We develop a formally rigorous formalism dealing with cumulants of heat

transfer in nonlinear quantum thermal transport. Based on NEGF tech-

niques and most importantly nonequilibrium version of Feynman Hellman

theorem we study the CGF for the heat transfer in both transient and

steady-state regimes. For arbitrary nonlinear system, the derivative of the

CGF with respect to the counting field is written in a closed form. A

new feature of this formalism is that counting-field dependent full Green’s

function can be expressed solely through the nonlinear term HI
n (τ) with

an interaction picture transformation defined on a contour. Although we

focus on the FCS of heat transfer in pure nonlinear phononic systems, there

is no doubt that this general formalism can be readily employed to handle

any other nonlinear system, such as electron-phonon interaction and Joule

heating problems. Up to the first order in the nonlinear strength for the

single-site quartic model, we obtain the CGF for steady-state heat trans-

fer and also present explicit results for the steady current and fluctuation

of steady-state heat transfer. We also employ a self-consistent procedure,

which works well for strong nonlinearity, to check our general formalism.

211



Bibliography

[1] R. E. Peierls, Quantum Theory of Solids (Oxford University Press,

London, 1955).

[2] L.-A. Wu and D. Segal, Phys. Rev. Lett. 102, 095503 (2009).

[3] C. W. Chang, D. Okawa, A. Majumdar, and A. Zettl, Science 314,

1121 (2006).

[4] N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Rev. Mod.

Phys. 84, 1045 (2012).

[5] J. Ren, P. Hänggi, and B. Li, Phys. Rev. Lett. 104, 170601 (2010).

[6] J. Ren, S. Liu, and B. Li, Phys. Rev. Lett. 108, 210603 (2012).

[7] R. Avriller and A. Levy Yeyati, Phys. Rev. B 80, 041309 (2009).

[8] T.-H. Park and M. Galperin, Phys. Rev. B 84, 205450 (2011).

[9] D. F. Urban, R. Avriller and A. Levy Yeyati, Phys. Rev. B 82,

121414(R) (2010).

[10] Y. Utsumi and K. Saito, Phys. Rev. B 79, 235311 (2009).

212



BIBLIOGRAPHY

[11] K. Saito and A. Dhar, Phys. Rev. Lett. 99, 180601 (2007).

[12] S. Liu, B. K. Agarwalla, B. Li, and J.-S. Wang, arXiv:1211.5876.

[13] A. O. Gogolin and A. Komnik, Phys. Rev. B 73, 195301 (2006).

[14] J.-S. Wang, B. K. Agarwalla, and H. Li, Phys. Rev. B 84, 153412,

(2011).

[15] B. K. Agarwalla, B. Li, and J.-S. Wang, Phys. Rev. E 85, 051142

(2012).

[16] H. Li, B. K. Agarwalla, and J.-S. Wang, Phys. Rev. B 86, 165425

(2012).

[17] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81, 1665

(2009).

[18] R. P. Feynman, Phys. Rev. 56, 340 (1939).

[19] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport and Optics

of Semiconductors, 2nd ed. (Springer, New York, 2008).

[20] H. Kleinert, A. Pelster, B. Kastening, and M. Bachmann, Phys. Rev.

E 62, 1537 (2000).

[21] A. Pelster and K. Glaum, Phys. A 335, 455 (2004).

[22] J.-S. Wang, J. Wang, and J. T. Lü, Eur. Phys. J. B 62, 381 (2008).
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Chapter 7

Summary and future outlook

This dissertation presents theoretical studies of energy-counting statistics

and fluctuation theorems in the context of heat transport. Employing two-

time projective measurement method and nonequilibrium Green’s function

technique we develop a formalism to study the statistics for heat and en-

tropy production in general lattice systems.

To examine the behavior of heat, we first consider a harmonic lead-junction-

lead model from a very general perspective, such as, arbitrary time-dependence

of the coupling matrix between the leads and the junction, arbitrary di-

mensionality of the junction, finite size of the leads etc. We derive the

generating function for integrated energy-current for three different initial

conditions taking into consideration the initial measurement effect on the

density operator. The cumulant generating function for arbitrary measure-

ment time is expressed in terms of the Green’s functions for the junction
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and an argument shifted self-energy. However the meaning of this Green’s

functions depends on the initial conditions. In general, we show that the

effect of energy measurement to obtain statistics for heat is reflected in the

corresponding self-energy as the shift in the time-argument which turns out

to be key quantity for the FCS problem. We perform numerical simula-

tions for one dimensional harmonic chain and for a graphene junction and

showed that the at short time the behavior of heat differs significantly from

each other but finally approaches to a unique steady state, independent of

the initial conditions.

For nonequilibrium steady state, we carefully examine the effect of quantum

measurement. We found that the effect of measurement is always to feed

energy into the measured (left) lead, even if the temperature of the left

lead is lower than that of the right lead. In the long-time limit the CGF is

written down simply in terms of the transmission function and a counting

field dependent function satisfying the Gallavotti-Cohen (GC) fluctuation

symmetry. Moreover, we introduce a generalized CGF to understand the

correlations between the left and right lead heat and showed that in the

steady state the CGF is a function of counting-field difference. The two-

time measurement turns out to be the key concept to obtain the correct

CGF in the sense that, it satisfies the GC symmetry. As an example, we

explicitly show that Nazarov’s CF does not respect the GC symmetry, at

least for the harmonic model.
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Next we investigate the CGF for heat generation for a forced-driven har-

monic system connected with two thermal baths. Working with the gen-

eralized CGF we show that in the asymptotic limit forced-driven entropy

production in the leads satisfy fluctuation symmetry. The CGF in long

time is expressed in terms of force dependent transmission function. For

Rubin heat bath we obtain explicit expression for the generalized CGF by

exploiting the translational symmetry of the homogeneous system. For pe-

riodic driven force we investigate the effects on energy current for Rubin

and Ohmic heat baths with system size and applied frequency. We also

analyze the heat pumping behavior for this model.

Then we move to investigate the energy transport properties for a N -

terminal setup without the junction part. The generalized CGF is ex-

pressed in terms of the surface Green’s functions. For two-terminal case we

obtain the transmission function which is useful for interface study. The

transient version of the fluctuation theorem is verified where KMS bound-

ary condition plays a crucial role. We also address the effect of coupling

strength on the exchange fluctuation theorem for two terminal setup.

Finally, we generalize the counting statistics formalism for arbitrary non-

linear junction. Based on the nonequilibrium version of Feynman-Hellman

theorem we show that the derivative of the cumulant generating function,

with respect to the counting field, can be summed up exactly for general

anharmonic potential. We derive the generalized version of the celebrated

Meir-Weingreen formula using which all higher order cumulants can be

systematically obtained. By introducing a new interaction picture on the
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contour the center Green’s function is expressed in terms of the counting

field dependent nonlinear self-energy. As an illustration, we consider a

molecular junction consist of a monoatomic molecule with quartic onsite

potential. In the first order of the nonlinear strength we obtain analytical

expression for the long-time CGF which satisfy GC symmetry. Employing

self-consistent procedure for the nonlinear self-energy we investigate the

behavior of the conductance and the cumulants of heat.

Overall, one key contribution of our study for the ballistic heat transport is

that it generalizes numerous investigations that have only looked at what

happens to the current in the stationary state. In addition of studying

both transient and steady state on equal platform we consider different

initial conditions where it is possible to show how system approaches to a

unique steady state dynamically. Moreover the developed formalisms for

the energy counting statistics is readily extendable for the charge count-

ing as shown by an example in the appendix where we derive the famous

Levitov-Lesovik formula for electrons using tight-binding Hamiltonian. For

all this non-interacting problems we found that the long-time limit can be

expressed by a transmission function, captures the properties of the junc-

tion and the leads, and an universal function which depends on the counting

field and satisfy GC symmetry. Also thanks to the nonequilibrium version

of Feynman Hellmann theorem using which the nonlinear counting statistics

problem turns out to be similar in structure to the usual NEGF approach.

The formally exact theory now requires the counting field dependent non-

linear self-energy as an input which can be calculated order by order of the
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nonlinear strength following Feynman diagrammatic technique.

Full-counting statistics study for nonlinear systems are challenging. Feynman-

Hellmann theorem seems to give an alternative way to study such systems.

Therefore future studies should attempt to extend this approach for other

nonlinear systems such as for phonon-phonon or electron-phonon interact-

ing systems. Moreover, Feynman-Hellmann approach can be equally ap-

plied for an interface setup where one of the system could be anharmonic.

Such a nonlinear setup is useful to study thermalization which seems to be

another direction for future study. For ballistic FCS problems finding out

next order quantum corrections to the long-time limit results are worthy

of future exploration.

219



Appendix A

Derivation of cumulant

generating function for

product initial state

In this appendix we derive the cumulant generating function (CGF) given

in Eq. (3.37) for product initial state. We start by writing down the char-

acteristic function (CF) given in Eq. (3.35) i.e.,

Z(ξL) = Tr
[

ρprod(0)Tc e
− i

~

∫
C
V̂x(τ) dτ

]

, (A.1)

with

V̂x(τ) = −fT (τ)ûC(τ)+ ûTR(τ)V
RC(τ)ûC(τ)+ ûTL

(

τ + ~x(τ)
)

V LC(τ)ûC(τ).

(A.2)
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initial state

Let us for the moment consider only the left lead (V RC = 0). The effect

of the another lead is additive in terms of the self-energy according to

Feynman and Vernon. Therefore the characteristic function can be written

as

Z(ξL) =
〈

Tc e
i
~

∫
C
fT (τ)uC(τ)dτ e−

i
~

∫
C
ũT
L(τ)V LCuC(τ)

〉

, (A.3)

where we use the short hand notation ũL(τ) = uL(τ + ~x(τ)). Then using

Linked-cluster theorem we can write

lnZ(ξL) =
∑

m,n

1

m!n!

(−i
~

)n( i

~

)m
∫

dτ1dτ2 · · · dτm dτ̃1dτ̃2 · · · dτ̃n
〈

TCu
i1
C (τ1)u

i2
C (τ2) · · ·uimC (τm) u

k1
C (τ̃1)u

k2
C (τ̃2) · · ·uknC (τ̃n)

〉

connected

〈TC ũj1L (τ̃1)ũj2L (τ̃2) · · · ũjnL (τ̃n)〉connectedV LC
j1,k1

V LC
j2,k2

· · ·V LC
jn,kn

fi1(τ1)fi2(τ2) · · · fim(τm), (A.4)

where we imply Einstein’s summation convention. Note that both m and

n can take only even integer values.

In the following we will show that the in the above series for the summation

indexm we need to consider onlym = 0 andm = 2. Form = 0 i.e., without

the driving force, the above infinite series can be easily summed (discussed

in Chap. 3 before Eq. (3.37)) and is written as

lnZ(ξL)
∣

∣

m=0
=

∞
∑

n=2

1

n

∫

dτ̃1dτ̃2 · · · dτ̃n gk1,k2C (τ̃1, τ̃2) Σ̃
k2,k3
L (τ̃2, τ̃3) · · ·

g
kn−1,kn
C (τ̃n−1, τ̃n)Σ̃

kn,k1
L (τ̃n, τ̃1)

= −1

2
Trj,τ ln

[

1− gCΣ̃L

]

. (A.5)
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Using Wick’s theorem it is easy to see that the number of connected dia-

grams in this case is (n− 1)!.

For m = 2 we have

lnZ(ξL)
∣

∣

m=2
=

∞
∑

n=0

1

2!n!

( i

~

)2(−i
~

)n
∫

dτ1dτ2 dτ̃1dτ̃2 · · · dτ̃n
〈

TCu
i1
C (τ1)u

i2
C (τ2)

uk1C (τ̃1)u
k2
C (τ̃2) · · ·uknC (τ̃n)

〉

connected

〈

TC ũ
j1
L (τ̃1)ũ

j2
L (τ̃2) · · · ũjnL (τ̃n)

〉

connected

V LC
j1,k1

V LC
j2,k2

· · ·V LC
jn,knfi1(τ1)fi2(τ2),

(A.6)

In this case the combinatorial factor turns out to be n! which cancels the

term in the denominator. Therefore finally we have

lnZ(ξL)|m=2 = − i

2~

∑

n

∫

dτ1dτ2dτ̃1dτ̃2 · · · dτ̃n
[

fT (τ1)gC(τ1, τ̃1)Σ̃L(τ̃1, τ̃2) · · ·

gC(τ̃n, τ2)f(τ2)
]

= − i

2~

∫

dτ1dτ2f
T (τ1)G(τ1, τ2)f(τ2) (A.7)

where we define the Green’s function G(τ, τ ′) as

G(τ, τ ′) = gC(τ, τ
′) +

∫ ∫

dτ1dτ2gC(τ, τ1)Σ
tot(τ1, τ2)G(τ2, τ

′) (A.8)

All other higher order terms (m > 2) contains vacuum diagrams given as

∫ ∫

dτdτ ′fT (τ)gC(τ, τ
′)f(τ ′)

=

∫ ∫

dtdt′f(t)
[

∑

σ,σ′

σσ′gσ,σ
′

C (t, t′)
]

f(t′). (A.9)
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The last expression is zero because of the standarad relations among the

Green’s functions i.e., gtC + g t̄C −g<C −g>C = 0. Finally we obtain Eq. (3.37).
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Vacuum diagrams

In this appendix we will show that vacuum diagrams are zero. This fact is

used in chapter 3 while deriving the characteristic function for heat. We

assume that the value of Tr ln(1 − gcΣ) is 0 (see the discussion before

Eq. (3.46)). Expanding the log series we get convolutions of gC and Σ in

contour time, which are all vacuum diagrams. We define vacuum diagrams

where all the contour time variables of the Green’s functions are integrated

out. Note that the Green’s functions in this case are counting field inde-

pendent. In general scenario such vacuum diagrams can be written as

V =

∫

C

∫

C

· · ·
∫

C

dτ1dτ2 . . . dτn
[

A(τ1, τ2)B(τ2, τ3) · · ·C(τn, τ1)
]

. (B.1)

224



Appendix B: Vacuum diagrams

Transforming the integrations from contour time to the real-time within

the interval [t0, tM ], i.e., using
∫

dτ =
∑

σ

∫

σdt (σ = ±1) we write

V =
∑

σ1,σ2,··· ,σn

∫

dt1

∫

dt2 · · ·
∫

dtn
[

σ1A
σ1σ2(t1, t2)σ2B

σ2σ3(t2, t3) · · ·

σnD
σnσn+1(tn, t1)

]

. (B.2)

By absorbing the extra σ factors into the definition for branch components

it can be easily seen that

V =

∫

dt1

∫

dt2 · · ·
∫

dtnTrσ
[

Ā(t1, t2)B̄(t2, t3) · · · C̄(tn, t1)
]

, (B.3)

with Ā = σzA with σz = diag(1,−1). Now let us do the Keldysh rotation

which transforms the matrix Ā to Ă related via an orthogonal transforma-

tion O such that Ă = OT ĀO. Then we obtain

V =

∫

dt1

∫

dt2 · · ·
∫

dtnTrσ
[

Ă(t1, t2)B̆(t2, t3) · · · C̆(tn, t1)
]

. (B.4)

Now if the Green’s functions are counting field independent, then in the

Keldysh space each matrix is of the following form

Ă =







Ar AK

0 Aa






(B.5)

The important fact used in the proof is the tridiagonal structure of these

matrices. As the product of triadigonal matrices is a tridiagonal matrix,
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after performing trace over the branch index i.e., Trσ we obtain

V =

∫

dt1

∫

dt2 · · ·
∫

dtn

[

Ar(t1, t2)B
r(t2, t3) · · ·Cr(tn, t1)

+ Aa(t1, t2)B
a(t2, t3) · · ·Ca(tn, t1)

]

(B.6)

Such a term is always zero because the condition

t1 > t2 > t3 > · · · > tn−1 > tn > t1 (B.7)

or

t1 < t2 < t3 < · · · < tn−1 < tn < t1 (B.8)

is never satisfied. Therefore both the retarded and the advanced compo-

nents are zero which implies V = 0. Finally we have all the terms in the

log series equal to zero i.e., Tr ln(1− gcΣ) = 0.
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Details for the numerical

calculation of cumulants of

heat for projected and steady

state initial state

In this appendix we give details about how to numerically calculate the cu-

mulants of heat for projected (ρ′(0)) and steady state initial state (ρNESS(0))

in the frequency domain. Starting from Eq. (3.80) which is valid for pro-

jected (λ→ ∞) as well as for nonequilibrium steady state (λ→ 0) we can

write in the ω-domain

lnZ(ξ) = −1

2
Trj,σ,ω ln

[

1− Ğ0[ω]Σ̆A
L [ω, ω

′]
]

(C.1)
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where the meaning of trace in ω-domain is explained in Eq. (3.54).

Here we discuss the calculation for Σ̆A
L(ω, ω

′) for ρ′(0) which is the starting

point for doing numerical calculation. To calculate different components

of Σ̆A
L(ω, ω

′) for projected initial state ρ′(0) we define two types of theta

functions θ1(t, t
′) and θ2(t, t

′). θ1(t, t
′) is non-zero and has the value 1 when

0 ≤ t ≤ tM , and t′ ≤ 0 or t′ ≥ tM , (C.2)

or

0 ≤ t′ ≤ tM , and t ≤ 0 or t ≥ tM , (C.3)

and θ2(t, t
′) is non-zero only in the regime where 0 ≤ t, t′ ≤ tM . For

the regions where θ1(t, t
′) is non-zero the expression for ΣA

L after taking

the limit λ → ∞ is, (assuming all correlation functions decays to zero as

t→ ±∞)

Σt,t̄,<,>
A (t, t′) = −Σt,t̄,<,>

L (t− t′). (C.4)

So using theta functions we may write ΣA
L(t, t

′) in the full t, t′ domain as

Σt,t̄
A (t, t′) = −θ1(t, t′)Σt,t̄

L (t− t′)

Σ<
A(t, t

′) = −θ1(t, t′)Σ<
L(t− t′) + θ2(t, t

′)×
[

Σ<
L(t− t′ − ~ξ)− Σ<

L (t− t′)
]

Σ>
A(t, t

′) = −θ1(t, t′)Σ>
L(t− t′) + θ2(t, t

′)×
[

Σ>
L(t− t′ + ~ξ)− Σ>

L(t− t′)
]

(C.5)
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By doing Fourier transform it can be easily shown that

Σt,t̄
A [ω, ω′] = −

∫ ∞

−∞

dωc

2π
θ1
[

ω−ωc, ω
′+ωc

]

Σt,t̄
L (ωc) (C.6)

and

Σ>,<
A [ω, ω′] = −

∫ ∞

−∞

dωc

2π
θ1
[

ω−ωc, ω
′+ωc

]

Σ>,<
L (ωc) (C.7)

+

∫ ∞

−∞

dωc

2π
θ2
[

ω−ωc, ω
′+ωc

]

Σ>,<
L (ωc)(e

iωcηξ−1),

where η = ±1. The positive sign is for Σ<
A and negative sign for Σ>

A. The

theta functions are now given by

θ1(ωa, ωb) = f(ωa).g(ωb) + f(ωb).g(ωa),

θ2(ωa, ωb) = f(ωa).f(ωb), (C.8)

where

f(ω) =
eiωtM − 1

iω
,

g(ω) =
1

iω + ǫ
− eiωtM−ηtM

iω − ǫ
, (C.9)

with ǫ → 0+. The theta functions are of immense importance which carries

all information about the measurement time tM .
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In the limit tM → ∞, the region 0 ≤ t, t′ ≤ tM dominates and correspond-

ing theta function, i.e., θ2(ω, ω
′) reduces to

θ2(ω − ωc, ω
′ + ωc) ≈ δ(ω − ωc)δ(ω

′ + ωc), (C.10)

and is responsible for obtaining the steady state result.

To calculate all the cumulants we only need to take derivative of ΣA(ω, ω
′)

with respect to iξ since G0 does not have any ξ dependence. Also ΣA has

ξ dependence only for 0 ≤ t, t′ ≤ tM and hence the derivatives are given by

∂nΣ>,<
A

∂(iξ)n
[ω, ω′] =

∫ ∞

−∞

dωc

2π
(η~ωc)

nθ2
[

ω−ωc, ω
′+ωc

]

Σ>,<
L (ωc)e

iωcηξ. (C.11)

Here n refers to the order of the derivative.
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Solving Dyson equation

numerically for product initial

state

Here we discuss about solving the Dyson equation for G0 given in Eq. (3.43)

numerically for product initial state ρprod(0). In order to compute the

matrix Ğ0(t, t
′) we have to calculate two components Gr

0 and G
K
0 which are

written in the integral form as (applying Langreth’s rule)

Gr
0(t, t

′) = grC(t−t′) +
∫ tM

0

dt1

∫ tM

0

dt2 g
r
C(t−t1) Σr(t1−t2)Gr

0(t2, t
′), (D.1)
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and

GK
0 (t, t

′) = gKC (t−t′) +

∫ tM

0

dt1

∫ tM

0

dt2 g
r
C(t−t1) Σr(t1−t2)GK

0 (t2, t
′)

+

∫ tM

0

dt1

∫ tM

0

dt2 g
r
C(t−t1)ΣK(t1−t2)Ga

0(t2, t
′)

+

∫ tM

0

dt1

∫ tM

0

dt2 g
K
C (t−t1)Σa(t1−t2)Ga

0(t2, t
′).

Note that the argument for center Green’s function gC and lead self-energy

Σ are written as time difference t−t′ because these are calculated in equi-

librium. The analytical expressions for Σ and gC are known in frequency

domain. To determine their time-dependence we numerically calculate their

inverse Fourier transforms using trapezoidal rule. Then in order to solve

above equations for any tM we discretize the time variable into N total in-

tervals of incremental length ∆t = tM/N and thus converting the integral

into a sum. After discretization, the above equations can be written in the

matrix form which are indexed by space j and discrete time t, as

Gr
0 = gr

C + gr
CΣ

rGr
0,

GK
0 = Gr

0Σ
KGa

0 + (I+Gr
0Σ

r)gK
C (I+ΣaGa

0). (D.2)

So Gr
0 can be obtained by doing an inverse of the matrix (I − gr

CΣ
r) and

then multiplying by gr
C . G

a
0 can be obtained by taking matrix transpose of

Gr
0. Once Gr

0 and Ga
0 are known we use the second equation to calculate

GK
0 which is simply obtained by multiplying matrices.
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Green’s function G0[ω] for a

harmonic center connected

with heat baths

In this appendix we give expressions for nonequilibrium Green’s functions

G0 for harmonic junction connected with two heat baths. This expressions

are used to derive the Landauer formula in chapter 2 as well as the long-

time limit for the CGF in chapter 3. We write the full Hamiltonian as

H = HC +HL +HR +HLC +HRC . (E.1)

where Hα, α = L,C,R is the Hamiltonian for the decoupled regions. The

coupling HαC is given as HαC = uTαV
αCuC , α = L,R and V αC =

[

V Cα
]T
.

For simplicity we assume the coupling matrices V αC are time-independent.
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heat baths

Since the full-system is harmonic the retarded Green’s function for the

entire system, satisfy the following equation in the frequency domain

[

(ω + iη)2I −K
]

Gr
0,F [ω] = I, (E.2)

(F is used to denote the Green’s function for the full system) where K is

the force constant matrix for the full linear system. Both K and G0,F are

(infinite) matrices indexed by the labels of atomic degrees of freedom. Note

that η here is an infinitesimal positive number (η → 0+) required to satisfy

the causality condition for the retarded component, i.e., Gr
0,F (t) = 0 for

t < 0. We partition K and G0,F matrices according to the left, center, and

right parts. For example the full K matrix is given as

K =













KL V LC 0

V CL KC V CR

0 V RC KR













. (E.3)

and similarly for Gr
0,F [ω]. So for the retarded component of the full system

we have [1, 2]













(ω+iη)2I−KL −V LC 0

−V CL (ω+iη)2I−KC −V CR

0 −V RC (ω+iη)2I−KR













×













GLL,r
0 GLC,r

0 GLR,r
0

GCL,r
0 GCC,r

0 GCR,r
0

GRL,r
0 GRC,r

0 GRR,r
0













=













I 0 0

0 I 0

0 0 I













. (E.4)
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Considering only the three equations formed by each row of the first matrix

multiplying the middle column of Gr
0,F [ω] matrix, we have

[

(ω + iη)2I −KL
]

GLC,r
0 − V LCGCC,r

0 = 0, (E.5)

−V CLGLC,r
0 +

[

(ω+iη)2I−KC
]

GCC,r
0 − V CRGRC,r

0 = I, (E.6)

−V RCGCC,r
0 +

[

(ω + iη)2I −KR]GRC,r
0 = 0. (E.7)

Surface Green’s functions, self-energy for the leads

Let us now introduce the retarded surface Green’s functions for the leads

as

grα[ω] =
[

(ω + iη)2I −Kα
]−1

, α = L,R, (E.8)

which is an infinite dimensional matrix. We also define the retarded self-

energy of the leads from the surface Green’s function (E.8) by multiplying

the coupling matrices from both sides i.e.,

Σr
α[ω] = V Cαgrα[ω]V

αC , α = L,R, (E.9)

Typically the coupling matrix V αC has few non-zero entries and often one

is only interested in nearest neighbor coupling between the oscillators in

which case only one element of V αC is non-zero and therefore Σr
α will also

have one non-zero entry. This surface Green’s functions are important

input for the transport problems as they characterize the properties of the

heat baths and are responsible for transfer current from the lead to the

junction.
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Knowing Σr
α[ω] is enough to determine the other components of the self-

energy. In fact since the leads are at equilibrium, the lesser and greater

components of the self-energy will follow fluctuation-dissipation relations

given as

Σ<
α [ω] = fα[ω]

(

Σr
α[ω]− Σa

α[ω]
)

,

Σ>
α [ω] = (1 + fα[ω])

(

Σr
α[ω]− Σa

α[ω]
)

, (E.10)

where fα[ω] = 1/
(

eβα~ωα − 1
)

is the Bose distribution function for the

phonons in the heat bath.

The spectral function Γα[ω] for the leads is defined as

Γα[ω] = i(Σr
α[ω]− Σa

α[ω]) = −2 V Cα Im
[

grα[ω]
]

V αC α = L,R, (E.11)

Γα[ω] = V Cα
(

Sα
)† π

Ω0

[

δ(ω − Ω0)− δ(ω + Ω0)
]

SαV αC . (E.12)

Green’s functions for the harmonic junction

Using these definition for the self-energy and Eqs. (E.5) and (E.7) we ex-

press the retarded component for the central part of the Green’s function

as

Gr
0[ω] =

[

(ω + iη)2I−KC−Σr
L[ω]−Σr

R[ω]
]−1

, (E.13)

Form now on we omit the CC index from GCC,r
0 . The advanced Green’s
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function is given by the Hermitian conjugate of the retarded one i.e.,

Ga
0[ω] =

[

Gr
0[ω]

]†
=

[

(ω − iη)2I −KC − Σa
L[ω]− Σa

R[ω]
]−1

. (E.14)

From these expressions for Gr
0[ω] and G

a
0[ω] another important identity that

can be derived is

Gr
0[ω]−Ga

0[ω]=−i Gr
0[ω]

(

ΓL[ω]+ΓR[ω]
)

Ga
0[ω] = −i Ga

0[ω]
(

ΓL[ω]+ΓR[ω]
)

Gr
0[ω].

(E.15)

This identity is used to derive the Landauer like formula in chapter 2.

Proof:

Let us take the inverse of Gr
0[ω] and Ga

0[ω] and subtract them i.e.,

(

Ga
0[ω]

)−1 −
(

Gr
0[ω]

)−1
= −4ω i η+(Σr

L[ω]−Σa
L[ω]) + (Σr

R[ω]−Σa
R[ω]). (E.16)

Multiplying Gr
0[ω] (G

a
0[ω]) from left and Ga

0[ω] (G
r
0[ω]) from the right side and

using the definition of Γα[ω] we obtain the above equation after taking the limit

η → 0+.

In the nonequilibrium steady state in addition to Gr
0[ω] we need lesser or

greater component of G0 which can be obtained from the Dyson equation
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for G0 given as (see (2.85))

G0(τ, τ
′) = gC(τ, τ

′) +

∫

C

dτ1

∫

C

dτ2 gC(τ, τ1)Σ(τ1, τ2)G0(τ2, τ
′). (E.17)

Transforming to the real time we obtain different components as

Gr
0[ω] = grC [ω] + grC [ω]Σ

r[ω]Gr
0[ω],

Ga
0[ω] = gaC [ω] + gaC [ω]Σ

a[ω]Ga
0[ω],

GK
0 [ω] = gKC [ω] + grC [ω]Σ

r[ω]GK
0 [ω] + grC [ω]Σ

K [ω]Ga
0[ω] + gKC [ω]Σa[ω]Ga

0[ω],

(E.18)

with Σ = ΣL + ΣR. We can easily recover the retarded and advanced

components from the first two equations. The Keldysh component can be

simplified further and shown to be equal to

GK
0 [ω] = Gr

0[ω]Σ
K [ω]Ga

0[ω]. (E.19)

Proof

For simplicity here we omit the ω argument from the Green’s functions. We

write the Keldysh component (E.18) as

GK
0 = gK + grΣrGK

0 + grΣKGa
0 + gKΣaGa

0,

= gK(1 + ΣaGa
0) + grΣKGa

0 + grΣrGK
0 ,

=⇒ (1− grΣr)GK
0 = gK(1 + ΣaGa

0) + grΣKGa
0. (E.20)
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Now, from the retarded and advanced component of G0 we obtain

(1 + ΣaGa
0) = (ga)−1Ga

0 ,

(1− grΣr) = gr(Gr
0)
−1. (E.21)

Using these expressions, we can write

GK
0 = Gr

0(g
r)−1gK(ga)−1Ga

0 +Gr
0Σ

KGa
0,

= (1 + 2fC)G
r
0[(g

a)−1−(gr)−1]Ga
0 +Gr

0Σ
KGa

0. (E.22)

Now for finite size junction (ga)−1−(gr)−1 ∝ η and therefore is zero in the limit

η → 0+ and we finally obtain Eq. (E.19).

Explicit Expressions for G0[ω] for one-dimensional pure harmonic

chain

We consider an infinite one-dimensional (1D) chain with inter-particle spring

constant k and onsite spring constant k0. We divide the full system into

three parts: the center, the left and the right part. Left and right parts are

semi-infinite and are known as Rubin heat baths. The classical equation of

motion for the full system is

üj = kuj−1 + (−2k − k0)uj + kuj+1, (E.23)

where j ≤ 0 is the left-lead region, j = 1, . . . N is the number of atoms in

the center region and j > N is the right-lead region. In this case the full
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K matrix (infinite in both directions) consists of 2k + k0 on the diagonal

and −k on the first off-diagonals.

Retarded Green’s function Gr
0[ω] for the center

As the full system is homogeneous, the retarded component for the cen-

ter Green’s function can be calculated using Eq. (E.2). Multiplying the

matrices we write down the following linear equations

kGr
0,j−1,l + ΩGr

0,j,l + kGr
0,j+1,l = 1,

kGr
0,j,l + ΩGr

0,j+1,l + kGr
0,j+2,l = 0, (E.24)

where 1 ≤ j, l ≤ N and Ω = (ω+iη)2−2k−k0. The translational invariance

of the full system ensures that the solution for Gr
0,jl[ω] will be of the form

Gr
0,jl[ω] = cλ|j−l|. Substituting the trial solution in the second equation

gives the following quadratic equation for λ

kλ−1 + Ω+ kλ = 0, (E.25)

and the roots are simply given as

λ = − Ω

2k
± 1

2k

√
Ω2 − 4k2 ≡ eiq. (E.26)

Here q is the wave number and satisfy the phonon dispersion relation for

one-dimensional harmonic chain with nearest-neighbor interaction, i.e.,

(ω + iη)2 = 2k(1 − cos q) + k0. We choose only one solution for λ sat-

isfying the condition |λ| ≤ 1. The constant c is fixed by the first equation
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and given as c = λ− 1/λ. Finally the explicit solution is written as

G0
r
jl[ω] =

λ|j−l|

k(λ− 1
λ
)
. (E.27)

Surface Green’s function

The surface Green’s function gr[ω] satisfies a similar equation (E.2) asGr
0[ω]

except that it is semi-infinite in extent. We consider the left lead (j ≤ 0).

The result for the right lead is identical. Since the matrix V LC is nonzero

only for one corner element, we need the gr0[ω] = gr00[ω] component of the

matrix gr[ω]. Consider only the j = 0 column, the equations for gr[ω] in

component form are

Ωgr0[ω] + kgr−1[ω] = 1, (E.28)

kgrj−1[ω] + Ωgrj [ω] + kgrj+1[ω] = 0, j = −1,−2, · · · (E.29)

Substituting the trial solution grj [ω] = cλ−j, we find that

gr0[ω] = −λ
k
. (E.30)

The matrix elements of Σr are all zero except that Σr
11[ω] = k2gr0 and

Σr
NN [ω] = k2grN [ω].

Therefore the spectral function Γ[ω], say for the left lead is given as

Γ11[ω] =















2k sin q =
√

(ω2
D − ω2)(ω2 − k0) for k0 ≤ ω2 ≤ ω2

D

0 for ω2 > ω2
D, ω

2 < k0,
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where ω2
D = 4k + k0.

Transmission function T [ω] for the pure harmonic chain

The transmission function for the harmonic junction is given by the Caroli

formula as

T [ω] = Tr
[

Gr
0[ω]ΓL[ω]G

a
0[ω]ΓR[ω]

]

. (E.31)

For pure harmonic chain with nearest neighbor coupling we have

T [ω] = (ΓL)11(ΓR)NN |(G0
r)N1|2 =















4k2 sin2 q
k2(λ−1/λ)(λ∗−1/λ∗) = 1 for k0 ≤ ω2 ≤ ω2

D

= 0 for ω2 > ω2
D, ω

2 < k0,

where we use the fact that λ− 1/λ = 2i sin q.
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Appendix F

Example: Green’s functions

for isolated harmonic oscillator

In this appendix we illustrate various definitions and relations between

the Green’s functions by calculating these functions for an isolated one-

dimensional harmonic oscillator system consists of N coupled oscillators.

This expressions are used for numerical calculations for the cumulants of

heat.

The Hamiltonian for the isolated system is written as

H =
1

2
pTp+

1

2
uTKu (F.1)

where p and u are the column vectors for the momentum and the position

respectively. Note that u here is normalized by mass i.e., u→ √
mx. K is
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Appendix F: Example: Green’s functions for isolated harmonic oscillator

the N ×N force constant matrix.

Here we are interested in calculating various Green’s functions. The contour

ordered Green’s functions reads g(τ, τ ′) = − i
~

〈

TCu(τ)u
T (τ ′)

〉

. The average

here is with respect to the equilibrium canonical distribution i.e., ρ =

e−βH/Tr
[

e−βH
]

.

One particular approach to solve contour-ordered Green’s function is by

writing down its equations of motion. For harmonic system it is simply

given as

∂2g(τ, τ ′)

∂τ 2
+Kg(τ, τ ′) = −Iδ(τ, τ ′). (F.2)

This differential equation gives following set of equations in real time,

∂2g t̄(t, t′)

∂t2
+Kg t̄(t, t′) = Iδ(t− t′), (F.3)

∂2g<,>(t, t′)

∂t2
+Kg<,>(t, t′) = 0, (F.4)

∂2gr,a,t(t, t′)

∂t2
+Kgr,a,t(t, t′) = −Iδ(t− t′). (F.5)

We see that although gr, ga, and gt satisfy the same differential equation

their solutions are different as they satisfy different boundary conditions.

For example the causality condition for the retarded and advanced Green’s

function i.e., gr(t) = 0 for t < 0 and ga(t) = 0 for t > 0.

Solutions to these differential equations can be obtained by Fourier trans-

formation. For example, eq. (F.5) in Fourier domain reads

(

ω2 −K
)

gr,a,t[ω] = I. (F.6)
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Now to satisfy the causality condition for gr,a the correct choice for the

retarded Green’s function is

gr[ω] =
[

(ω + iη)2 −K
]−1

, (F.7)

where η is an infinitesimal positive quantity to single out the correct path

around the poles when performing an inverse Fourier transform. This im-

plies that gr[ω] is analytic on the upper half of the complex ω plane and

all poles lie on the lower plane.

Other Green’s functions can be obtained through various other relations

among the Green’s functions, such as fluctuation-dissipation relation reads

as g<[ω] = f(ω)
(

gr[ω] − ga[ω]
)

. Below we give explicit expressions for

different Green’s functions

gr(t) = −S† θ(t) sinΩ0t

Ω0
S,

g<(t) = S†
[ −i
2Ω0

[

(1 + f(Ω0))e
iΩ0t + f(Ω0)e

−iΩ0t
]

]

S,

g>(t) = g<(−t),

ga(−t) = gr(t) for t > 0, (F.8)

where the matrix S is unitary which diagonalize the force constant matrix

K i.e., SKS† = Ω2
0I and S†S = SS† = I, I is the identity matrix and

f(ω) = 1
eβ~ω−1 is the Bose-Einstein distribution function for phonons. θ(t)

is the Heaviside theta function.
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In the frequency domain these Green’s functions reads

gr[ω] = S†
1

(ω + iη)2I − Ω2
0

S,

ga[ω] =
[

gr[ω]
]†

= gr[−ω],

g<[ω] = S†
[−iπ
Ω0

[δ(ω + Ω0)(1 + f(Ω0) + δ(ω − Ω0)f(Ω0)]
]

S,

g>[ω] = g<[−ω]. (F.9)

From this expressions one can easily check that gr − ga = g> − g<. In

addition to this, the spectral function A[ω] = i(gr[ω]− ga[ω]) is given as

A[ω] = S†
π

Ω0

[

δ(ω − Ω0)− δ(ω + Ω0)
]

S. (F.10)

247



Appendix G

Current at short time for

product initial state ρprod(0)

In this appendix we show that for lead-junction-lead setup at short time

current flows into the leads. According to the definition of current operator

given in Eq. (3.8) the energy current flowing out of the left lead is (we

assume that the driving force f(t) = 0)

〈IL(t)〉 = −
〈dHH

L (t)

dt

〉

=
i

~
〈
[

HH
L (t),H

]〉

, (G.1)

where the average is with respect to ρprod(0). If t is small we can expand

HH
L (t) in a Taylor series and is given as HH

L (t) = HL(0) + tḢL(0) + · · · .

Now since
[

ρprod(0),HL(0)
]

= 0, by using the cyclic property of trace it

immediately follows that 〈
[

HL(0),H
]

〉 = 0. So in the linear order of t the
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current is given as

〈IL(t)〉 = t
i

~
〈
[

ḢL(0),H
]

〉 = −t i
~
〈
[

pTLV
LCuC ,H

]

〉. (G.2)

The only term in the full Hamiltonian that will contribute to the commuta-

tor is the coupling Hamiltonian HLC = uTLV
LCuC . Now using Heisenberg’s

commutation relation
[

pL, uL
]

= −i~, for one-dimensional linear chain with

nearest-neighbor interaction we can write

〈IL(t)〉 = −t k2〈(uC1 )2〉, (G.3)

where uC1 is the first particle in the center which is connected with the

first particle of the left lead with force constant k. Since 〈(uC1 )2〉 is always

positive the sign for the current is negative which implies that the energy

current flows into the lead and is independent of the temperature of the

leads. Note that here we didn’t assume that the center is harmonic and

therefore this statement is valid even if the center is anharmonic. For

harmonic center, 〈(uC1 )2〉 can be easily computed and for a single particle

center it is given as

〈(uC1 )2〉 =
~

ω0

(

fC(ω0) +
1

2

)

, (G.4)

where fC(ω0) is the Bose distribution function for the particle with charac-

teristic frequency ω0 and temperature TC coming from the initial distribu-

tion. Therefore for harmonic junction in the short time limit the current
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flowing into the left lead is

〈IL(t)〉 = −t k2 ~

ω0

(

fC(ω0) +
1

2

)

. (G.5)

Similar conclusion can be easily drawn for the right lead. Moreover, for

two-terminal without junction setup the result is valid if we identify uC1

as uR1 , the position operator of the right lead and thus explain the result

obtained in chapter 5 (see Fig (5.3)).
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A quick derivation of the

Levitov-Lesovik formula for

electrons using NEGF

In this appendix we derive the Levitov-Lesovik formula for the noninter-

acting electrons using tight-binding Hamiltonian. The CF for the non-

interacting electrons was first derived by Levitov and Lesovik [1, 2] using

Landauer type of wave scattering approach. Klich [3] and Schönhammer

[4] re-derived the formula using a trace and determinant relation to reduce

the problem from many-body to a single particle Hilbert space problem.

Esposito et al. gave an approach using the superoperator nonequilibrium

Green’s function [5]. A more rigorous treatment is given in Ref. [6]. Here

we derive the CGF for the joint probability distribution for particle and
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energy.

Using tight-binding model the Hamiltonian of the whole system can be

written as

He =
∑

α=L,C,R

c†αh
αcα +

∑

α=L,R

(

c†αV
αC
e cC + h.c.

)

(H.1)

where cα is a column vector consisting of all the annihilation operator of

region α. c†α is a row vector of the corresponding creating operators. hα is

the single particle Hamiltonian matrix. V αC
e has similar meaning as V αC

in the phonon Hamiltonian and V αC
e = (V Cα

e )†.

We are interested in calculating the CF corresponding to the particle op-

erator NL and energy operator HL of the left-lead where HL = c†Lh
LcL

and NL = c†LcL. One can easily generalize the formula for right lead also

as we did in the phonon case. For electrons NL and HL can be measured

simultaneously because they commute, i.e.,
[

HL,NL

]

= 0. In order to cal-

culate the CGF we introduce two counting fields ξp and ξe for particle and

energy respectively. Here we will consider the product initial state (with

fixed temperatures and chemical potentials for the leads) and derive the

long-time result.

Similar to the phonon case we can write the CF as

Z(ξe, ξp) =
〈

ei
(

ξeHL+ξpNL

)

e−i
(

ξeHH
L (t)+ξpNH

L (t)
)

〉

, (H.2)

where superscript H means the operators are in the Heisenberg picture at
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time t. In terms of modified Hamiltonian the CF can be expressed as

Z(ξe, ξp) =
〈

U
( ξe

2
,
ξp

2
)
(0, t)U

(− ξe
2
,−

ξp

2
)
(t, 0)

〉

, (H.3)

where

Ux,y(t, 0) = eixHL+iyNL U(t, 0) e−ixHL−iyNL

= exp
[

− i

~
Hx,yt

]

(H.4)

with x = ξe/2 and y = ξp/2 and U(t, 0) = e−iHt. Hx,y is the modified

Hamiltonian which evolves with both HL and NL and is given by

Hx,y = eixHL+iyNL H e−ixHL−iyNL

= HL+HC+HR+
(

eiyc†L(~x)V
LC
e cC+h.c.

)

+
(

c†RV
RC
e cC+h.c.

)

.(H.5)

where we have used the fact that

eixHLcL(0)e
−ixHL = cL(~x),

eiyNLcL(0)e
−iyNL = e−iycL. (H.6)

So the evolution withHL andNL is to shift the time-argument and produce

a phase for cL, c
†
L respectively. Next we go to the interaction picture of the

modified Hamiltonian Hx,y with respect to H0 =
∑

α=L,C,R Hα. On the

Keldysh contour C[0, tM ] the CGF then reads as,

Z(ξe, ξp) = Tr
[

ρprod(0)Tce
− i

~

∫
dτ V̂x,y(τ)

]

, (H.7)
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where V̂x,y(τ) is written in contour time as

V̂x,y(τ) =
(

eiy ĉ†L(τ+~x)V LC
e ĉC(τ)+h.c.

)

+
(

ĉR(τ)
†V RC

e ĉC(τ)+h.c.
)

. (H.8)

Now we expand the exponential and use Feynman diagrams to sum the

series. Finally the CGF can be shown to be

lnZ(ξe, ξp) = Trj,τ ln
[

1−Ge
0Σ

A
L,e

]

, (H.9)

The meaning of Trj,τ is the same as explained for phonons. Here we define

the shifted self-energy for the electrons as

ΣA
L,e(τ, τ

′) = ei(y(τ
′)−y(τ))ΣL,e(τ + ~x, τ ′ + ~x′)− ΣL,e(τ, τ

′). (H.10)

The counting of the electron number is associated with factor of a phase,

while the counting of the energy is related to translation in time. Note

that the CGF does not have the characteristic 1/2 pre-factor as compared

to the phonon case because c and c† are independent variables. In the

long-time limit following the same steps as we did for phonons, the CGF

can be written down as (after doing Keldysh rotation)

lnZ(ξe, ξp) = tM

∫

dE

2π~
Tr ln

(

I − Ğe
0(E)Σ̆

A
L,e(E)

)

. (H.11)
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In the energy E domain different components of the shifted self-energy are

Σt
A(E) = Σt̄

A(E) = 0,

Σ<
A(E) =

(

ei(ξp+ξeE) − 1
)

Σ<
L (E),

Σ>
A(E) =

(

e−i(ξp+ξeE) − 1
)

Σ>
L (E). (H.12)

Finally the CGF can be simplified as

lnZ = tM

∫

dE

2π~
ln det

{

I +Gr
0ΓLG

a
0ΓR

[

(eiα−1)fL

+(e−iα−1)fR − (eiα+e−iα−2)fLfR

]}

. . (H.13)

where α = ξp + ξeE and fL, fR are Fermi distribution functions for left

and right lead respectively. Note the difference of the signs in the CGF

as compared to the phonons. If we replace α by (E − µL)ξ, the resulting

formula is for the counting of the heat QL = HL−µLNL transferred, where

µL is the chemical potential of the left lead. Finally the CGF obeys the

following fluctuation symmetry

Z(ξe, ξp) = Z
(

− ξe + i(βR − βL),−ξp − i(βRµR − βLµL)
)

. (H.14)
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