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Summary

The study of transport, in anharmonic systems, has been one of the

most challenging and fascinating field of theoretical physics in recent years.

Due to the dissipative nature of the bath and the fact that anharmonic

systems seldom have exact solutions, one employs approximations to de-

scribe the system in different parameter regimes. In this thesis, we look

at different approaches to describe anharmonic systems in a nonequilib-

rium steady-state condition. We first focus on the reduced density matrix

(RDM) of the system and use open-quantum system techniques, employing

the Redfield quantum master equation (RQME), to describe an anharmonic

system weakly connected to multiple heat baths. Unfortunately the steady-

state solution from all second-order master equations, including RQME, is

incorrect at the second-order of system-bath coupling. Hence, to overcome

this difficulty a novel scheme based on analytic continuation to modify the

Redfield solution is proposed. The modified Redfield solution (MRS) is val-

idated using canonical perturbation theory and the solution stemming from

the exact nonequilibrium Green’s function (NEGF) technique.

In the next part, we focus on the field of phononics and develop two

sui generis formulations to calculate heat current in anharmonic molecular

vi



junctions. The first approach, inspired by the quantum master equation for-

mulation, calculates the steady state and transient heat current in strongly

anharmonic systems weakly coupled to heat baths. The theory is then

simplified for short-time transients and steady-state, where numerical vali-

dation for harmonic systems is provided. Anharmonic molecular junctions

like the FPU-β, ϕ4 and Duffing oscillator models are studied. The FPU-β

and ϕ4 models show peculiar low temperature behavior, which depends on

the translational invariance of the anharmonic potential; whereas the Duff-

ing oscillator model shows negative differential thermal conductance, which

is essential to build phononic devices. Next, we overcome the weak system-

bath coupling approximation using NEGF techniques. The so-called quan-

tum self-consistent mean field (QSCMF) approach treats the anharmonicity

perturbatively, but captures strong anharmonic effects in molecular junc-

tions due to the self-consistent procedure. The QSCMF approach is cor-

roborated with the master equation like formulation, perturbative NEGF

and quantum molecular dynamics.

In the last part of this thesis, we look at the field of spintronics, where

the main quantity of interest is the transport of spins. First we study

spin transport in an insulator modeled by an anisotropic Heisenberg spin

chain connected to thermal heat baths using the MRS. In this system, spin

rectification is investigated in detail and its dependence on several system

parameters is discussed. In particular it is shown that the rectification ratio

can be tuned with the help of the external magnetic field, which could be of

potential technological interest to build spin-diodes. From a technological

standpoint, understanding semiconductor systems on the nano- or micro-

meter scale is essential to build spintronic devices. In order to deal with such

vii



large anharmonic systems a semi-classical approach based on drift-diffusion

equation is adopted. The three-dimensional spin drift diffusion (3D-SDD)

equations are then applied to study the influence of device geometries on the

spin-injection ratio and several tricks to enhance the ratio are proposed.
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Chapter 1
Introduction

The most exciting phrase to
hear in science, the one that
heralds new discoveries, is not
“Eureka!” (“I found it!”) but
rather “hmm....that’s funny...”.

Isaac Asimov

The study of transport through nano and molecular junctions has been

one of the most intriguing and challenging tasks of condensed matter physics

for the past 50-60 years. Typical experimental transport setups involve a

system of interest connected to two or more macroscopic baths, which are

maintained at different temperatures, chemical potentials, etc., injecting

and removing the carriers of transport from the system as illustrated in

Fig. 1.1. The system is generally well characterized due to its finite size,

whereas the baths are largely unknown. Such archetypal experimental se-

tups have inspired a plethora of transport theories which eliminate the baths

and focus on the system and its properties. The cumulation includes: the
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CHAPTER 1. INTRODUCTION

Kubo formula [1, 2] which is rigorously valid only in the thermodynamic

limit; an offshoot of the scattering theory known as Landauer-Buttiker for-

malism [3, 4, 5, 6] which is valid as long as the carriers are coherent; the

nonequilibrium Green’s function method [7, 8] which is best suited for har-

monic systems, but can treat anharmonicity in a perturbative manner; the

quantum master equation approach [9, 10, 11, 12, 13] which is valid un-

der a weak system-bath coupling approximation and can deal with only

small system sizes; the Boltzmann transport equations [14, 15, 16] which

are used to study linear response heat transport and typically require the

anharmonicity to be treated perturbatively; the hierarchy equation of mo-

tion approach [17, 18, 19] which is valid only for Ornstein-Uhlenbeck type

of processes and can be solved for extremely small system sizes only; molec-

ular dynamics [20, 21] which is typically employed in the study of thermal

transport and is valid only in the high-temperature classical regime and

quantum Monte Carlo [22, 23, 24] simulation which require a perturbation

either in the anharmonicity or the coupling strength and is best suited only

to study transient transport.

Exact treatment of anharmonic systems has been one of the holy grails

of such transport theories and some of the most exciting effects like rectifica-

tion, negative differential resistance, thermoelectric effect, thermomagnetic

effect, etc. are due to anharmonicity. Inspired by these novel effects we will

2
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focus on theories that can deal with strongly anharmonic systems and ex-

plore some of these effects in heat and spin transport. Our primary approach

to treat strong anharmonicity rigorously will be the quantum master equa-

tion formulation, but we will also look at methods which try to overcome

the limitations of the master equation formulation,i.e., weak system-bath

coupling and small system sizes.

Figure 1.1: An artists perception of a minimal setup required for transport.
The baths are depicted by the orange enclosed areas, whereas the system
is the lime-green rectangular box in the center. The carriers of transport
are depicted by the red spherical objects moving through the system due
to high abundance in the left bath as compared to the right.

In this thesis, chapter 2 will be dedicated to the introduction and devel-

opment of quantum master equation (QME) formalism. Several formally

exact master equations either within a time-convolution (time-non-local)

[25, 26] or time-convolutionless (time-local) [27, 28, 29, 30, 31, 32] form

can be found in the literature, but all these approaches are computation-

ally very demanding and can treat systems possessing an extremely small

3



CHAPTER 1. INTRODUCTION

Hilbert space dimension only, i.e., 2-4 levels maximum. Our main goal in

this chapter will be to accurately calculate the reduced density matrix for

relatively large Hilbert space dimensions and treat the underlying anhar-

monicity exactly. In order to do this we will first introduce some of the

techniques of open quantum systems with the introduction of the generic

Redfield quantum master equation (RQME). We will then show that the

RQME is inaccurate in the steady state and hence propose a modified Red-

fied solution (MRS) which captures the steady state reduced density matrix

correct up to second order in the system-bath coupling. Besides being ac-

curate the MRS will allow us to handle large system Hilbert spaces up to

210 levels, which is a huge improvement over the 2-4 levels used in the liter-

ature. Thus using the MRS we will be able to accurately evaluate any local

quantity of interest, including currents, for relatively large Hilbert space

dimensions in the nonequilibrium steady state condition.

In chapter 3 away from the predominant field of electronic transport

we will cover the field of heat transport commonly known as phononics.

The earliest works in this field date back to Debye and Peierls [33, 34]

who studied heat transfer within solids. Inspired by their work most of

the research in this field is concentrated on the classical heat transport ei-

ther in the form of theoretical considerations [20, 35, 36, 37, 38, 39, 40, 41]

or using simulation techniques like molecular dynamics [21]. Even though

4
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these techniques give us good insight at the classical properties they can

not be applied at low temperatures, where quantum effects become essen-

tial and hence techniques like the nonequilibrium Green’s function (NEGF)

[42, 43, 44, 45, 46, 47], quantum molecular dynamics [48], and master equa-

tion formulation [9, 10, 11, 12, 13] have been developed to tackle the low-

temperature regime accurately.

Our main focus in this chapter will be on two most popular techniques

to deal with quantum anharmonic heat transport namely the master equa-

tion formulation and the nonequilibrium Green’s function (NEGF) method.

Since all systems do not permit a unique local heat current operator defi-

nition we develop a master equation like formulation inspired by the fun-

damental definition of heat current, i.e., change in energy of the heat bath.

The formulation suffers from the weak system-bath coupling limitation and

hence to explore the strong-coupling regime we develop a self-consistent for-

mulation using NEGF techniques. The so-obtained quantum self-consistent

mean field (QSCMF) approach will not only allow us to explore the strong

system-bath coupling regime but also the strong anharmonic regime.

Next we look at spin transport in chapter 4, which has been one of the

most promising field of the past two decades. The explosive interest in the

field started with a spin-interference device proposed by Datta and Das

[49] in 1990 and has led to a vibrant and exciting new field of spintronics1

1The term was coined by S. A. Wolf in 1996, as a name for a DARPA initiative for

5
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[50, 51]. In its infant days, it was the pioneering work of Mott [52, 53] who

realized that at low temperatures the electrons of majority and minority

spins do not mix in the scattering process, which led to the two-current

model of spin transport. The model, commonly referred to as the spin drift

diffusion (SDD) model, has been extended by several authors [54, 55, 56]

and it provides an explanation for various magnetoresistive phenomenon.

Despite its high success the model assumes that the spins diffuse in one

spatial dimension only, which is not true for actual experimental geometries.

This has led to the two-dimensional [57] and quasi three-dimensional [58]

theories, which effectively solve multiple one-dimensional spin drift diffusion

(1D-SDD) equations. Despite the enormous popularity of the SDD model,

it is a semi-classical approach valid only for metals and semiconductors,

and cannot be applied to magnetic insulators where quantum effects are

essential for spin-transport. Hence in recent years various approaches like

the Mazur inequality [59, 60], Bethe Ansatz [61], quantum Monte Carlo

[22, 62], Luttinger liquid theory [63, 64] and master equation [65, 66, 67, 68]

have been employed to study magnetic insulators under different regimes

of validity.

In the first part of chapter 4 we will explore the true power of the MRS,

proposed in chapter 2, by studying spin transport in magnetic insulators

modeled as spin-1/2 anisotropic Heisenberg spin chains. One of the biggest

novel magnetic materials and devices.

6
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disadvantage of formulations based on the master equation approach is the

inability to deal with experimentally relevant system sizes. Hence in the

next part we will look at the problem of spin-injection from a ferromagnet

to a semiconductor, termed as the conductivity mismatch problem [69, 70],

from the semi-classical SDD point of view. Our goal will be to generalize the

problem for three-dimensional experimental devices and study the effects

of device geometry on the spin injection ratio, which is one of the most

important prerequisites to build spintronic devices.

Thus in this chapter we have presented a brief synopsis of the various

theoretical and numerical techniques available in the literature to address

heat and spin transport. This chapter has also shed some light on the

problems that will be addressed in the chapters to follow.

7
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Chapter 2
Reduced density matrix
formulation

Science is the belief in the
ignorance of experts.

Richard Phillips Feynman

In this chapter, reduced density matrix (RDM) formulation within the

framework of open quantum systems is introduced. The Redfield quan-

tum master equation (RQME) is derived using a simplistic perturbative

approach and several approximations typically used in the literature are

discussed. A particular focus is on the steady-state accuracy and a unique

analytic continuation approach is proposed to improve the accuracy of the

Redfield solution up to second order in the system-bath coupling. Detailed

verification of the analytic continuation approach is provided for the equilib-

rium case, whereas for the non-trivial non-equilibrium problem the method

is numerically verified.

9



CHAPTER 2. REDUCED DENSITY MATRIX FORMULATION

2.1 Redfield master equation

The theory of open quantum systems is one of the most promising fields

to deal with anharmonic systems interacting with an environment. The

main goal here is to calculate the reduced system dynamics in terms of the

RDM, which typically is approached using a wide variety of approximate

master equations [71, 72, 73, 74, 75].

2.1.1 Derivation from a microscopic model

In this section we will derive one of the most general perturbative master

equation, known as the Redfield quantum master equation (RQME). The

derivation outlined here employs only the weak system-bath coupling ap-

proximation and no other ad-hoc approximations will be made. Interested

readers can refer to several textbooks [75, 76, 77] for alternative derivations.

We start by defining a general Hamiltonian system given by,

Htot = HS +
∑
α

(
Hα

B + λHα
SB + λ2Hα

RN

)
, (2.1)

where HS denotes a general anharmonic system Hamiltonian. Here

Hα
B =

∞∑
n=1

(
pα

2

n

2mα
n

+
mα

nω
α2

n

2
xα2

n

)
, (2.2)

describes the αth thermal environment as an infinite collection of harmonic

10



CHAPTER 2. REDUCED DENSITY MATRIX FORMULATION

oscillators, each having a mass mα
n and a frequency ωα

n .

Hα
RN = Sα2

(
1

2

∞∑
n=1

cα
2

n

mα
nω

α2

n

)
, (2.3)

is the potential renormalization in which the variable Sα denotes any system

operator connected with the αth bath and

Hα
SB = Sα ⊗Bα , (2.4)

= Sα ⊗

(
−

∞∑
n=1

cαnx
α
n

)
,

is the system-bath coupling Hamiltonian, wherein the cαn represent the

system-bath coupling constant of the n-th oscillator with the system op-

erator Sα. Typically, the potential renormalization term HRN is included in

the system Hamiltonian, but this treatment leads to inconsistencies in the

perturbation expansion (∵ HRN has a pre-factor of λ2) and hence through-

out this thesis this term will be treated separately and consistently. The

collective bath operator is Bα = −
∑∞

n=1 c
α
nx

α
n. The above Hamiltonian has

been studied extensively to model quantum dissipation and goes under the

label of Zwanzig-Caldeira-Leggett model [78, 79, 80].

Throughout this thesis we will set ℏ = 1 and kB = 1 and treat the bath

as a set of harmonic oscillators as described by Eq. (2.2), but the ideas

outlined here can be quite easily generalized to spin or fermionic baths.

11



CHAPTER 2. REDUCED DENSITY MATRIX FORMULATION

The total density matrix at any time ‘t’ is given by,

ρtot(t) = U(t, t0)ρtot(t0)U(t, t0)
† , (2.5)

where U(t, t0) = exp
[
−i
(
HS +

∑
α (H

α
B + λHα

SB + λ2Hα
RN)
)(
t− t0

)]
is the

time evolution operator. Expanding the evolution operator up to 2-nd order

in the parameter λ using the Kubo identity1 [81] and setting the initial time

t0 = 0 we obtain,

U(t, 0) = U0(t, 0)UI(t, 0) ,

U0(t, 0) = e−iHot ,

UI(t, 0) = I−
∑
α

(
i

∫ t

0

ds
(
λH̃α

SB(s) + λ2H̃α
RN(s)

)
+λ2

∫ t

0

dsH̃α
SB(s)

∫ s

0

duH̃α
SB(u)

)
, (2.6)

whereHo = HS+
∑

α H
α
B , UI(t, 0) is the evolution operator in the interaction

picture and all operators with ∼’s are the Heisenberg evolution (also known

as free evolution) under Ho, that is, Õ(x) = eiHox O e−iHox.

1The exact Kubo identity is given by,

eβ(A+B) = eβA

[
I+

∫ β

0

dβ′ e−β′A B eβ
′(A+B)

]
.
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Differentiating Eq. (2.5) with respect to time t we obtain,

dρtot(t)

dt
= −i [Ho, ρtot(t)]−

∑
α

(
i
[(
λHα

SB + λ2Hα
RN

)
, ρ̃(t)

]
(2.7)

+λ2

∫ t

0

dq
{
[H̃α

SB(q − t), ρ̃(t)]Hα
SB +Hα

SB[ρ̃(t), H̃
α
SB(q − t)]

})
,

where contrary to the operators ρ̃(x) = e−iHox ρ eiHox. Above and hence-

forth all operators without the time argument are assumed to be in the

Schrödinger representation. While deriving Eq. (2.7) we have assumed

that the different baths are uncorrelated and hence we have only one sum-

mation index α over the baths. Now using decoupled initial conditions2

ρtot(0) = ρS(0)Π
⊗
αρ

α
B(0), tracing over the bath degrees of freedom and us-

ing3
⟨
B
⟩
= 0 we get,

dρ(t)

dt
= −i [(HS + λ2

∑
α

Hα
RN), ρ(t)] + λ2R , (2.8)

where ρ(t) is the RDM of the system and the relaxation operator R, which

ensures that the system is damped by the bath, is given by,

R = −
∑
α

∫ t

0

dq
{
[Sα, S̃α(q − t)ρ(t)]Cα(t− q)

−[Sα, ρ(t)S̃α(q − t)]Cα(q − t)
}
. (2.9)

2Π⊗
α denotes tensor product over α matrices.

3If
⟨
B
⟩
̸= 0 then add and subtract

⟨
B
⟩
. The positive part is added to the system

Hamiltonian and since it is a constant it only shifts the energy levels by a constant. This
is commonly referred to as the centering of the bath.

13
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Above Cα(t− q) =
⟨
BαB̃α(q− t)

⟩
is the bath correlator. Since Eq. (2.8) is

accurate up to 2-nd order in the coupling strength we have taken the liberty

to replace ρ̃S(t) with ρ(t) appropriately.

As shown in Append. (A) in case of the harmonic oscillator bath the

bath correlator and the damping kernel at time t = 0 are given by,

C(τ) =

∫ ∞

0

dω

π
J(ω)

(
coth

(
βω

2

)
cos(ωτ)− i sin(ωτ)

)
, (2.10)

γ0 = 2

∫ ∞

0

dω

π

J(ω)

ω
, (2.11)

where J(ω) = π
∑∞

n=1 cn/ (2mnωn) δ(ω− ωn) is the spectral density used to

model the properties of the bath and β is the inverse temperature of the

corresponding bath4.

Using the damping kernel at zero time we can now recast the potential

renormalization term in the Zwanzig-Caldeira-Leggett model as,

HRN = S2γ0

2
. (2.12)

The redundant super-script α has been dropped above and should be im-

plicitly assumed henceforth for notational simplicity.

Now if we know the eigenvalues En and the eigenvectors |n
⟩
of the system

Hamiltonian, i.e., HS|n
⟩
= En|n

⟩
, we can re-write the freely evolving system

4Various methods to phenomenologically model the bath are given in Append. (A)
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operator in the energy eigen-basis as

⟨
n|S̃(τ)|m

⟩
= ei∆nmτ S , (2.13)

where ∆nm = En − Em. Appropriately inserting the Hubbard operators

Xnm = |n
⟩⟨
m| in Eq. (2.8) and setting the dimensionless parameter λ = 1,

we obtain the 2-nd order RQME in its time local representation as [73, 75,

76, 77]

dρnm
dt

= −i∆nmρnm +
∑
ij

Rij
nmρij , (2.14)

where the relaxation four tensor Rij
nm is given by

Rij
nm =

∑
α

[
Sα
niS

α
jm

(
Wα

ni +Wα∗
mj

)
− δj,m

∑
l

Sα
nlS

α
liW

α
li

−δn,i
∑
l

Sα
jlS

α
lmW

α∗
lj

]
. (2.15)

Above the transition rates Wα
ij take the form

Wij = W ′
ij + iW ′′

ij ,

W ′
ij = Re

[∫ t

0

dτ e−i∆ijτ C(τ)

]
,

W ′′
ij = Im

[∫ t

0

dτ e−i∆ijτ C(τ)

]
+

γ0

2
. (2.16)
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Later, in order to make certain equations compact we define

W̃ij = W̃ ′
ij + i W̃ ′′

ij ,

W̃ ′
ij = W ′

ij = Re

[∫ t

0

dτ e−i∆ijτ C(τ)

]
,

W̃ ′′
ij = W ′′

ij −
γ0

2
= Im

[∫ t

0

dτ e−i∆ijτ C(τ)

]
. (2.17)

Both the definitions above Wij and W̃ij will be interchangeably called as

transition rates since they only differ by a constant in the imaginary part

as shown in Eq. (2.17).

In Eq. (2.14) the effect of the various baths comes as an additive effect

to the Redfield super-operator R and hence for most of this thesis the α

summation will be dropped for notational simplicity. The reader from now

on should always imagine an extra α summation inside theR super-operator

if not explicitly specified. Also, in Eq. (2.14) and henceforth the explicit

time dependence of ρ will also be suppressed.

While deriving the RQME we have made only the weak-coupling approx-

imation, which implies that the strength of the collective coupling
∑

n cn

should be weak. The above time-local form captures all the non-Markovian

effects due to the explicit time dependence in the transition rates and greatly

simplifies the steady state numerical calculations as compared to its equiv-

alent time non-local [25, 26] counterpart.

16



CHAPTER 2. REDUCED DENSITY MATRIX FORMULATION

2.1.2 Further assumptions and limitations

Solving the Redfield master equation is a numerically challenging task

and hence several approximations are imposed on Eq. (2.14). One of the

most commonly used assumptions in the secular approximation or the

rotating-wave approximation (RWA) in which the terms rotating much

faster than the characteristic frequencies of the problem are replaced by

their average. Following ref. [82], in the rotating frame the reduced density

matrix transforms into ρ̃nm = ρnmexp[−i∆nmt] and hence Eq. (2.14) reads,

dρ̃nm
dt

=
∑
ij

Rij
nmρ̃ij e

−i (∆ij−∆nm)t . (2.18)

Now by assuming that the system energy spectrum has no degeneracy and

averaging all terms of the form exp[−i (∆nm −∆ij) t], where ∆nm−∆ij ̸= 0,

to zero we obtain the RWA master equation as,

dρnn
dt

=
∑
i

Rii
nnρii ,

dρnm
dt

= −i∆nmρnm +Rnm
nmρnm , (2.19)

where the master equation is now split into diagonal and off-diagonal ele-

ments in the original unrotated basis. In RWA Rnm
nm is forced to contain

only real parts which gives Eq. (2.19) exactly the same form as the Lindblad
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master equation [76]. Importantly the dynamics of the diagonal elements

using the RWA is same as the Pauli master equation [71].

Another common approximation used in the literature is known as ne-

glecting the Lamb-shifts [75, 76]. In this approximation the imaginary part

of the transition rates Wij is set to zero, arguing that these lead to only a

constant shift in the system energy spectrum. Surprisingly, after neglecting

the Lamb-shifts in the steady state the equation takes the same form as the

steady-state Pauli master equation.

Both the RWA and neglecting the Lamb-shifts are difficult to justify

and unfortunately we cannot trace these approximations back to any mi-

croscopic model. Also the time transients given by all these models are

quite different, but “fortunately” all these approximations lead to the same

equilibrium state given by the canonical distribution. This observation it-

self gives us some hint that the approximated master equations are only

valid in the limit λ → 0 at long times, which we will discuss further in the

next section.

2.2 Accuracy of perturbative master equa-

tions in the steady-state

The RQME obtained in Sec. 2.1.1 is a first order differential equation for

the RDM and one naively expects that the solution of RQME is correct up

to 2-nd order in the system-bath coupling strength. Some authors [83, 84]
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have previously pointed out that this naive intuition might be misleading

in the long time limit and here we try to corroborate this finding with a

different method.

We start out with the generic perturbation series expansion5 to all or-

ders in the system-bath coupling of the time-local, formally exact master

equation; i.e.,

∂ρ

∂t
=

(
∆̄ +

∞∑
n=2,4,6,···

λnR(n)(t)

)
ρ , (2.20)

and the reduced density matrix,

ρ =
∞∑

n=0,2,4,···

λnρ(n) . (2.21)

Above ∆̄ is a four tensor depending on the system Hamiltonian. The op-

erator R(n)(t) denotes a super-operator of rank 4 which depends both on

the system operator and the bath correlators6. We now rearrange ρ into

a column vector and split it into its diagonal part (ρd) and off-diagonal

part (ρod). Then, using the RQME (Eq. (2.14)) the 0-th order tensor in

5The series for ρ and ∂ρ
∂t holds if and only if

⟨
B
⟩
= 0 for all baths, if not then the

series will contain odd terms as well.
6Recall we set the initial time t0 = 0 and hence the operator R(n)(t) does not depend

on t0
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Eq. (2.20) can be rewritten as a matrix assuming the form,

∆̄ ≡

 0 0

0 ∆̄22

 , (2.22)

where ∆̄22 is a diagonal matrix with ∆ij (i ̸= j) forming the diagonal. The

four tensors R(n)(t) are also split accordingly; i.e.,

R(n)(t) ≡

 R
(n)
11 (t) R

(n)
12 (t)

R
(n)
21 (t) R

(n)
22 (t)

 , (2.23)

with no restrictions made for the form of the sub-matrices. For the specific

case of n = 2, R(2)(t) is the same as the Redfield tensor given in Eq. (2.15).

In order to obtain the steady state we set ∂ρ/∂t = 0 and take the limit

t → ∞. Because the stationary problem is not dependent on time we will

drop the parentheses from the tensor, i.e., R(n)(∞) ≡ R(n). Therefore, using

Eqs. (2.20) and (2.21) we obtain:

(
∆̄ +

∞∑
n=2,4,6,···

λnR(n)

)
∞∑

m=0,2,4,···

λmρ(m) = 0 . (2.24)

In order to obtain ρ correct up to 2-nd order we equate the coefficients

of the different powers of λ equal to zero so that we obtain independent

equations to calculate ρ(0) and ρ(2). This implies,
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1. Setting the co-efficient of λ0 equal to zero yields,

ρ
(0)
od = 0 . (2.25)

2. Setting the co-efficient of λ2 equal to zero implies,

R
(2)
11 ρ

(0)
d = 0 , (2.26)

∆̄22ρ
(2)
od = −R

(2)
21 ρ

(0)
d . (2.27)

3. Setting the co-efficient of λ4 equal to zero provides the condition,

R
(2)
11 ρ

(2)
d = −R

(2)
12 ρ

(2)
od −R

(4)
11 ρ

(0)
d . (2.28)

Equation (2.27) shows that in order to obtain the 2-nd order off-diagonal

elements we need only the 0-th order and 2-nd order relaxation tensor which

can be obtained from the RQME using Eq. (2.15). In contrast, in order

to obtain the 2-nd order diagonal elements from Eq. (2.28) one requires

knowledge of the 4-th order relaxation tensor R
(4)
11 , which is difficult to

obtain [85, 86, 87], and hence it is important to look at alternate techniques

to obtain these 2-nd order diagonal elements correctly.
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2.3 Second order steady-state density ma-

trix

As seen in the previous section the RQME fails to give the correct solu-

tion in the steady state and is strictly valid in the limit λ → 0. Also since

the evaluation of the 4-th order relaxation tensor is highly cumbersome,

in this section we will look at alternate techniques of obtaining the RDM

correct up to 2-nd order of system-bath coupling.

2.3.1 Dyson expansion for open quantum systems

Our first alternative approach is based on the Dyson expansion. In this

approach we do not obtain a differential equation in ρ(t) as we did for the

RQME, but rather obtain a linear equation for ρ(t) starting from Eq. (2.5).

Since we have already expanded the evolution operator U(t, 0) in Eq. (2.6)

we use it in Eq. (2.5) to obtain,

ρtot = ρ̃tot(t)− i λ

∫ t

0

du
[
H̃SB(u− t), ρ̃tot(t)

]
+λ2

∫ t

0

du

∫ u

0

dq
{
H̃SB(u− t)

[
ρ̃tot(t), H̃SB(q − t)

]
+
[
H̃SB(q − t), ρ̃tot(t)

]
H̃SB(u− t)

}
. (2.29)

The right hand side of the above equation contains only the freely evolving

density matrix ρ̃tot(t). Since we will choose decoupled thermal equilibrium

initial conditions and [Ho, ρtot(0)] = 0, the freely evolving density matrix
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ρ̃tot(t) = ρtot(0) = ρS(0) ⊗ ρB(0). Here itself we get a hint that there is

something possibly wrong with the Dyson expansion because even in the

long time the reduced density matrix will depend on the initial condition of

the system. Ignoring this anomaly we try to evaluate the 2-nd order terms

obtained from this expansion. After tracing the bath degrees of freedom

and setting λ = 1 we get,

ρ(2)(t) =

∫ t

0

du

∫ t

0

dqS̃(u− t)ρ̃(t)S̃(q − t)C(u− q)

−
∫ t

0

du

∫ u

0

dqS̃(u− t)S̃(q − t)ρ̃(t)C(q − u)

−
∫ t

0

du

∫ u

0

dqρ̃(t)S̃(q − t)S̃(u− t)C(u− q) , (2.30)

where ρ(2)(t) is the 2-nd order reduced density matrix. Now inserting the

Hubbard operators Xnm appropriately and calculating only the 2-nd order

off-diagonal elements we obtain,

ρ(2)nm = i
∑
i

SniSim

∆nm

[
W ∗

inρ̃nn +Wimρ̃mm −
(
Wni +W ∗

mi

)
ρ̃ii

]
, (2.31)

where the transition rates have been defined in Eq. (2.16). In case of the

diagonal elements we get,

ρ(2)nn =
∑
i

SniSin

[∫ t

0

du

∫ t

0

dq e−i∆ni(u−q) C(u− q)ρ̃ii
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−
∫ t

0

du

∫ t

u

dq

{
e−i∆ni(u−q) C(q − u) + c.c

}
ρ̃nn

]
, (2.32)

where c.c indicates complex conjugate. In order to simplify the diagonal

terms we change the integration variables u − q = τ and u + q = τ ′. The

change of variables allows us to integrate the τ ′ integral analytically to

obtain,

ρ(2)nn =
∑
i

SniSin

[
V̄niρ

(0)
ii − V̄inρ

(0)
nn

]
,

where

V̄ni =

∫ t

0

dτ(t− τ) e−i∆niτ C(τ) +

∫ t

0

dτ(t− τ) ei∆niτ C∗(τ) .(2.33)

Clearly the operator V̄ has a divergent (∝ t) and a non-divergent part in

the steady state. Thus with the Dyson expansion we end up with two major

problems:

1. The density matrix in the long time limit depends on the initial con-

dition.

2. At second order itself the diagonal terms of the RDM diverge.

Despite these difficulties, the RQME gives us one heuristic method to

resolve these issues. Let us look at the 2-nd order off-diagonal elements
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obtained from the RQME via Eqs. (2.27) and (2.15),

ρ(2)nm = i
∑
i

SniSim

∆nm

[
W ∗

inρ
(0)
nn +Wimρ

(0)
mm −

(
Wni +W ∗

mi

)
ρ
(0)
ii

]
.(2.34)

Comparing the above equation with Eq. (2.31) we are prompted to believe

ρ̃ ≡ ρ(0), where ρ(0) is obtained via the RQME using Eqs. (2.25), (2.26)

and (2.15) as

∑
i

(
SniSinW̃

′
ni − δn,i

∑
l

SnlSliW̃
′
li

)
ρ
(0)
ii = 0 ,

ρ
(0)
ij = 0 , (i ̸= j) , (2.35)

along with an additional constrain Tr(ρ(0)) = 1. If we believe this equiva-

lence is true then it immediately solves our first problem because now the

density matrix at long times will not depend on the initial conditions. It

also ensures that the equilibrium RDM at zero system-bath coupling is the

canonical distribution. Miraculously the co-efficient of the divergent term in

2-nd order RDM is equal to
∑

i

(
SniSinW̃

′
ni − δn,i

∑
l SnlSliW̃

′
li

)
ρ
(0)
ii , which

according to Eq. (2.35) is zero in the steady state. Hence the steady-state

RDM does not diverge. Thus by this ad-hoc procedure we can compute the

RDM up-to 2-nd order as,

∑
i

(
SniSinW̃

′
ni − δn,i

∑
l

SnlSliW̃
′
li

)
ρ
(0)
ii = 0 ,
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ρ(0)nm = 0 ,

ρ(2)nm = i
∑
i

SniSim

∆nm

[
W ∗

inρ
(0)
nn +Wimρ

(0)
mm −

(
Wni +W ∗

mi

)
ρ
(0)
ii

]
,

ρ(2)nn = 2
∑
i

SniSin

[
V ′′
niρ

(0)
ii − V ′′

inρ
(0)
nn

]
, (2.36)

where

V ′′
ni =

1

2

(∫ t

0

dττ e−i∆niτ C(τ) +

∫ t

0

dττ ei∆niτ C∗(τ)

)
,

∴ V ′′
ni =

∂W̃ ′′
ni

∂∆ni

. (2.37)

Naively, even though the above procedure seems logical, we will see later

in Sec.2.4.1 that it does not match the results from canonical perturbation

theory. This indicates that the ad-hoc equivalence ρ̃ ≡ ρ(0) does not seem

to give the right physics. Despite this fact one important lesson we learn is

that in case of open quantum systems it is extremely important to include

effects of the baths even for the 0-th order RDM.

2.3.2 Analytic continuation approach: Modified Red-
field Solution

As seen above, due to the various problems with the Dyson expansion the

steady-state RDM is incorrect and hence we will now look at an alternative

procedure to obtain the stationary RDM correct up to 2-nd order in the
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system-bath coupling. As seen in Sec.2.2 the RQME gives the 0-th order

and the 2-nd order off-diagonal elements of the RDM correctly. Therefore,

we use Eqs. (2.25) and (2.26) along with the Redfield tensor R = R(2) to

arrive at the 0-th order RDM,

∑
i

(
SniSinW̃

′
ni − δn,i

∑
l

SnlSliW̃
′
li

)
ρ
(0)
ii = 0 ,

ρ
(0)
ij = 0 , (i ̸= j) . (2.38)

The 2-nd order off-diagonal elements, i.e., n ̸= m follow from Eq. (2.27)

as,

ρ(2)nm = i
∑
i

SniSim

∆nm

[
W ∗

inρ
(0)
nn +Wimρ

(0)
mm −

(
Wni +W ∗

mi

)
ρ
(0)
ii

]
.(2.39)

If we naively construct the diagonal elements by merely substituting

n = m in Eq. (2.39), then the equation exhibits an indeterminate 0/0

singularity. This indicates that even though we cannot substitute n = m

directly, the limit m → n might exist. If such a limit indeed exists and is

unique, then by use of the uniqueness theorem [88] the 2-nd order diagonal

elements can be obtained by this limiting procedure. In order to perform

this limit m → n we consider each element of the 2-nd order RDM to

be a function of the bare system energies Ei (i = 1, · · · , N). In the energy

parameter space we vary only one of the energies Em and let it continuously
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approach the energy En, via a small complex parameter z; i.e., we set

Em → En − z.

In doing so, we start by splitting the transition rates Wij into its real

and its imaginary parts, using Eq. (2.17) to obtain:

ρ(2)nm =
1

i∆nm

∑
i

SniSim

{[(
W̃ ′

ni + W̃ ′
mi

)
ρ
(0)
ii − W̃ ′

inρ
(0)
nn − W̃ ′

imρ
(0)
mm

]

+i

[(
W̃ ′′

ni − W̃ ′′
mi

)
ρ
(0)
ii +

(
W̃ ′′

in +
γ0

2

)
ρ(0)nn

−
(
W̃ ′′

im +
γ0

2

)
ρ(0)mm

]}
. (2.40)

We next let Em → En−z and perform the limit z → 0. Therefore, Eq. (2.40)

becomes,

ρ(2)nn = lim
z→0

{
1

i z

∑
i

SniSin

[(
W̃ ′

ni(0) + W̃ ′
ni(−z)

)
ρ
(0)
ii

−
(
W̃ ′

in(0) + W̃ ′
in(z)

)
ρ(0)nn

]

+
1

z

∑
i

SniSin

[(
W̃ ′′

ni(0)− W̃ ′′
ni(−z)

)
ρ
(0)
ii

−
(
W̃ ′′

in(0)− W̃ ′′
in(−z)

)
ρ(0)nn

+
(
W̃ ′′

in(−z) +
γ0

2

)
z
∂ρ

(0)
nn

∂En

]}
, (2.41)
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where,

W̃ij(z) =

∫ ∞

0

dτ e−i (∆ij+z)τ C(τ) ,

W̃ ∗
ij(z) =

∫ ∞

0

dτ ei (∆ij+z∗)τ C∗(τ) . (2.42)

Because ρ
(0)
mm (being the un-normalized 0-th order RDM) depends on the

energy Em we made use of the Taylor expansion of ρ
(0)
mm around the energy

En to retain up to the first order:

lim
Em→En

ρ(0)mm ≃ ρ(0)nn + z
∂ρ

(0)
nn

∂En

. (2.43)

Noting that limz→0 W̃
′′
in(−z) = W̃ ′′

in(0) = W̃ ′′
in Eq. (2.41) can be recast as,

ρ(2)nn =
∑
i

SniSin

[
V ′′
niρ

(0)
ii − V ′′

inρ
(0)
nn

]
+W ′′

in

∂ρ
(0)
nn

∂En

+ ρ̄(2)nn , (2.44)

where we have absorbed γ0 in W according to Eq. (2.17) and ,

ρ̄(2)nn = lim
z→0

1

i z

{∑
i

SniSin

[(
W̃ ′

ni(0) + W̃ ′
ni(−z)

)
ρ
(0)
ii

−
(
W̃ ′

in(0) + W̃ ′
in(z)

)
ρ(0)nn

]}
, (2.45)

and V ′′
ij has been defined in Eq. (2.37). In the limit z → 0 it follows

from Eq. (2.42) that limz→0 W̃
′
ni(−z) = limz→0 W̃

′
ni(z) = W̃ ′

ni(0) = W̃ ′
ni.
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Therefore, in this limit the term in the curly bracket in Eq. (2.45) assumes

precisely the same form as the L.H.S. of Eq. (2.38), hence it is equal to zero.

Consequently, Eq. (2.44) becomes,

ρ(2)nn =
∑
i

SniSin

[
V ′′
niρ

(0)
ii − V ′′

inρ
(0)
nn +W ′′

in

∂ρ
(0)
nn

∂En

]
. (2.46)

Eq. (2.46) is independent of the way in which the energy Em approaches

En and hence this limit procedure is unique. The uniqueness of the limit

is crucial to ensure that the resulting thermal steady state of the system is

also unique.

The diagonal elements of the density matrix obey the normalization

condition Tr(ρ) = 1. Since we performed an analytic continuation to obtain

the 2-nd order diagonal elements there is no guarantee the normalization

condition is preserved. Therefore we can write the normalization condition

explicitly as,

ρnn =
ρ
(0)
nn + ρ

(2)
nn∑

i(ρ
(0)
ii + ρ

(2)
ii )

≃ ρ(0)nn + ρ(2)nn − ρ(0)nn

∑
i

ρ
(2)
ii , (2.47)

where we have ignored the 4-th and higher order terms and used the con-

dition
∑

i ρ
(0)
ii = 1, which is required to determine ρ(0) uniquely. Therefore,
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upon normalizing Eq. (2.46) with help of Eq. (2.47) we obtain,

ρ(2)nn =
∑
i

SniSin

[
V ′′
niρ

(0)
ii − V ′′

inρ
(0)
nn +W ′′

in

∂ρ
(0)
nn

∂En

]

−ρ(0)nn

∑
i,j

SjiSijW
′′
ij

∂ρ
(0)
jj

∂Ej

. (2.48)

In order to use Eq. (2.48) to calculate the 2-nd order diagonal elements

we need to know the derivative of the 0-th order RDM ∂ρ
(0)
nn/∂En. This

derivative derives from Eq. (2.38), which is satisfied by ρ(0) and subsequently

differentiate with respect to the energy En to find

∂ρ
(0)
nn

∂En

=

∑
i̸=n SniSin

(
V ′
niρ

(0)
ii + V ′

inρ
(0)
nn

)
∑

i̸=n SniSinW̃ ′
in

, (2.49)

where V ′
ij = ∂W̃ ′

ij/∂∆ij.

The procedure to obtain the modified Redfield solution (MRS) outlined

above (Eqs. (2.38), (2.39) and (2.48)) is quite well suited for numerical

studies: Numerical simulations with the RQME are very cumbersome be-

cause the Redfield super-operator R scales as the fourth power [77] of the

system Hilbert space dimension N . Therefore, in the steady state the com-

putational complexity of the problem typically scales proportional to N6,

assuming that the analytic forms of the transition rates Wij are known. On

the other hand, in our MRS all components of the RDM can be obtained

by reference to the transition rates Wij only, which scale as N2. Thus,
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in the modified solution the computational complexity becomes drastically

reduced to be of order N3. This fact is equivalent to solving the quan-

tum master equation with use of the continued fraction scheme [89]; it thus

enables us to study systems with much larger Hilbert space dimension.

2.4 Verifying the Modified Redfield Solution

In this section we validate the conjecture, that the MRS is the cor-

rect distribution up to 2-nd order in the system-bath coupling7. In the

equilibrium case we provide an analytical proof by comparing the MRS

with the generalized Gibbs distribution via canonical perturbation theory

(CPT), whereas in the non-equilibrium case since the form of the steady-

state density matrix is unknown we provide numerical evidence to validate

our solution.

2.4.1 Comparison with canonical perturbation theory

In equilibrium, the RDM of a system connected finitely with a heat

bath is given by the generalized Gibbs distribution [90] ρeq ∝ TrB(e
−βHtot).

Cognizance of this fact allows us to formulate a perturbative expansion for

the generalized Gibbs distribution termed as canonical perturbation theory,

as shown in Append. B.

According to CPT (Eqs. (B.11), (B.12), and (B.13)) the reduced density

7Comparing Eqs. (2.48) and (2.36) we immediately see that the MRS and Dyson
expansion do not match. In this section we will prove that the MRS matches CPT
implying that the Dyson expansion does not.
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matrix up to 2-nd order in the system-bath coupling reads

ρCPT

nm = ρ(0),CPT

nm + ρ(2),CPT

nm ,

ρ(0),CPT

nm =
e−βEn

ZS

δn,m , (2.50)

ρ(2),CPT

nm =
Dnm

ZS

−
e−βEn

∑
i Dii

(ZS)2
δn,m , (2.51)

wherein ZS =
∑

l exp[−βEl] and the D matrix elements are given by,

Dnm =
1

∆mn

∑
l

(
D̃nlSlm − D̃mlSln

)
(n ̸= m) ,

D̃nl = Snl e
−βEn

(∫ β

0

dxC(−i x) e−x∆ln −γ0

2

)
. (2.52)

Dnn =
∑
l

D̄nlSln ,

D̄nl = Snl e
−βEn

[
β

(∫ β

0

dxC(−i x) e−x∆ln −γ0

2

)

−
∫ β

0

dxC(−i x)x e−x∆ln

]
. (2.53)

2.4.1.1 Comparing the 0-th order result

Let us first compare the 0-th order reduced density matrix. For the

harmonic baths described by Eq. (2.2) it can be shown that the bath cor-

relator C(τ) obeys the Kubo-Martin-Schwinger (KMS) condition [1, 81, 91]

C(−τ) = C(τ − i β). This implies that the real part of the transition rates
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W̃ ′
ij obey the detailed balance condition [92] given by,

W̃ ′
ij = e−β∆ij W̃ ′

ji . (2.54)

Thus an analytic form of the 0-th order MRS can be obtained upon using

Eq. (2.38) as,

ρ(0)nm =
e−βEn

ZS

δn,m , (2.55)

where ZS =
∑

l e
−βEl . A direct comparison between Eq. (2.55) and

Eq. (2.50) yields the expected result that at the 0-th order CPT agrees

with our 0-th order MRS.

2.4.1.2 Comparing the 2-nd order result

More intriguing is the comparison of the MRS with the 2-nd order CPT-

result. The 2-nd order reduced density matrix obtained from CPT can be

manipulated further so that it indeed matches precisely our MRS. In order

to demonstrate this we first simplify the integral occurring in D̃ (Eq. (2.52))

by using the definition of the bath correlator C(τ) (Eq. (2.10)) to obtain

∫ β

0

dxC(−i x) e−x∆ij = −
∫ ∞

0

dω

π
J(ω)

(
nω

ω −∆ij

− (nω + 1)

ω +∆ij

)
(2.56)

−
e−β∆ij

π

∫ ∞

0

dωJ(ω)

(
nω

ω +∆ij

− (nω + 1)

ω −∆ij

)
,

where we have interchanged the ω- (stemming from C(τ)) and x- integration
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and performed the x-integral analytically. We next express the right hand

side in terms of the transition rates W̃ij, which enter in our MRS. Using

the Sokhotskyi-Plemelj formula8 [93] the imaginary part of the transition

rates is given by,

W̃ ′′
ij = P

∫ ∞

0

dω

π
J(ω)

(
nω

ω −∆ij

− (nω + 1)

ω +∆ij

)
. (2.57)

Therefore, using the above equation, Eq. (2.56) can be expressed as,

−
∫ β

0

dx e−x∆ij C(−i x) = W̃ ′′
ij + e−β∆ij W̃ ′′

ji . (2.58)

2-nd order off-diagonal comparison

Upon use of Eq. (2.58) the 2-nd order off-diagonal elements from CPT

(Eq. (2.51)) can be expressed in terms of W ′′
ij as

ρ(2),CPT

nm =
1

∆nm

∑
i

SniSim

[
e−βEi

ZS

(W ′′
ni −W ′′

mi)

+
e−βEn

ZS

W ′′
in −

e−βEm

ZS

W ′′
im

]
, (2.59)

where we have absorbed the γ0 into W̃ ′′
ij, according to Eq. (2.17). Formally

8The Sokhotskyi-Plemelj formula is given by,∫ ∞

0

e±iΩτ dτ = πδ(Ω)± iP

(
1

Ω

)
.

Here, P denotes the principal value.
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adding the real part of the transition rates W ′
ij into Eq. (2.59), but noting

that this so added contributions vanish identically by virtue of detailed

balance (Eq. (2.54)), we find the result for n ̸= m as,

ρ(2),CPT

nm = i
∑
i

SniSim

∆nm

[
W ∗

in

e−βEn

ZS

+Wim

e−βEm

ZS

− (Wni +W ∗
mi)

e−βEi

ZS

]
. (2.60)

Upon comparing Eq. (2.39) with Eq. (2.60) we find that the CPT and our

modified Redfield solution are identical.

2-nd order diagonal comparison

Most importantly, we next test the agreement between the 2-nd order diag-

onal elements from CPT with our MRS. Noting that the integral occurring

in Eq. (2.53) is the derivative of Eq. (2.58) w.r.t ∆ij we obtain,

ρ(2),CPT

nn =
∑
i

SniSin

(
e−βEi

ZS

V ′′
ni −

e−βEn

ZS

V ′′
in

)

−β
e−βEn

ZS

[∑
i

SniSinW
′′
in −

∑
i,l

SliSil

e−βEl

ZS

W ′′
il

]
, (2.61)

where V ′′
ij has been defined in Eq. (2.37). Because ∂ρ

(0)
ii /∂Ei = −βρ

(0)
ii ,

Eq. (2.48) exactly matches Eq. (2.61). Thus, CPT up to 2-nd order and

our MRS are indeed in perfect agreement. This shows that in the weak, but

finite coupling limit the long-time thermal reduced density matrix stemming
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from a non-Markovian theory is of the generalized Gibbs form, a point which

has been a topic of fierce debate in the literature [81, 94, 95, 96].

2.4.2 Numerical verification

As seen in the previous section the MRS is accurate up to second order

in system-bath coupling for a system in equilibrium. In this section our

goal will be two-fold:

1. To numerically verify the MRS for a system connected with two baths.

2. To compare the MRS with some of the other commonly used master

equations.

In the nonequilibrium case with two temperatures TL and TR one of the

main challenges has been to obtain a general form of the reduced density

matrix. Till date very little progress has been made in this field and exact

results are only available for a system of harmonic oscillators [97].

In order to numerically compare our results with the exact results of

Dhar et al. [97] obtained via nonequilibrium Greens function (NEGF) tech-

niques [44] we choose the system Hamiltonian to be a single harmonic os-

cillator given by,

HS =
p2

2M
+

1

2
Mω2

0x
2 , (2.62)

where x, p,M, and ω0 are the position, momentum, mass and angular fre-
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quency of the oscillator, respectively. The above Hamiltonian also turns

out to be an explicit and simple example where the rotating wave approxi-

mation described in sec. 2.1.2 cannot be correctly applied thus ensuring the

usefulness of the MRS.

The system is connected linearly to two baths, via the position coor-

dinate, having temperatures TL and TR. This implies that in Eq. (2.4)

SL,R = x. Both the baths are chosen to be of the Lorentz-Drude type with

J(ω) =
Mγω

1 + (ω/ωD)2
, (2.63)

where ωD is the cut-off frequency and γ is the phenomenological Stoke-

sian damping coefficient (Append. A.3.3) and the imaginary parts of the

transition rates W̃ ′′
ij are calculated using the Richardson extrapolation (Ap-

pend. A.4). The reduced density matrix is then calculated order by order

and we use the QR algorithm [98] to obtain the zeroth order RDM with the

additional constraint Tr(ρ(0)) = 1. Once the zeroth order RDM is known

the second order is easily calculated and the overall computational com-

plexity of the algorithm is only N3, due to the QR algorithm, where N is

the system Hilbert space dimension.

Next we define a discrepancy error DEX by,

DEX =
ρNEGF − ρX

γ/ω0

, (2.64)
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where ρNEGF is the exact reduced density matrix via NEGF, ρX is the reduced

density matrix obtained from other perturbative method; being either the

modified Redfield solution (X = MRS) or the Redfield quantum master

equation (X = RQME) and γ/ω0 is a dimensionless parameter specifying

the system-bath coupling strength.

At the lowest order, i.e. 0-th order, it can be quite easily shown that

the MRS, RQME and NEGF match. This should be expected since as we

saw in Sec. 2.2 the error in the RDM is at the 2-nd order in system-bath

coupling and not the 0-th order. Also since γ/ω0 is O(λ2) it is obvious

that if ρX (X = MRS or RQME) matches ρNEGF up to 2-nd order then the

discrepancy error DEX should be zero in the limit γ/ω0 → 0.

In Fig.2.1 we plot the discrepancy error for only the ground state of

the RDM. Since we have kept the temperature low the ground state is a

good representation of the RDM. As shown in the top panel as γ/ω0 → 0

the discrepancy error vanishes clearly indicating that the MRS matches the

NEGF result up to 2-nd order in system-bath coupling. Whereas in case

of the RQME the discrepancy error (Fig. 2.1: bottom panel) is a constant

as γ/ω0 → 0. Thus, it seems that for the nonequilibrium problem as well,

the MRS gives an accurate solution up to 2-nd order in the system-bath

coupling whereas the RQME fails completely in this limit. Temperature

difference (Temperature) does not seem to play a role here and for all tem-
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Figure 2.1: Plot of discrepancy error for the ground state population as a
function of dimensionless system-bath coupling strength (γ/ω0) for a har-
monic oscillator connected to two heat baths. Top panel shows the discrep-
ancy error for the MRS and the bottom panel is for the RQME. Figure (a)
is for temperatures TL = 156K and TR = 140K, whereas figure (b) is for
TL = 156K and TR = 78K. Other parameters used for the calculation are:
M = 1u, ω0 = 1.3x1014 Hz, and ωD = 10ω0.

perature differences (temperatures) the features are nearly the same9. This

is illustrated by Fig. 2.1(b) which has a greater temperature difference but

the essential features are the similar to Fig. 2.1(a).

Next we compare the populations of the lowest few levels of the MRS

with those obtained from Redfield quantum master equation and Lindblad

master equation as shown in Fig. 2.2. The model is again a single particle

harmonic oscillator linearly coupled to Lorentz-Drude heat baths. For this

9In case of higher temperature even the higher energy levels are populated and hence
one needs to look at discrepancy error as a matrix for different values of γ/ω0
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Figure 2.2: Histogram of Populations obtained via modified Redfield for-
malism (Black), Redfield master equation (Red), and Lindblad master equa-
tion (Green) for a single harmonic oscillator system connected to one bath
(Left) and two baths (Right). Top row corresponds to coupling strength
γ/ω0 = 0.01. The insets show the populations only for the first energy level.
Middle row corresponds to coupling strength γ/ω0 = 0.25 and bottom row
corresponds to coupling strength γ/ω0 = 0.5. The parameters used for this
simulation are: M = 1u, ω0 = 1.3x1014 Hz, and ωD = 10ω0. In case of
one bath problem T = 187K, whereas in case of two baths TL = 187K and
TR = 168K.

model we have already proved that the MRS is correct for both equilibrium

and nonequilibrium situations and hence it serves as a good testing ground

for other master equations. We first look at the results from the Lindblad

master equation (green lines in Fig. 2.2), which has been extensively used

in the literature [76, 77]. The Lindblad master equation is mainly preferred

due to the ease in computation and its preservation of positivity. Despite
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these advantages, the Lindblad solution is exactly the same for different

values of coupling strength as shown in Fig. 2.2. This clearly indicates that

the Lindblad solution can not capture the effects of finite system-bath cou-

pling, this numerical observation is a corroboration to the analytical proof

given in ref. [99] for the equilibrium problem. On the other hand the RQME

depicts severe deviations from the MRS even for small, but finite coupling

strengths. At slightly larger coupling strengths the RQME gives negative

probabilities as shown in the middle panel of Fig. 2.2. This unphysical

property of the RQME to give negative populations has been severely cri-

tiqued before [100, 101, 102]. Since the MRS does not produce negative

populations for these coupling strengths we can now assess that the reason

for this breakdown is rooted in the incorrect 2-nd order diagonal elements.

It is important to point out that the MRS does not guarantee positivity

and for slightly larger coupling strengths (γ/ω0 ≥ 0.6) the MRS gives neg-

ative populations indicating a breakdown of the 2-nd order approximation.

Nevertheless the MRS provides a decisive and salient improvement over

the RQME in that the coupling strengths that can be probed accurately

becomes sizable.

2.5 Summary

In summary, the Redfield master equation was derived from a micro-
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scopic model where only the weak system-bath coupling approximation was

made. Some of the commonly used assumptions like the rotating wave ap-

proximation and neglecting the Lamb-shifts were discussed along with their

consequences on the solution of the master equation. For a general second

order master equation it was shown that in order to obtain second order

accuracy in the long time limit we require the fourth order relaxation tensor

which is quite cumbersome to obtain. Specifically, only the second order

diagonal elements required the knowledge of the fourth order relaxation

tensor.

In order to obtain the second order diagonal elements correctly we at-

tempted the use of Dyson expansion and found obscure divergences and

dependence on initial conditions at all times. Being unphysical we then re-

sorted to our novel technique termed as the the modified Redfield solution

in which we used analytic continuation techniques to obtain the 2-nd order

diagonal elements from the correct 2-nd order off-diagonal ones. We then

showed that the MRS matches exactly the generalized Gibbs distribution

up to second order in system-bath coupling for the equilibrium one bath

problem. In the end, we also numerically checked our MRS with the exact

NEGF results for a harmonic system connected to two baths. Subtle cal-

culations confirmed that the MRS gives the correct second order elements,

whereas the RQME doesn’t match the exact solution up to second order.
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Lastly, we compared the commonly used master equations, i.e., Lindblad

and Redfield formulations, with our MRS and pointed out the limitations

of these methods. This undoubtedly confirmed that the MRS is a novel

technique which allows one to correctly probe finite system-bath coupling

strengths in anharmonic systems in the long time limit.
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Chapter 3
Thermal transport

If I have seen further than
others, it is by standing upon
the shoulders of giants.

Isaac Newton

In this chapter, formulations to study thermal transport in anharmonic

molecular junctions will be introduced. In the first part, a formulation simi-

lar to the quantum master equation approach will be presented. The master

equation like formulation will treat the anharmonicity exactly whereas the

system-bath coupling will be treated perturbatively. Special emphasis will

be laid on the steady state transport properties of several anharmonic exam-

ples like the FPU-β, ϕ4 and Duffing oscillator models. In the next part, we

will introduce a heuristic method based on nonequilibrium Green’s function

(NEGF) approach termed as quantum self-consistent mean field (QSCMF)

method, which in principle can treat any strength of system-bath coupling.

Several comparisons to other known approaches will be presented which
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will clarify the validity regime of QSCMF.

3.1 Master equation like formulation

Recently, anharmonic systems have gained a lot of attention in the

field of thermal transport due to their various technological applications

[103, 104, 105, 106, 107, 108]. This has led to a renewed interest in the quan-

tum master equation formulation and several attempts have been made to

calculate transport properties in anharmonic systems using this novel ap-

proach [9, 10, 11, 12, 13]. In this section our main goal is to develop a

rigorous theory similar to the Redfield quantum master equation (RQME)

to calculate heat current in systems with strong anharmonicity.

3.1.1 Second order perturbation theory

In this section we will calculate heat current up to second order in the

system-bath coupling. Although we will mainly focus on bosonic Hamilto-

nian the approach outlined here could be easily extended to fermionic ones

and more interestingly a combination of both. We will start with the basic

definition of heat current,

IL(t) = −
⟨
dHL

B(t)

dt

⟩
, (3.1)
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which is inspired by the change in energy of the (infinite) bath. In general

one needs to distinguish between heat current (ILheat(t)) and energy current

(ILenergy(t)) as
1,

ILheat(t) = ILenergy(t)− µILparticle(t) , (3.2)

where µ is the chemical potential and ILparticle(t) is the particle current. For-

tunately, in case of harmonic oscillator baths since there are no conserved

particles that are transported the particle current is zero causing the heat

current to be the same as energy current.

The averaged operator above is to be interpreted in the Heisenberg way,

i dA/dt = [A,Htot]. Throughout this section we will restrict ourselves to

two baths, which is the minimum number to study transport properties.

The baths will be labeled with super-scripts ‘L’ and ‘R’ indicating left

and right heat baths and hence throughout this derivation the summation

label α will take only two values. The time evolution will be handled

perturbatively, much as one derives the RQME as outlined in Sec. 2.1.1.

Using the Heisenberg equation of motion in Eq. (3.1) we obtain,

IL(t) = −λ
⟨
AL(t)

⟩
, (3.3)

1In order to understand the relation between heat and energy current one can look
at the analogous reversible thermodynamic relation dQ = dE −

∑
i µidNi
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where

AL(t) = (F L ⊗ EL) (t) ,

F L = SL ,

EL = i [BL, HL

B] . (3.4)

We recall that SL is the system operator connected to the bath operator

BL of the left bath. The time evolution of the operator AL(t) is defined in

terms of the evolution operator,

AL(t) = U(t, t0)
†AL(t0)U(t, t0) . (3.5)

Now we expand the evolution operator U(t, t0) as we did in Sec. 2.1.1 up to

first order in λ as,

U(t, t0) = U0(t, t0)UI(t, t0) ,

U0(t, t0) = e−iHo(t−t0) ,

UI(t, t0) = I− i λ
∑
α

∫ t−t0

0

dsH̃α
SB(s) . (3.6)

Here H̃α
SB(s) is the free evolution operator according to U0(t, t0). Above

since we have only expanded up to first order in λ the second order term

Hα
RN plays no role. Using the above expression of the evolution operator in
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Eq. (3.5) we get,

AL(t) = ÃL(t)− i λ

∫ t

0

du
[
ÃL(t), H̃L

SB(u)
]
, (3.7)

where ÃL(s) is again a free evolution. In order to obtain Eq. (3.7), similar to

Sec. 2.1.1 we have set the initial time t0 = 0 and exploited the fact that the

two heat baths are not directly coupled. In case of the current formulation

we expand only to first order because IL(t) in Eq. (3.3) is already first order

in λ.

From now on to simplify notation we will drop the bath label α. It is

worth noting that even though Eq. (3.7) has only the left bath label, the

right bath comes in due to the free evolution of the operators (∵ Ho =

HS +
∑

α H
α
B ). Now since in Eq. (3.7) we require only the free evolution

Ã(t) = F̃ (t)⊗ Ẽ(t) we express the operators F̃ (t) and Ẽ(t) in terms of the

free evolving Hubbard operator at time t as,

F̃ (t) =
∑
n,m

FnmX̃
nm(t) , (3.8)

with X̃nm(t) = U0(t, 0)
†|m
⟩⟨
n|U0(t, 0), where |n

⟩
, |m
⟩
are eigenvectors of

the system Hamiltonian in the energy eigenbasis as defined in Sec. 2.1.1.
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Similarly,

S̃(u) =
∑
kl

∑
nm

Sklg
kl
nm(u; t)X̃

nm(t) , (3.9)

where

gklnm(u; t) = Tr
[
(X̃mn)†U†

0(u, t)X̃
klU0(u, t)

]
, (3.10)

is a freely evolving Green’s function of the system.

Now the operator A(t) can be expressed in terms of X̃(t) using Eqs. (3.8)

and (3.9) in Eq. (3.7) as,

λA(t) = λ
∑
n,m

X̃nm(t)⊗ FnmẼ(t)

−i λ2

∫ t

0

du

∑
i,j

n,k,l

X̃nj(t)⊗ FniSklg
kl
ij Ẽ(t)B̃(u)

−
∑
i,j

m,k,l

X̃ im(t)⊗ FjmSklg
kl
ij B̃(u)Ẽ(t)

 . (3.11)

Similar to our RQME derivation outlined in Sec. 2.1.1 we use factorized

initial condition (ρtot(0) = ρL
B(0) ⊗ ρS(0) ⊗ ρR

B(0)) and then trace over the
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bath degrees of freedom to obtain,

⟨
A(t)

⟩
=

∑
n,m

⟨
X̃nm(t)

⟩
Fnm

⟨
E(t)

⟩
−i
∑
n,m

⟨
X̃nm(t)

⟩∑
j

(
FnjS

>
jm(t)− S<

nj(t)Fjm

)
, (3.12)

where,

S>
ij (t) = Sij

∫ t

0

du e−i∆iju χ(u) , (3.13)

S<(t) = (S>(t))
†
,

χ(u) = TrB

(
Ẽ(t)B̃(t− u)ρB

)
, (3.14)

and we have used gklnm(u; t) = ei (u−t)∆kl δk,nδl,m for time-independentHS. We

have also set the dimensionless parameter λ = 1 above. Finally, noting that⟨
B
⟩
= 0 gives

⟨
E(t)

⟩
= 0, the heat current in Eq. (3.3) can be expressed

as,

I(t) = Tr
(
ρ(0)(t)I(t)

)
,

I(t) = i (SS>(t)− S<(t)S) , (3.15)

where S< and S> are defined in Eq. (3.13). Above ρ(0)(t) is the lowest order

contribution to the RDM obtained by solving the RQME (Eq. (2.14)) with

system-bath coupling strength λ → 0. In the steady state, as shown in
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Chap. 2, an explicit form of equations (Eq. (2.38)) to solve for ρ(0)(∞) can

be obtained. It is important to stress at this stage that since the current

operator I(t) is already up to second order in system-bath coupling we have

taken the liberty to replace X̃nm(t) by ρ(0)(t). This approximation takes

into account the fact that we require the accuracy of the current only up

to second order in system-bath coupling and is quite similar to the closure

condition in the derivation of the RQME (Sec. 2.1.1) where we replaced

ρ̃S(t) with ρ(t).

Thus, Eq. (3.15) is a master equation like formulation which provides

a concrete way to calculate the heat current not only in the steady state

but at any time t. The explicit time dependence in the operators S<(t)

and S>(t) is sometimes referred to as being non-Markovian. In our 2-nd

order formulation we come across new bath-correlators χ(τ), which have

been defined in Eq. (3.14). In terms of the spectral density defined in

Append. A, Eq. (A.4), the new bath correlator is given by,

χ(τ) =

∫ ∞

0

dω

π
ωJ(ω)

(
coth

(
βω

2

)
sin(ωτ) + i cos(ωτ)

)
. (3.16)

Comparing the new bath correlator χ(τ) with the bath correlator occurring

in the RQME C(τ) (Eq. (2.10)) we find that,

χ(τ) = −C(τ)

dτ
, (3.17)
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and hence the operator S>(t) can be computed as,

S>
ij (t) = Sij

(
C(0)− e−i∆ijtC(t)− i∆ijW̃ij

)
. (3.18)

Note that, similar to our derivation of the RQME nothing particular to the

harmonic baths has been invoked. Any other bath, e.g. spin baths [109],

can be used as long as we can compute its bath correlators C(τ) and χ(τ).

Thus only the relaxation rates W̃ (Eq. (2.17)) and the operators S<(t),

S>(t) are affected.

Earlier works employing the master equation to calculate heat current

have made additional approximations like symmetrization of the heat cur-

rent [10, 110], use of the Pauli master equation to calculate the reduced

density matrix [10, 11, 12] or the use of Green-Kubo formula [9, 13], which

is strictly valid for thermodynamic systems [111]. Although all these ap-

proximations provide a simpler route to calculate current, they can not be

justified from physical or mathematical grounds and as we have seen above

none of these approximations are needed in our derivation. A subtle impli-

cation of using only the weak system-bath coupling approximation is the

possibility of extending our theory to higher orders, which in case of any

other method can not be envisaged.
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3.1.1.1 Transient heat current at short times

One of the most intriguing aspects of heat current occurs in the short

time limit. Cuansing et al. [112] found that at short times the heat current

for harmonic systems always flows into the baths. This counter intuitive

phenomenon is mainly because at the initial time t0 = 0 when we connect

the two baths to the system we pump in extra energy which inevitably flows

into the baths.

The interesting question obviously is that whether such a phenomena is

true for anharmonic systems as well? and if so how does our perturbative

theory compare to the exact results obtained via NEGF [113]. In order to

answer these questions we first look at the short-time limit of Eq. (3.15).

Performing a Taylor expansion of the bath correlator C(τ) at short times

we obtain,

C(τ) = C(0) + τC1 +O(τ 2) , (3.19)

where C1 is some unknown function evaluated at τ = 0. The relaxation

rate W̃ij from Eq. (2.17) is therefore given by,

W̃ij =

∫ τ

0

dτ ′ e−i∆ijτ
′
C(τ ′) ,

≈
∫ τ

0

dτ ′ C(0) + τ ′ (C1 − i∆C(0)) ,
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≈ C(0)τ , (3.20)

up to leading order in τ . Thus using Eq. (3.18) the operator S> becomes,

S>
ij (τ) ≈ −SijC1τ . (3.21)

Noting that the imaginary part of Im[C(0)] = 0 (Eq. (2.10)), the heat-

current in the short-time limit can be simplified as

I(t) ≈ 2C′′(τ)Tr
(
ρ(0)(0)SS

)
, (3.22)

where ρ(0)(0) is the initial condition of ρ(0) and C′′(τ) is the imaginary part

of the bath correlator function C(τ) at short-times, which by definition is

always negative indicating the current always flows into the baths.

It is also interesting to see that at short times the current is mainly

influenced by the bath and the form of the coupling, whereas the system

plays a minimal role in this regime. For the specific case of the system

comprising of a single harmonic oscillator the above perturbative result is

exact and true for any system-bath coupling strength [113].

3.1.1.2 Steady-state heat current

Next we will simplify Eq. (3.15) so that it is only applicable to the

steady state. In order to do this we will first set t = ∞. Since the bath
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correlator decays with time C(∞) will be zero for the steady state problem.

Also by definition Im[C(0)] = 0 and thus only the transition rates W̃ij will

contribute to the the current operator

Iij =
∑
l

SilSlj

(
∆ljW̃lj +∆liW̃

∗
li

)
. (3.23)

In the steady state, according to Eq. (2.38) ρ(0)(∞) is diagonal which im-

mediately gives us the heat current as,

I = 2
∑
l,i

∆liρ
(0)
ii |Sil|2W̃ ′

li , (3.24)

where W̃ ′
ij is defined in Eq. (2.17) and we have dropped the time label

(= ∞) for notational simplicity. The simplified steady state heat current

is the same as the one proposed by Wu et al. [12] based on phenomeno-

logical modeling and physical intuitions, which in case of a single harmonic

oscillator can be mapped to a Landauer formula [11].

3.1.2 Few simple applications

In this section we apply the master equation like formulation outlined

above to evaluate the steady state heat current for a variety of bosonic

anharmonic systems. One of the main difficulties in the numerical imple-

mentation for bosonic systems is the number of basis vectors required to

correctly represent the system at fixed temperatures. In order to correctly
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capture all finite temperature effects we choose a system Hilbert space large

enough so that even at the highest temperature the probability of finding

the particles in the highest energy levels is approximately zero. We do

this by iteratively increasing the size of the system Hilbert space until at

least five energy levels have a population less than 10−15. Thus, in case of

bosonic systems we are limited to molecular junctions consisting of one or

two particles only. With such one or two particle molecular junctions we

can treat system Hilbert space of ∼ 1600 levels, which are enough to reach

around five times the Debye temperature.

Next we shift our attention to thermal transport, where one of the im-

portant transport coefficient is the thermal conductivity. But for molecular

junctions, since the cross-sectional area of the system interacting with the

bath is not well defined, we can not define the thermal conductivity of the

system. Hence in such cases we define thermal conductance as,

σ = lim
TL→T,TR→T

IL

TL − TR

. (3.25)

In order to numerically evaluate the thermal conductance we choose a

small temperature difference between the two baths such that the limit

in Eq. (3.25) becomes valid. For all the systems considered in this section

we find that a temperature difference of 10% is optimal and even if we

decrease the temperature difference further the conductance of the system
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Figure 3.1: Graph of current (IL) vs temperature of the left lead (TL) using
Landauer formula (black) and the master equation like formulation (red)
for the Lorentz-Drude model. The insets show current as a function of the
strength of the dimensionless system-bath coupling strength squared. (a)
shows the current comparison for a harmonic one particle system and (b)
shows the comparison for a harmonic two particle case. The parameters

used for the one particle system are; M = 1u and ω2
0 = 60.321 meV/Å

2
.

The parameters used for the two particle case are; M = 1u, ω2
0 = 30.1605,

and Ω2 = 30.1605 meV/Å
2
. The common bath parameters are; γ = 6.0321√

meV/Å, ωD = 10 eV, and TR = 0.9TL. For both the insets the same
system parameters and bath parameters are used except TL = 350 K and
γ is varied. For the two particle inset ω+ =

√
ω2

0 + Ω2.

does not change.

3.1.2.1 Harmonic oscillator system

We will first validate our approach by comparing with the exact NEGF

formulation [44] for harmonic systems. Due to the computational limi-

tations we will consider only one and two particle systems given by the
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Hamiltonian,

HS =
∑
i=1,2

{
p2i
2M

+
Mω2

0

2
x2
i

}
+

MΩ2

2
(x1 − x2)

2 , (3.26)

where ω0 and Ω are the on-site and inter-particle harmonic frequencies re-

spectively. For the one particle case the sum is over a single particle and

Ω = 0. The above system is then connected to the Lorentz-Drude heat

baths via the position operator, i.e., SL = SR = x1 for the one particle case

and SL = x1, S
R = x2 for two particles.

As shown in Fig. 3.1 we compare the master equation like formulation

(red curve) with the standard Landauer formula for heat current (black

curve). The Landauer formula, which can be derived using NEGF tech-

niques [44] or the Langevin equation approach [114] is rigorous and exact for

harmonic systems . For the one and two particle case we find no noticeable

difference between the Landauer and master equation like formulation for

the entire temperature range as shown in Figs. 3.1a and 3.1b respectively.

The insets show heat current as a function of the dimensionless system-

bath coupling strength. We see that for both one and two particle cases

curves exactly overlap in the weak system-bath coupling regime, i.e., up to

γ ∼ 0.01
√

ω2
0 + Ω2 and in the strong coupling regime γ ∼ 0.2

√
ω2

0 + Ω2 a

considerable difference is observed as expected.
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3.1.2.2 FPU-β and ϕ4 model

One of the greatest advantages of the master equation like formulation

is the power to deal with strongly anharmonic systems. We will now look

at two commonly studied anharmonic models; FPU-β and ϕ4 model, whose

Hamiltonians are given by

HS =
∑
i=1,2

{
p2i
2M

+
Mω2

0

2
x2
i

}
+

Ω2

2
(x1 − x2)

2

+
∑
i=1,2

λ0x
4
i + λ(x1 − x2)

4 , (3.27)

where λ0 and λ are the on-site and inter-particle quartic potentials. When

λ0 = 0 the model is referred to as the FPU-β model, whereas λ = 0 corre-

sponds to the ϕ4 model. Similar to the harmonic oscillator case the system

is again connected to Lorentz-Drude heat baths with SL = SR = x1 for one

particle and SL = x1, S
R = x2 for two particles. In Fig. 3.2 we plot the

conductance, defined in Eq. (3.25), as a function of average temperature

T = (TL + TR)/2 for one particle ϕ4 model (Fig. 3.2a) and for two particle

FPU-β model (Fig. 3.2b). For the one particle ϕ4 model (Fig. 3.2a), we see

that even with the slightest amount of anharmonicity the system behaves

quite differently as compared to the harmonic case. The anharmonicity not

only changes the behavior at the high temperature (classical regime), but

also changes the behavior of low-temperature thermal conductance (quan-
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Figure 3.2: Graph
of conductance (σ)
vs temperature
[T = (TL + TR)/2]
for the one and two
particles FPU-β and
ϕ4 models using
the Lorentz-Drude
heat baths. Fig. (a)
shows conductance
for a one particle
ϕ4 model, (b) for a
two particle FPU-β
model and (c) shows
the low-temperature
behavior for a two
particle FPU-β + ϕ4

model. The parame-
ters used for the one
particle system are;
M = 1u and ω2

0 =

60.321 meV/Å
2
,

whereas for the
two particle case
are; M = 1u,
ω2

0 = 30.1605,
Ω2 = 30.1605
meV/Å

2
, and

ω+ =
√
ω2

0 + Ω2.
The common
bath parameters
are; γ = 6.0321√
meV/Å,

ωD = 10 eV, and
TR = 0.9TL. λ0/ω0,
λ/ω+ and λ0/ω

+ has

the unit of Å
−2
.
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tum regime).

Next, we will look at the two particle FPU-β model, i.e., with λ0 = 0

as shown in Fig. 3.2b. Surprisingly, the low temperature behavior of the

FPU-β model is not affected by the strength of the anharmonicity. This is

in stark contrast to the result obtained for the one particle case and possibly

could be due to the translational invariance of the anharmonic potential.

In order to validate this claim we vary both λ0 and λ as shown in Fig. 3.2c.

Clearly, if λ0 ̸= 0 the translational invariance of the anharmonic potential is

broken and the thermal conductance strongly depends on the anharmonic

strength at low temperatures, whereas for λ0 = 0 the low temperature

thermal conductance is ballistic, i.e., the strength of λ plays no role.

3.1.2.3 Duffing oscillator system

Lastly, we look at the Duffing oscillator model, which represents a par-

ticle trapped in a double-well potential. The system Hamiltonian for the

Duffing oscillator model is given by,

HS =
∑
i=1,2

{
p2i
2M

− Mω2
0

2
x2
i + λ0x

4
i

}
+

Ω2

2
(x1 − x2)

2 , (3.28)

where importantly the harmonic on-site potential has a negative sign giving

the potential a double-well nature. Recently, using molecular dynamics

simulations Ai et al. [115] have pointed out this model exhibits negative
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differential thermal conductance (NDTC) in the classical regime making it

an interesting candidate for the study of quantum thermal transport.

We apply the master equation like formulation to evaluate the ther-

mal conductance for the one particle Duffing oscillator model as shown in

Fig. 3.3a. First let us look at the two extreme cases when λ0/ω0 = 0.01

and λ0/ω0 = 10. The barrier height of the double-well potential is inversely

proportional to λ0 and thus when λ0/ω0 = 0.01 the particle remains con-

fined to either one side of the barrier (indicated by the nearly degenerate

eigenvalues in Table 3.1), whereas in case of λ0/ω0 = 10.0 the barrier is so

low that the molecule simply experiences an overall quartic potential. Both

these cases may be considered as the molecule experiencing only an effective

quartic on-site potential. In these cases no NDTC behavior is observed in

the quantum regime.

For intermediate values of the quartic term [λ0/ω0 = 0.05; 0.10] we ob-

serve negative differential thermal conductance (NDTC) behavior in the

quantum regime (see Fig. 3.3a inset). In order to explain this quantum be-

havior we analyze the lowest three eigenvalues and their populations given

by ρ(0) as tabulated in Table 3.1. Since the maxima of the double-well

potential barrier is at 0.0 eV, we can clearly see from Table 3.1 that for

λ0/ω0 = 0.05; 0.10 the lowest three levels, which have a finite occupation,

are just below the maxima of the barrier. Thus, due to quantum nature the
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Figure 3.3: Graph of conductance (σ) vs temperature [T = (TL +TR)/2] for
the one (Fig. (a)) and two (Fig. (b)) particles Duffing oscillator model using
the Lorentz-Drude heat baths. Fig. (a) inset shows current vs temperature

difference at TL = 140K and λ0/ω0 = 0.05 Å
−2
. For the one particle system

ω2
0 = 60.321 meV/Å

2
, whereas for the two particle case ω2

0 = 90.4815,

Ω2 = 30.1605 meV/Å
2
, and ω− =

√
ω2

0 − Ω2. The common parameters

are; M = 1u, γ = 6.0321
√
meV/Å, ωD = 10 eV, and TR = 0.9TL.
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molecule can tunnel through the barrier and is not confined well within the

double-well as in the case of λ0/ω0 = 0.01, which gives rise to the NDTC

behavior.

Next, let us try to explain the behavior of thermal conductance as a

function of temperature for a specific case of λ0/ω0 = 0.05. The lowest two

energy levels for the parameters used in Fig. 3.3a are quite close, ∼ 12.5meV

(130 K). This is the exact temperature range at which the thermal conduc-

tance increases sharply indicating that the bath modes corresponding to

that energy difference start conducting heat. In between 100 to 300 K,

since the third energy level is quite far apart the system behaves like a two-

level system, commonly referred to as the spin-boson model [10]. In this

temperature range since only two levels transfer heat the current saturates

causing the thermal conductance to decrease with increasing temperature.

It is only above 210 K that the third energy level starts gaining some finite

population as shown in Table 3.1 and thus beyond this temperature, i.e.,

∼ 300K, the thermal conductance again starts to increase.

In case of the two particle Duffing oscillator model we observe simi-

lar behavior to the one particle case as shown in Fig. 3.3b. An analysis

similar to the one particle case, explaining the behavior of thermal con-

ductance, can be made with the eigenvalues and the populations shown in

Table 3.1. For λ0/
√

ω2
0 − Ω2 = 0.01, 0.05 the barrier is very high and hence
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λ′ Eigenvalues Populations in%
One particle Two particle One particle Two particle

Å
−2

(10−3 eV) (T = 210 K) (T = 105 K)
-449.54 -1815.01 49.78 49.99

0.01 -449.53 -1815.01 49.77 49.00
-356.11 -1702.86 0.22 0.00
-130.41 -424.28 67.33 50.25

0.05 -117.94 -424.19 32.60 49.74
-6.26 -287.59 0.05 0.00
-74.89 -214.66 86.13 59.21

0.10 -43.44 -211.45 13.84 40.77
75.73 -85.70 0.01 0.01
10.60 18.01 99.53 99.96

0.50 103.44 88.18 0.46 0.03
242.11 135.98 0.00 0.00
39.79 78.57 99.92 99.99

1.00 163.29 186.79 0.07 0.00
320.20 217.78 0.00 0.00
133.16 266.28 99.99 99.99

10.0 390.44 518.69 0.00 0.00
688.89 528.42 0.00 0.00

Table 3.1: Table of first three eigenvalues and corresponding populations
for the one particle (λ′ = λ0/ω0) and two particle (λ′ = λ0/

√
ω2

0 − Ω2)
molecule confined in a double-well potential.

the molecule remains confined to either one side of the well indicated by

the nearly degenerate eigenvalues and corresponding 50-50% probabilities

[see Table 3.1]. For λ0/
√
ω2

0 − Ω2 = 0.1 we can observe NDTC [not shown]

in the quantum regime because only for this value the barrier is neither too

high nor too low and hence the molecule can tunnel through the barrier,

since the populated states are just below 0.0 eV (barrier maxima) as seen

from Table 3.1.

The two particle system brings another interesting aspect, i.e., the role
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of inter-particle anharmonic interactions. If the system Hamiltonian con-

tains an extra term of the form λ(x1 − x2)
4, where λ is the inter-particle

anharmonic spring constant, then λ ̸= 0 plays a small role in determining

whether the system shows NDTC or not. As we have seen before the inter-

particle anharmonic spring constant does not affect the low-temperature

thermal conductance and since NDTC in the Duffing oscillator models is

observed in the low-temperature quantum regime we do not expect NDTC

to be affected by λ. At high temperatures the effect of λ is to shift the ther-

mal conductance to a lower value as compared to the harmonic spring. This

behavior is also expected since anharmonic interaction between the atoms

leads to more scattering causing the thermal conductance to decrease as

compared to a harmonic interaction. Thus, in both one and two particle

systems NDTC behavior can be observed by only tuning the height of the

barrier, i.e., λ0 and other inter-particle effects seem to play a small role.

3.2 Quantum self-consistent mean field ap-

proximation

One of the cornerstones to study thermal transport exactly in harmonic

systems has been the nonequilibrium Green’s function (NEGF) method

[44]. Primarily, the NEGF approach has been used to calculate steady-state

thermal transport in harmonic systems using the Landauer formula, which

has been inspired by the study in mesoscopic electrical transport [3, 4].
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Only recently has this approach been applied to study concrete anharmonic

examples [45, 46, 47], where the anharmonicity is treated perturbatively and

the system-bath coupling exactly. This is the exact opposite limit compared

to our master equation like formulation, where the anharmonicity is treated

exactly and the system-bath coupling perturbatively. Captivated by this

fact, in this section our main goal is to develop a formulation based on

the NEGF method to deal with anharmonic systems with strong system-

bath interaction. We will mainly focus on this so-called quantum self-

consistent mean field approximation (QSCMF) and validate this approach

by comparing with the other existing methods.

3.2.1 Theory

In this section we will formulate the QSCMF approach for systems con-

taining quartic anharmonicity. One of our main inspirations behind this

formulation has come from the earlier works in classical [116, 117, 118] self-

consistent phonon theory and the quantum corrections [119] thereof. The

QSCMF approach formulated here is not as general as the master equation

like formulation outlined in Sec. 3.1, i.e., it can not deal with any general

system Hamiltonian, but its main advantage is the possibility of exploring

the strong system-bath coupling regime. Thus, we begin with a specific
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form of the system Hamiltonian given by

HS =
1

2M
PTP+

1

2
XTKX+M2

∑
ijkl

Tijklxixjxkxl , (3.29)

where P and X are column vectors consisting of all system momentum (pi)

and positions (xi) respectively. K is commonly referred to as the spring

constant matrix and Tijkl is an arbitrary four-tensor containing information

about the strength of the quartic anharmonicity. In order to simplify nota-

tion we shift to the mass-normalized position co-ordinates, i.e., we use the

transformation ui =
√
Mxi and obtain

HS =
1

2
U̇TU̇+

1

2
UTKU+

∑
ijkl

Tijkluiujukul , (3.30)

where U and U̇ are column vectors representing the mass-normalized posi-

tions and conjugate momenta respectively.

We will first formulate the quantum self-consistent mean field approach

and in order to do this we will first define a n-point correlation function

given by,

G(1, 2, · · · , n) = −i
⟨
Tcu(1)u(2) · · ·u(n)

⟩
, (3.31)

where Tc is the contour-order operator on the Keldysh contour [120] and
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u(i) = uji
(τi); where ji is the space index and τi is a variable on the Keldysh

contour from −∞ to +∞ and back from +∞ to −∞. Using standard

procedure of differentiation [44, 121] on the contour and fixing the system-

bath coupling operator SL,R as the position operator the equation of motion

for the 2−point correlation2 function is,

(
I

∂2

∂τ 21
+K + ΣRN + Σ

)
G(1, 2)

= 4i
∑

j3,j4,j5

Tj1j3j4j5
⟨Tcuj3

(τ1)uj4
(τ1)uj5

(τ1)uj2
(τ2)⟩ − I δ(1, 2) , (3.32)

where I is an identity matrix, δ(1, 2) = δ(τ1, τ2)δj1,j2 is a delta function, ΣRN

will be termed as the renormalized self-energy due to the potential renor-

malization term HRN from Eq. (2.1), Σ is the self-energy of the baths in

contour time and the term ΣG(τ1, τ2)
[
=
∫
C
dτ ′Σ(τ1, τ

′)G(τ ′, τ2)
]
is a con-

volution over the Keldysh contour. The self-energy of the baths contains

all the information about the baths and the system-bath coupling and in

case of the Rubin baths, discussed in Append. A.3.1, the self-energy of the

baths3 can be obtained by solving,

∂2gα(τ1, τ2)

∂τ 21
+Kαgα(τ1, τ2) = −I δ(τ1, τ2) ,

2The 2-point correlation function is the usually referred to as the contour ordered
Green’s function.

3In case of the phenomenological bath models, like the exponential cut-off model and
the Lorentz-Drude model (described in Apend. A.3.2 and A.3.3 respectively), since there
is no Hamiltonian governing the baths one can only make indirect connections between
the self-energy and the spectral density of these models as shown in Ref. [122].
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Σ(τ1, τ2) =
∑
α

VSαgα(τ1, τ2)VαS . (3.33)

The renormalized self-energy is given by,

ΣRN =
∑
α

VSαγ
α
0

2
VαS , (3.34)

whereKα, gα are the spring constant matrix and the Green’s function of the

αth lead. VSα = (VαS)T is a matrix containing one’s only for the elements

which connect the αth lead to the system, whereas all other elements are

zero. Since gL,R are infinite dimension matrices the dimensions of VSα are

N ×∞, where N is the number of atoms in the system.

Equation (3.32) relates the 2−point correlation function G(1, 2) to the

4−point correlation function i ⟨Tcuj3
(τ1)uj4

(τ1)uj5
(τ1)uj2

(τ2)⟩ and is the first

equation of a BogoliubovBornGreenKirkwoodYvon (BBGKY) hierarchy [8].

Unfortunately, the BBGKY hierarchy does not close onto itself and hence

we truncate it by assuming,

−i G(1, 2, 3, 4) ∼ G(1, 2)G(3, 4) +G(1, 3)G(2, 4) +G(1, 4)G(2, 3) . (3.35)

The above decomposition is like a mean-field approximation and is exact

if there is no anharmonicity, i.e., Wick’s theorem [123] holds. However we

still make this bold ad-hoc assumption in order to simplify our calculations.
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Using the above approximation and the fact that Tijkl is symmetric under

the permutation of indices the equation of motion (with space and contour

time labels explicit) transforms into,

∂2Gj1j2
(τ1, τ2)

∂τ 21
+
∑
j3

{
Kj1j3

Gj3j2
(τ1, τ2) + ΣRN

j1j3
Gj3j2

(τ1, τ2)

+

∫
C

dτ ′Σj1j3
(τ1, τ

′)Gj3j2
(τ ′, τ2)

}
= 12i

∑
j3,j4,j5

Tj1j3j4j5
Gj4j5

(0)Gj3j2
(τ1, τ2)− δj1,j2δ(τ1, τ2) , (3.36)

where we have used the fact that in the steady state due to time translation

invariance Gj4j5
(τ1, τ1) = Gj4j5

(0). Rearranging the above equation using,

K̃j1j3
= Kj1j3

+KRN

j1j3
+ 12i

∑
j4,j5

Tj1j3j4j5
Gj4j5

(0) , (3.37)

we obtain

(
I

∂2

∂τ 21
+ K̃ + Σ

)
G(1, 2) = −I δ(1, 2) . (3.38)

Now if we define
(
I ∂2/∂τ 21 + K̃

)
g = −I δ(1, 2), we can easily see that

G follows the standard Dyson equation [124] given by,

G = g + gΣG . (3.39)
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Thus, we have the standard solution [8] to the retarded Green’s function in

the frequency domain as,

Gr[ω] =
1

ω2 − K̃ − Σr(ω)
, (3.40)

where Σr(ω) is the retarded self-energy of the baths. Now using Lan-

greth’s theorem [125] the lesser Green’s function can be obtained using

G< = GrΣ<Ga, where Ga = (Gr)†. Noting that G(0) = G<(0) we can

iteratively obtain Gr, since for each evaluation of K̃ we need G<. Accord-

ing to Eq. (3.38) the anharmonic problem has been essentially converted

to a harmonic one and we can easily obtain the heat current for a system

connected to two baths using the Landauer formula [44] as,

IL =

∫ ∞

0

dω

2π
ωT (ω)(nL − nR) , (3.41)

where nL,R = (exp[ω/TL,R]−1)−1 is the Bose-Einstein distribution for phon-

ons, and T [ω] is known as the transmission coefficient [126] given by,

T [ω] = Tr(GrΓLG
aΓR) , (3.42)

where ΓL,R = −2Im[Σr
L,R(ω)] and we have split the self-energy of the bath

as Σr(ω) = Σr
L(ω) + Σr

R(ω).
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Let us end this section by a short comment on the QSMF approach. In

the above outlined approach the mean-field like approximation Eq. (3.35)

neglected all the higher order correlations and converted them to 2-point

correlation functions. Although this crude approximation helps us to make

the system ballistic it implies that the mean-free path of the phonons in our

approach is infinite. Hence intuitively our approach should only be valid

for extremely small system sizes where the mean-free path of the phonon is

much larger than the system size.

3.2.2 Corroborating the QSCMF approach

The QSCMF approach outlined above made use of an uncontrolled

mean-field like approximation and in this section we will try to compare

our approach to various other techniques to validate our theory and elu-

cidate its limitations. We will first compare the QSCMF approach to the

master equation like approach outlined in Sec. 3.1. In order to make this

comparison, as shown in ref. [122], we connect the self-energy of the bath

to the spectral density via,

Σ̄r
L,R(ω) =

1

π
P

∫ ∞

−∞

JL,R(ω′)

ω − ω′ dω
′ − i JL,R(ω) . (3.43)

The above relation can be easily justified by obtaining the Green’s functions

via the Langevin equation approach [114] and using the basic definition of
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Figure 3.4: Graph of current (IL) vs temperature [T = (TL + TR)/2] for the
one and two particles FPU-β and ϕ4 models using the Lorentz-Drude heat
baths. Fig. (a) shows heat current for a one particle ϕ4 model and (b) shows
the heat current for a two particle FPU-β + ϕ4 model. The parameters used

for the one particle system are; M = 1u and ω2
0 = 60.321 meV/Å

2
. The

parameters used for the two particle case are; M = 1u, ω2
0 = 30.1605, Ω2 =

30.1605 meV/Å
2
, and ω+ =

√
ω2

0 + Ω2. The common bath parameters are;

γ = 6.0321
√
meV/Å, ωD = 10 eV, TL = 1.25T and TR = 0.75T . The unit

for λ0/ω0, λ/ω
+ and λ0/ω

+ is Å
−2
.

spectral density given after Eq. (2.11). For computational convenience and

consistency throughout this section we will choose the spectral density of

the Lorentz-Drude form given by Eq. (A.15) and the system Hamiltonian

will take the same form as Eq. (3.27).

Fig. 3.4 shows the comparison between QSCMF (solid lines) and master

equation like approach (crosses) in the weak system-bath coupling regime.

Since the master equation like approach becomes computationally very de-
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manding for number of atoms ≥ 3, we restrict our comparison to one and

two particle systems as shown in Figs. 3.4a and 3.4b respectively. Since the

master equation like formulation makes no assumptions for the strength of

the anharmonicity it should be considered as a numerically exact result,

bearing in mind that the system-bath coupling is weak. Surprisingly, the

QSCMF approach matches the master equation like formulation for very

strong values of anharmonicity. In order to understand this astonishingly

good match for strong anharmonicity we try to analyze the QSCMF ap-

proach from a Feynman diagrammatic [127, 128] point of view, where the

perturbation is carried out in the strength of the anharmonicity. In our

QSCMF approach we have modified the spring constant matrix K to K̃ by

adding the anharmonic term to it as shown in Eq. (3.37). Equivalently we

could have added the anharmonic term to the self-energy. This extra addi-

tion to the self-energy due to the anharmonicity is termed as the non-linear

self-energy [44, 47] and in our case the frequency independent non-linear self

energy gives rise only to the lowest order Feynman diagram. This implies

that the anharmonicity should be very weak, but fortunately we perform

a self-consistent cycle. The self-consistency sums up all the higher order

Feynman diagrams which can be reduced to the lowest order one and hence

partially takes into account all orders of anharmonic perturbation.

The above heuristic argument perhaps sheds some light onto why the
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Figure 3.5: (a) shows a graph of conductance (σ) vs dimensionless system-
bath coupling strength squared γ/ω+ for the ϕ4 model using the Lorentz-
Drude (LD) heat baths at T = 300K (left panel) and T = 1000K (right

panel). The ϕ4 model has parameters λ0/ω
+ = 0.01 and λ/ω+ = 0.0 (Å

−2
).

Fig. (b) shows the graph of σ vs temperature [T = (TL +TR)/2] for the two
particle (top panel) and 8 particle (bottom panel) FPU-β + ϕ4 model using
the LD heat baths. Solid lines correspond to the QSCMF approach, whereas
the crosses are for perturbative NEGF in (a) and circles for QMD method
in (b). The common parameters are: M = 1u, ω2

0 = 30.1605, Ω2 = 30.1605

meV/Å
2
, ω+ =

√
ω2

0 + Ω2, γ = 6.0321
√
meV/Å, and ωD = 10 eV.
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QSCMF approach is valid for strong anharmonicity. In order to validate

our approach for strong system-bath coupling we compare the QSCMF with

perturbative NEGF [47] and quantum molecular dynamics (QMD) [48] as

shown in Figs. 3.5a and 3.5b respectively. The perturbative NEGF approach

of Wang et al. [47, 129] takes into account the lowest order Feynman dia-

gram + the next order diagram. Unfortunately this perturbative approach

can not be formulated in a self-consistent form and hence is strictly valid

for weak anharmonicity4. Since the perturbative NEGF approach takes into

account the second order Feynman diagrams it might shed some light on

when the higher order diagrams (which are neglected in QSCMF) become

important. As it can be clearly seen in Fig. 3.5a for two particle case pertur-

bative NEGF and QSCMF match very well even in the strong system-bath

coupling regime. In case of 4 particles the match is not so good, especially

at high temperature, indicating a significant contribution from the higher

order diagrams even for weak anharmonicity. This is understandable be-

cause the higher order diagrams are the origin for the phonon mean-free

path and since the system size is increasing the mean-free path should play

some role in the process of thermal transport. Similar result is found in

Fig. 3.5b where we compare with QMD. The quantum molecular dynamics

approach should be valid most accurately in the high temperature regime

4It is important to stress here that the perturbative NEGF approach is a controlled
approximation and in principle can be extended to higher orders in perturbation.
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and as we can clearly see that for the two particle case QSCMF and QMD

match perfectly, whereas the comparison gets worse for the 8 particle case.

Thus, our exhaustive comparisons for the specific quartic anharmonic po-

tential indicate that for small system sizes the QSCMF approach, due to the

self-consistent cycles, is valid for both strong anhamrmonicity and strong

coupling.

3.3 Summary

In summary, a master equation like formulation for the heat current

was derived, which was not only valid in the steady state but also the tran-

sients. No ad-hoc assumptions were made during the derivation except the

weak system-bath coupling approximation, an inherent difficulty in mas-

ter equation approaches. In case of short-times an analytical result was

provided which showed that the heat current always flows into the baths

and the major contributing factors are the initial state and the type of

the heat baths. In the opposite limit of steady state the formulation was

further simplified and was shown to match the earlier works of Wu et al.

[12], from which a Landauer formula can be obtained. Several interest-

ing anharmonic models were studied and our approach was validated in

the harmonic limit by comparing with the NEGF formulation. In case of

FPU-β and ϕ4 model we found that the thermal conductance in these mod-

els can be severely affected by the presence of anharmonicity. In specific
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we found that if the anharmonic potential is translationally invariant then

the low-temperature thermal conductance is same as a harmonic system

and anharmonicity plays almost no role at low temperatures. Finally, the

Duffing oscillator models for one and two particles were studied and we

showed that in the low-temperature regime, i.e., quantum regime, we find

negative differential thermal conductance (NDTC), which was explained

by analyzing the eigenvalues and populations of the various energy levels

in nonequilibrium.

In order to explore the strong system-bath coupling regime we proposed

a quantum self-consistent mean field approach (QSCMF) in which we made

a bold assumption of applying Wick’s theorem to anharmonic systems. The

QSCMF approach was mainly based on the Green’s function techniques

and was limited to quartic anharmonicity and position-position coupling

between the system and bath. In order to validate our assumption we com-

pared the QSCMF approach with the master equation like formulation,

perturbative NEGF and quantum molecular dynamics (QMD) methods.

Surprisingly, for one and two particle case the QSCMF approach matched

well for even strongly anharmonic systems. This unusual match was accred-

ited to the fact that the self-consistent cycles partially take into account

all strengths of anharmonic perturbation and the higher order correlations

play a very small role for junction systems, where the system-size is much
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smaller than the phonon mean-free path. Comparisons with perturbative

NEGF and QMD also confirmed the above, leading us to a conclusion that

the QSCMF approach is best suited for the study of thermal transport in

molecular junctions.
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Chapter 4
Spin transport

No amount of experimentation
can ever prove me right; a
single experiment can prove me
wrong.

Albert Einstein

In this chapter, the phenomenon of spin transport in magnetic insulators

and semiconductors will be studied. In the first part, using the modified

Redfield solution (MRS) spin transport in magnetic insulators modeled as

spin-1/2 anisotropic Heisenberg chains will be analyzed. The main focus

will be on technologically important aspect of spin-rectification which is

an essential ingredient to build spin-diodes. In the next part, in order to

study spin transport in realistic experimental devices we will adopt a semi-

classical approach based on the spin drift-diffusion (SDD) equations. The

SDD equations will be used to study the effects of device geometries on the

spin injection ratio and ‘tricks’ to enhance the spin injection ratio will be
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discussed.

4.1 Magnetic insulators

Recently, low dimensional magnetic insulators, i.e., systems with fixed

spins on a lattice, have been the subject of intense theoretical [22, 62, 65,

66, 67, 68, 50, 130, 131, 132, 133, 134, 135] and experimental investigation

[136, 137]. Most of these studies are mainly focused on the linear response

regime either to calculate spin-current [61, 138] or to evaluate the Onsager

coefficients to obtain the thermomagnetic power [130, 134, 135]. Very little

is known about such systems far from equilibrium [64, 132] although many

new phenomena may appear in this regime [131]. In this section, our goal is

to study spin-rectification, which is a far from equilibrium phenomenon, in

such magnetic insulators modeled by spin-1/2 anisotropic Heisenberg chain

using the modified Redfield solution.

4.1.1 Model and spin current

In this section, our main goal is to develop a formulation to study spin

currents in magnetic insulators. There has been mounting experimental ev-

idence [139, 140, 141, 142] that spin ladder materials like SrCuO2, Sr2CuO3,

and Cs2CoCl4 can be well described by the spin-1/2 anisotropic Heisenberg

model (also known as the XXZ spin chain model) whose Hamiltonian is
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given by

HS =
N∑
i=1

J
(
σx
i σ

x
i+1 + σy

i σ
y
i+1 + Λσz

i σ
z
i+1

)
− hσz

i , (4.1)

where J is known as the exchange coupling between the nearest neighbor

spins, Λ is the xz magnetic anisotropy, h is the external magnetic field

along the z-direction and σk
i (k = x, y, z) are the Pauli matrices of the i-th

spin. For the above system Hamiltonian, simple limiting cases are when

Λ = 0 (XY model), which corresponds to free spinless lattice fermions via

the Jordon-Wigner transformation [143], and Λ → ∞, which corresponds

to the Ising model.

The above system Hamiltonian, being an integrable quantum model

[144], possess a macroscopic number of nontrivial conservation laws (re-

fer [59] and references therein). One of which is the conservation of total

spin along the z-direction. The spin conservation law permits us to write a

lattice continuity equation and hence define a local spin operator as,

dσz
i

dt
= j(i−1)→i − ji→(i−1) , (4.2)

jn→m = 2J (σx
nσ

y
m − σy

nσ
x
m) , (4.3)

where jn→m is an (n,m)-th element of the local spin operator j, indicat-

ing the flow of spin from site n to site m. Typically, in order to evaluate

85



CHAPTER 4. SPIN TRANSPORT

the spin current one uses the local spin current operator j along with the

reduced density matrix ρ, obtained by the master equation approach, to

obtain the average spin current js =
⟨
j
⟩
= Tr (ρj). Till date, the reduced

density matrix has always been calculated using the Lindblad formulation

[72] where an asymmetry is introduced in the Lindblad operators of the two

leads which drives a spin current in the system [65, 66, 67, 68]. The driving

parameter and the Lindblad operators are phenomenologically justified as

representing a spin-chemical potential and magnetic leads, but the actual

microscopic form of the Hamiltonian from which these operators arise is

intractable. Temperature in the Lindblad formulation is also undefined and

since the Lindblad operators for the equilibrium case give a uniform prob-

ability distribution it is generally assumed that the Lindblad formulation

corresponds to a system connected to baths at infinite temperature.

In order to avoid such phenomenological problems we treat the baths as

a set of harmonic oscillators described by Eq. (2.2). Since the baths have

no magnetization the concept of spin-chemical potential is inapplicable and

hence a spin-chemical potential driving is not possible. Fortunately, the

spin Seebeck effect [135] provides us with an alternate driving field, i.e., a

thermal gradient, in such non-magnetized harmonic chain baths. Analogous

to the Seebeck effect [145] studied in electronic transport, the spin Seebeck

effect in our model generates a spin voltage at the system-bath interface in
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the presence of a thermal gradient which in turn generates a spin current in

the system. Thus, without resorting to the ad-hoc Lindblad formulation we

can still calculate the spin current in the system with the thermal gradient

as the driving field.

Now since the microscopic Hamiltonians of the system and bath are

well-defined we focus on the evaluation of the reduced density matrix to

calculate the spin current. As seen in case of heat in Sec. 3.1.1, at the

lowest order of perturbation the current is second order in the system-bath

coupling. This is not only true for heat transport, but is a general state-

ment for any kind of current (e.g., spin, particle, etc.). This is mainly due

to the fact that transport crucially depends on the coupling with the baths

and if the coupling vanishes so does the current. The first order in the cou-

pling can always be made zero by centering of the bath variable described

in Sec. 2.1.1 and hence the lowest order current has to be second order in

the system-bath coupling. Going back to the specific case of spin trans-

port described above, the local spin-current operator j is independent of

coupling strength and hence in order to accurately capture the nonequilib-

rium effects it is essential to obtain the reduced density matrix correct up

to second order in the system-bath coupling. Since all perturbative master

equations are inaccurate at the second order in the steady state (Sec. 2.2),

we resort to our novel modified Redfield solution described in Sec. 2.3.2
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which accurately captures all second order steady state effects. Thus, the

local-current operator given by Eq. (4.3) and the Modified Redfield solution

outlined in Sec. 2.3.2 give us a clear and accurate prescription to calculate

the spin-current1 in the spin-1/2 anisotropic Heisenberg chain.

4.1.2 Spin rectification

In this section we study the phenomenon of spin rectification which is

essential to build spin-diodes in magnetic insulators. Hoogdalem and Loss

[64] have studied rectification in the spin-1/2 anisotropic Heisenberg chain

using a wide variety of perturbative techniques, with different regions of

validity. Their work encompasses: Renormalization group, wherein they

consider only the low energy excitation (equivalent to low temperature);

Luttinger liquid formulation, wherein they consider Λ ≪ 1 and h ≪ J , to

essentially treat the system as ballistic and Spin-wave formulation, wherein

J < 0, Λ > 1, and temperature is low. Despite their extensive efforts their

techniques fail to capture the anti-ferromagnetic [146] (Λ > 1 and J > 0)

regime for finite sized spin chains. In this regime there has been mounting

evidence that the transport is mainly diffusive [65, 66, 67, 147, 148], whereas

for Λ < 1 the system exhibits a ballistic behavior [60, 67, 149]. In this

section we will focus on rectification in this unexplored anti-ferromagnetic

diffusive transport regime with J > 0 and Λ > 1, where our approach can

1It is important to note that since the baths do not have any spins we can not define

the spin current as
dσz

L

dt and hence a formulation like Sec. 3.1.1 is impossible.
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be easily applied.

We begin by construing rectification as the phenomenon in which if we

interchange the temperature of the two baths the backward current would

have a different value as compared to the forward current (obtained when

the bath temperatures are not interchanged). In order to study this effect

we define the forward spin current j+s as the current flowing from left to

right, with the left bath at temperature TL > TR (temperature of right

bath), and the backward current j−s as the one flowing from right to left

when the temperatures of the left and right bath are interchanged, i.e.,

T ′
R(= TL) > T ′

L(= TR). Given these definitions we can now quantify the

rectification effect using a ratio2 given by,

R =

∣∣∣∣j+s − j−s
j+s + j−s

∣∣∣∣ . (4.4)

It is important to note that not all systems show rectification and anhar-

monicity and asymmetry are crucial properties for a system to exhibit a

non-zero rectification ratio.

For the specific case of spin transport since we will be working in the dif-

fusive regime (J > 0 and Λ > 1) the spin current will reduce with system

size, but this global effect could overshadow the local effects of magneti-

2Many times the rectification ratio is also defined as R =
∣∣∣ j+s −j−s
Max.(j+s ,j−s )

∣∣∣ due to which

R >1, whereas in our definition R ≤ 1.
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zation and thus make the physics at the microscopic level unclear. The

rectification ratio R defined above neutralizes the effect of system-size de-

pendence (due to the normalization) of spin current, thus allowing us to

understand and probe the local effects better. Also in this regime since

Λ ̸= 0 there is inherent anharmonicity in the system. In order to induce

asymmetry we couple the system with two Lorentz-Drude baths (described

in Append. A.3.3) using different system-bath coupling strengths. The sys-

tem operator coupling to the bath and the spectral densities of the two

baths are given by

SL = σx
1 ; SR = σx

N , (4.5)

JL(ω) =
η(1 + ξ)ω

1 + (ω/ωD)2
; JR(ω) =

η(1− ξ)ω

1 + (ω/ωD)2
, (4.6)

where −1 < ξ < 1 is a dimensionless asymmetry parameter and
√

η(1 + ξ),√
η(1− ξ) are the system-bath coupling strength of the left and right bath

respectively.

In spin rectification one of the currents (j+s or j−s ) is suppressed more

than the other, due to anharmonicity and asymmetry in the system. Thus

as ∆T increases the partially suppressed current increases much faster than

its counterpart causing the rectification ratio R to increase as shown in

Fig. 4.1a. Here the solid and dashed lines correspond to even and odd
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Figure 4.1: (a) shows a
graph of rectification ra-
tio R (in percentage %) as
a function of the tempera-
ture difference ∆T = TL−
TR between the two baths
for different system sizes
N . The average temper-
ature T = (TL + TR)/2 =
0.5J . In Fig. (b) we plot
R vs system size N at
different average temper-
atures T . All curves have
the same temperature dif-
ference ∆T = 0.5J . In
Fig. (c) we illustrate the⟨
σz
⟩

component at each
site of a system consist-
ing of 5 (top) and 6 (bot-
tom) spins at two differ-
ent temperatures: T =
0.5J in (i) and T =
5.0J in (ii). The length
of each arrow is propor-
tional to the

⟨
σz
⟩
at that

site. In case of Fig. (c)
i (bottom) and Fig. (c) ii
the largest

⟨
σz
⟩
is ≈ 5×

smaller than the largest⟨
σz
⟩

value of Fig. (c) i
(top). The common pa-
rameters for all these sim-
ulations are: Λ = 1.5,
h = 0.5J , η = 0.01

√
J ,

ξ = 0.9, and ωD = 10J .
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number of spins3 respectively. Clearly the odd and even numbers cause the

rectification ratio R to oscillate which has been depicted in Fig. 4.1b.

The oscillatory behavior of R is prominent at low temperatures, whereas

at high temperature the effect becomes negligible. In order to understand

the origin of these oscillations we illustrate in Fig. 4.1c the
⟨
σz
i

⟩
at each site

for a system comprising of 5 and 6 spins at two different average tempera-

tures4 T = (TL+TR)/2 = 0.5J and = 5.0J . Since the two end spins i = 1, N

are connected to the baths their
⟨
σz

1/N

⟩
values are greatly influenced by the

bath temperature, which causes the z-component of the two end spins to be

always in the same direction. This pinning of the end spins permits an anti-

ferromagnetic ordering only in the case of odd number of spins as shown in

Fig. 4.1c (i) (top). In case of even number of spins (Fig. 4.1c (i) bottom) the

system cannot attain its lowest energy anti-ferromagnetic state because one

pair of spins forms a ferromagnetic bond (enclosed in dashed lines). This

single ferromagnetic bond, which is a result of spin frustration, causes the

z-component of spin to be redistributed in other directions causing the
⟨
σz
i

⟩
to lower at each site. This leads to a reduction in the rectification ratio R

for even number of spins as compared to its odd counterparts. The oscilla-

tory behavior is also sensitive to the temperature T and if the temperature

3Due to the 2N system Hilbert space our approach is computationally limited to treat
at most 10 spins.

4Throughout this section all quantities will be measured in units of the exchange
coupling J .
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becomes very high there is no anti-ferromagnetic order and thus the
⟨
σz
i

⟩
at each site reduces drastically as shown in Fig. 4.1c (ii). This completely

kills the oscillatory behavior of R and reduces it drastically as depicted by

the red solid line in Fig. 4.1b. Thus we deduce that an oscillatory behavior

in the rectification ratio R as a function of system size is related to the

finite size of spin chain and the absence/presence of spin frustration. To

the best of our knowledge this effect has not been reported in the literature

mainly because nearly all works pertaining to spin transport in insulators

deal with either with very large sizes or mainly calculate at spin current,

where this effect might be absent due to the diffusive behavior.

Next we would like to study the effects of the external magnetic field

h, as shown in Fig. 4.2, on the rectification ratio and see if it can be used

to tune the rectification ratio R. Fig. 4.2a shows the effect on the individ-

ual forward j+s and backward j−s currents. At low temperatures (Fig. 4.2a

top) and low magnetic fields the spin current is negative indicating that

the current is carried by the down spins, but as soon as the magnetic field

becomes stronger than the magnetic anisotropy Λ it flips the spin carriers

to up spins indicated by the positive spin current5. In case of rectification

R the current carriers must be the same for both forward and backward

5The carriers of spin current, i.e., up or down spins are decided by the value of the
spin Seebeck coefficient. In our case since we cannot directly calculate this value, due to
the lack of magnetic baths, we infer from the positive (negative) sign of the current that
the spin Seebeck coefficient must be positive (negative) [130].
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Figure 4.2: (a) shows a graph of forward j+s (black) and backward j−s (red)
currents as a function of the magnetic field h for average temperature T =
(TL + TR)/2 = 0.5J (top) and T = 5.0J (bottom). In Fig. (b) we plot the
rectification ratio R (in percentage %) vs h at average temperature T =
0.5J (solid black) and T = 5.0J (dashed red). The common parameters
used are: N = 5, Λ = 1.5, TL − TR = 0.5J , η = 0.01

√
J , ξ = 0.9, and

ωD = 10J .
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currents to have meaningful results, i.e., R ̸> 100% . This is not a prob-

lem in case of charge and heat transport, where R has been predominantly

studied, since there is only one carrier of current, i.e, either electrons or

phonons. In case of spin transport due to the up and down nature of spins

the transport is characterized by two carriers. Hence it only makes sense

to plot rectification R when h/J < Λ as shown in Fig. 4.2b (solid line) to

take into account only the current carried by the down spins. Clearly at

low temperatures the rectification R can be easily tuned with the external

magnetic field 0 < h/J < Λ and it shows a variation of ≈ 50% which can

be easily detected. Observing Figs. 4.2a (top) and 4.2b (black solid line) we

find that even though the rectification R is largest at small magnetic field h

the spin current is the smallest in that regime. This might pose a problem

in an experimental setup where the strength of the signal plays a crucial role

and hence it is judicious to tune the magnetic field at h/J ≈ Λ/4 (for the

parameters in Fig. 4.2a top), where the signal to noise ratio is the highest,

to observe spin rectification. Another important parameter is average tem-

perature T and at high temperatures as seen from Fig. 4.2a (bottom) the

forward and backward currents are always carried by the down spins. The

rectification ratio R (Fig. 4.2b red dashed line) also remains constant and

is quite low as compared to the low-temperature regime, making the high-

temperature regime undesirable for tuning R. Thus, in small finite sized
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magnetic insulators an extremely high value of spin rectification can be ob-

tained in the low-temperature regime and it can be tuned using an external

magnetic field whereas the effect diminishes drastically as the temperature

increases.

4.2 Semiconductors

Since the advent of spintronics one of the main theoretical challenges

has been to describe devices on experimentally relevant spatial scales. As

seen in the previous sections a complete quantum mechanical description of

such systems would be an unfathomable task at even the nano-meter scale

due to the sheer size of the system Hilbert space. Hence, in this section

we adopt a semi-classical linear response approach to study spin transport

in semiconductors connected to ferromagnetic baths. Following the earlier

work of P.C. van Son et al. [150] on spin drift and diffusion (SDD) model,

in this section we will extend their approach to three spatial dimensions

to treat experimentally relevant geometries and study the effect of device

geometries on the spin injection ratio of these devices.

4.2.1 Spin drift diffusion equations

As compared to the magnetic insulators described in the previous sec-

tion, semiconductors have itinerant spins which are carried by the charge

carriers in the system. Hence in order to understand efficient spin transport
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in semiconductors it is necessary to understand the coupling between charge

and spin currents, which was first described by Aronov [151] and later de-

veloped by Johnson and Silsbee in terms of thermodynamic processes [152].

P.C. van Son et al. [150] later proposed a much simpler semi-classical one-

dimensional linear response model based on spin drift and diffusion (1D-

SDD) to describe transport across a ferromagnetic (FM) - semiconductor

(SC) interface. The 1D-SDD model was successfully applied to current per-

pendicular to plane geometries of giant magneto-resistance by Valet and

Fert and they also established the connection between the diffusive model

and the Boltzmann equation [56]. Since then the 1D-SDD has been used

to describe spin transport across many local [153, 154] and non-local ge-

ometries [155, 156, 157, 158]. Despite its extensive success, a 1D theory

is insufficient to describe a three-dimensional experimental geometry [159]

and hence in this section we will extend the 1D-SDD model to three spatial

dimensions in order to study the geometrical effects on spin transport.

We begin this section by deriving the three-dimensional spin drift diffu-

sion (3D-SDD) equations and in order to do this we assume that far from

the interface at temperatures lower than the Curie temperature most scat-

tering events will conserve the spin direction6 causing the spin up and spin

down electrons to flow almost independently of each other [52, 160]. Also,

6In our semi-classical approach to obtain the SDD equations temperature does not en-
ter explicitly like the previous section, but as stated it is extremely important parameter
for the validity of the equations.
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if the spin scattering occurs at much longer time-scale than other electron

scattering events we can define the electrochemical potentials µ↑ and µ↓ for

both the spin channels. Thus, in the linear response regime the current

carried by the spin-up (j↑) and spin-down (j↓) channel
7 is given by Ohm’s

law:

j↑,↓ =
σ↑,↓

e
∇⃗µ↑,↓ , (4.7)

where σ↑,↓ = σ(1± α)/2 is the spin dependent electrical conductivity8 and

e (> 0) is the electron charge. Near the interface the spin can diffuse from

the up-spin channel to the down-spin channel and in general the diffusion of

spin is not restricted to one spatial dimension. Thus the coupling of the two

spin channels is governed by the most general diffusion equation in three

dimensions given by,

µ↑ − µ↓

τ
= D∇2(µ↑ − µ↓) , (4.8)

where D is the Diffusion constant, τ is the spin-relaxation time and
√
Dτ =

λ is the spin diffusion length. This type of model description is considered

semi-classical because the electrons which carry the spins are mainly fol-

7In our 3D model since vectors will play a crucial role, all vectors from now on will
be indicated using a bold font.

8Since we are dealing with semiconductors which are mostly isotropic materials σ
should be treated here as a number.
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lowing classical dynamics, whereas the spins are considered to have two

states (up and down) like the quantum case. Also this approach is in stark

contrast to our previous sections where we dealt with a microscopic Hamil-

tonian to describe the system and the baths. In our semi-classical 3D-SDD

approach all the intricate details of the material will be ignored and the

macroscopic parameters like σ↑,↓, D and τ will help us engineer the physics

of spintronic devices.

Now in order to simplify notation we use the following transformations

[153],

ζ = µ↑ − µ↓ ,

Z =
µ↑ + µ↓

2
,

P =
(j↑ − j↓) · n̂1

(j↑ + j↓) · n̂1

, (4.9)

where P is the amount of polarized spin current and is commonly known as

the spin injection ratio and n̂1 is taken as the normal to the surface along

the flow direction.

Eqs. (4.7) and (4.8) then transform into:

∇2ζ =
ζ

λ2
, (4.10)

∇⃗Z = −
(
∆σ

2σ

)
∇⃗ζ +

Je

σ
, (4.11)
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P =
2σ↑σ↓

σ

(∇⃗ζ) · n̂1

J · n̂1e
+

∆σ

σ
, (4.12)

where ∆σ = σ↑−σ↓ and J = j↑+ j↓ is the total current through the system.

Next we impose the boundary conditions for the transformed equations,

keeping in mind that the baths considered here are ferromagnetic and the

system a semiconductor leading us to,

PF |0 = PSC|0 = P , (4.13)

ζSC|0 − ζF |0 = 2rc

(
P − ∆Σ

Σ

)
(J · n̂1)e , (4.14)

ZSC|0 − ZF |0 = rc

(
1− ∆Σ

Σ
P

)
(J · n̂1)e , (4.15)

ζ|±∞ = 0 , (4.16)

(j↑ − j↓) · n̂2 = 0 , (4.17)

where ∆Σ = Σ↑ − Σ↓ = P/ [rc (1− P 2)], Σ = Σ↑ + Σ↓ = [rc (1− P 2)]
−1
,

rc = Σ/(4Σ↑Σ↓) is the effective contact resistance (also sometimes called the

Kapitza resistance for spin transport) and n̂2 is the normal to the boundary

of the domain. The subscript 0 above denotes the interface and Ω is the

domain of the device9. The boundary condition of Eq. (4.13) ensures that

the spin current is conserved at the interface iff the interface is a constant

potential surface, which is a valid assumption for semiconductors that have

9Also all equations without the sub-scripts correspond to both the regions.
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the in plane conductivity component nearly equal to the out of plane com-

ponent. Eqns. (4.14) and (4.15) describe the boundary conditions at the

FM-SC interface due to mismatch in the conductivity of the two materials

[69, 70] where the Kapitza type resistance plays an important role. The cru-

cial boundary condition is Eq. (4.16), which implies that at the edges of the

device far away from the interface the spins do not diffuse and essentially

the up- and down-spin channels cannot be distinguished. The baths due

to their infinite nature satisfy this condition by definition, but the system

is always finite and thus Eq. (4.16) cannot be satisfied at all system edges

which essentially gives rise to the geometrical effects on spin-injection we

will discuss later in Sec. 4.2.2. In addition to Eqs. (4.14), (4.15), (4.16), and

(4.13) which are generally used for the 1D-SDD model, we use an additional

condition given by Eq. (4.17) for the 3D-SDD model, which ensures that

no spin current leaks out of the device.

4.2.2 Geometrical effects on spin injection

In this section we focus on an important aspect of spin transport with

itinerant spins known as the spin injection ratio defined in Eq. (4.9), which

estimates the amount of spin current injected into the system. A high spin

injection ratio indicates a better signal to noise ratio and is considered as a

basic prerequisite to build efficient spin-diodes (also known as spin-valves).

In order to estimate the spin injection ratio we solve our 3D-SDD equa-
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tions, i.e., Eqs. (4.10) and (4.11), using a partial differential equation solver

known as Free FEM 3D [161] along with the appropriate boundary condi-

tions (Eqs. (4.13), (4.14), (4.15), (4.16) and (4.17)). Free FEM 3D employs

fictitious domain finite element method [162], which allows us to change

the device geometry without actually changing the grid thus reducing the

computational complexity of the problem drastically. In order to evaluate

the spin injection ratio P , which is a variable parameter in the boundary

conditions, we solve the equations in the two regions (FM and SC) sep-

arately and iteratively vary the boundary conditions till a convergence of

10−6 in the spin injection ratio is achieved. To ensure that all the results are

well converged with respect to the grid parameters we make sure that for

boundaries where Eq. (4.16) needs to be satisfied is ∼ 5 × the spin diffusion

length. Also the grid spacing is varied until convergence is achieved. As an

additional check we use the converged grid parameters for 1D geometries

to ensure that the analytical 1D results [150] are recovered.

In order to study the effect of device geometries on the spin injection

ratio, we first look the effect of height (H) of the semiconductor and contact

area (CA) for a device geometry shown in Fig. 4.3a inset. The device is

made of NiFe ferromagnets and the semiconductor used for this calculation

is an n-type GaAs. Kumar et al. [154] have shown the effect of nano-

pillar ferromagnet on the spin injection ratio by incorporating the effects
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Figure 4.3: Graph of spin injection ratio (P ) for a direct contact NiFe-
nGaAs device. Fig. (a) shows the spin injection ratio as a function of the
contact area for various semiconductor heights. The inset shows a schematic
of the device geometry under consideration. Fig. (b) shows P as a function
of the semiconductor height for various contact areas. The NiFe ferromagnet
parameters used in this calculation are: σNiFe = 8.62 × 106/Ωm, λNiFe = 10
nm, and αNiFe = 0.4. The nGaAs parameters are: σn−GaAs = 105/Ωm,
λn−GaAs = 1 µm, αn−GaAs = 0, and rc = 0 Ωm2.

of spreading resistance in the 1D-SDD model, but they could not show the

effect of SC height since the model was essentially 1D. It should also be

noted that they used a contact area of ∼ 12.5 nm2 which is extremely diffi-

cult to reproduce experimentally and hence we study the effect of varying

contact area CA on the spin injection ratio P (Fig. 4.3a). It can be seen

from the figure that as the contact area increases P decreases rapidly. Due

to the rapid decay a contact area of at least ∼ 103 nm2 would be required

in order to achieve a direct contact spin signal into the device. According

to our knowledge there has been no experimental evidence of direct contact

spin injection into a semiconductor because most experimental geometries
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Figure 4.4: Graph of spin injection ratio (P ) versus contact area for a
NiFe-nGaAs device. Different curves are for different heights of the semi-
conductor, either for an AlO tunneling barrier or thin Cu film. The NiFe
ferromagnet parameters used in this calculation are: σNiFe = 8.62×106/Ωm,
λNiFe = 10 nm, and αNiFe = 0.4. The nGaAs parameters are: σn−GaAs =
105/Ωm, λn−GaAs = 1 µm, and αn−GaAs = 0. The AlO tunneling barrier has
parameters: rc = 10−7 Ωm2 and ∆Σ/Σ = 0.3, while the Cu thin film has
parameters: rc = 0 Ωm2, σCu = 59.52 × 106/Ωm, , λCu = 140 nm,αCu = 0,
rc = 0 Ωm2 and thickness of Cu = 50 nm.

have a contact area of ∼ 105 nm2. We also study the effect of sample height

on the spin injection ratio (Fig. 4.3b). For a given contact area the spin

injection ratio increases nearly linearly for small sample thickness, but as

the sample thickness approaches the order of λSC the rate of change of the

spin injection ratio reduces drastically. Thus, in order to achieve better

spin injection in direct contact devices a smaller contact area and a sample

height ≫ λSC are required.

Since extremely small contact areas are not feasible experimentally we

104



CHAPTER 4. SPIN TRANSPORT

investigate the role of tunneling barrier (AlO) and a thin metal (Cu) layer

insertion between the ferromagnet and semiconductor for a device geometry

similar to the one shown in Fig. 4.3a inset. Tunneling barriers like AlO [163]

are an excellent solution to the conductivity mismatch problem, but one of

the main practical problems with tunneling barriers is pinhole defects [164,

165], which are created during the deposition of tunneling barriers. Thus,

due to these small pinholes the ferromagnetic bath is in direct contact with

the semiconductor. Such defects are typically unavoidable in experiment

due to the technological limitation of setting up a few layer thin uniform

oxide barrier, but if we consider “ideal” tunneling barriers without any

pinholes then Fig. 4.4 shows that they are robust to variations in contact

area and SC height. But for small contact areas we can see that thin Cu

films (∼ 50 nm)10 can be excellent substitutes for tunneling barriers. It

should be noted here that although using thin Cu film will decrease the

effective spin diffusion length of the device, atomistically thin metal films

are easily producible using the current technology. Hence only for small

contact areas and where the spin diffusion length is not very important for

the device thin metal films can act as excellent injectors of spins.

Lastly we discuss pinholes in tunneling barriers and its effect on the

10The thickness of the Cu layer as 50 nm is chosen purely due to computational
limitations and in an experimental situation the thickness of the Cu layer should be
made as thin as possible. Also the spin-injection ratio P is measured at the Cu-SC
interface, taking into account the spin relaxation within the Cu buffer layer.
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Figure 4.5: Graph of spin injection ratio (P ) versus pinhole coverage area [=
Area of pinhole/Total contact area] for a NiFe-GaAs device. The red square
represents result for the “ideal” tunneling barrier. The NiFe ferromagnet
parameters used in this calculation are: σNiFe = 8.62 × 106/Ωm, λNiFe = 10
nm, and αNiFe = 0.4. The GaAs parameters are: σGaAs = 103/Ωm, λGaAs = 1
µm, and αGaAs = 0. The AlO tunneling barrier has parameters: rc = 10−7

Ωm2 and ∆Σ/Σ = 0.3.

spin injection ratio P . Although some discussions about pinholes [166]

have been made in the tunneling magneto-resistance experiments based on

a simple resistor model by Oliver et al. [167], there has been no work on this

topic from the view point of the SDD model which is in general applicable

to all spin-valve devices. In order to discuss pinholes we study a FM-SC

(FeNi-GaAs) interface with a single pinhole in the tunneling barrier (AlO)

as shown in Fig. 4.5 inset. Fig. 4.5 shows the effect of pinhole coverage

area, i.e., the ratio of the pinhole area to the total contact area, on the spin
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injection ratio for the device. There are two competing effects here that

determine the spin injection ratio, one of the conduction electrons passing

through the pinhole (reducing P ) and second due to the tunneling electrons

passing via the tunneling barrier (increasing P ). In order to understand

the results obtained via simulations and thus the effect of pinholes, let us

consider two channels one for the conduction electrons (pinhole channel)

and the second for the tunneling electrons (tunneling barrier channel). By

assuming that these channels are independent it can be shown that the spin

injection ratio of the device comprising of these two channels can be given

by,

P =
j1,↑ + j2,↑ − j1,↓ − j2,↓
j1,↑ + j2,↑ + j1,↓ + j2,↓

= P1

J1

J1 + J2

+ P2

J2

J1 + J2

, (4.18)

where j1,2,↑,↓, J1,2 = j1,2,↑ + j1,2,↓ are the up/down spin currents and total

currents for the two channels and P1,2 = (j1,2,↑ − j1,2,↓)/(j1,2,↑ + j1,2,↓) are the

spin injection ratios of the two channels.

In case of the smallest pinhole, we simulate a direct contact system with

the contact area equal to the size of the pinhole and obtain P1 as 7.38%.

Performing a similar calculation for the perfect tunneling barrier case we get

P2 = 11.85% and the fact that the pinhole acts like a short circuit causing

most of the current to pass through the pinhole (J1/(J1 + J2) = 95% from

simulations) we get P = 7.6% (from Eq. (4.17)), which is quite close to
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the value 7.26% obtained via simulations. The discrepancy of 0.34% seen is

due to the fact that the tunneling barrier region now has a pinhole defect

in it which was not considered while calculating P2. This result cannot be

understood using the 1D-SDD model, which gives P = 0.6%, since the effect

of area cannot be taken into account. Thus, overall effect of pinholes is not

just the sum of two individual 1D channels. We also simulate more than

one pinhole to see if there is any correlation between them and we observe

no such correlations at distances of ∼ 300 nm, ∼ 500 nm and ∼ 800 nm,

which are typically the experimentally observable distances for such spin-

valve devices. Hence we conclude that the spin injection ratio depends only

on the effective coverage area of the pinholes and not the number of pinholes

present in the tunneling barrier.

4.3 Summary

In summary, spin transport of fixed spins was studied in the first part

using the example of magnetic insulators. The insulators were modeled as

spin-1/2 anisotropic Heisenberg spin chains and based on the lattice conti-

nuity equation a local spin current operator was derived. Since current is a

second order effect in the system-bath coupling the modified Redfield solu-

tion was used to evaluate the reduced density matrix in order to accurately

capture all nonequilibrium effects. The baths were modeled as harmonic

heat baths, which posses a microscopic Hamiltonian description, and due
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to the spin Seebeck effect a spin current was induced in the presence of a

temperature difference. As an example, we considered the technologically

important phenomenon of spin rectification which was studied in the diffu-

sive transport regime of J > 0 and Λ > 1. At low temperatures the spin

rectification oscillated with system size and the effect was attributed to the

breaking of anti-ferromagnetic ordering due to spin frustration. In order

to control rectification using an external field we studied the phenomenon

by varying the magnetic field and found that at low temperatures the rec-

tification ratio R can be easily tuned for 0 < h/J < Λ, whereas at high

temperatures the magnetic field did not affect R. Thus, using the simple

spin-1/2 anisotropic Heisenberg spin chain to model magnetic insulators

spin rectification in finite systems was studied and interesting features were

found and explained.

In the second part, in order to study spin transport in semiconduc-

tors on actual experimental scales we improved upon the semi-classical

one-dimensional spin drift diffusion equations and applied them to realistic

three-dimensional geometries. The effect of spin injection, which is a pre-

requisite to build efficient spintronic devices, in n-type GaAs semiconductor

was studied and its dependence on the device geometry was investigated.

The effects of semiconductor height and contact area on the spin injection

ratio were discussed and we showed that direct contact spin injection is pos-
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sible only for extremely small contact areas and height much greater than

the spin diffusion length. Traditionally, tunneling barriers have been used

to efficiently inject spin into semiconductors, but we proposed an alterna-

tive in the form of thin metal films to efficiently inject spin in the regime

of small contact area. Lastly, the role of the technologically unavoidable

problem of pinholes in tunneling barriers was discussed. We showed that

the spin injection ratio depends only on the effective area of the pinholes

and no correlation between the number of pinholes and the spin injection

ratio was observed.
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Conclusions and Future Work

If quantum mechanics hasn’t
profoundly shocked you, you
haven’t understood it yet.

Niels Bohr

The main objective of this dissertation was to shed some light on the

role of anharmonicity in transport and importantly to employ a wide array

of techniques to achieve the goal. Our objectives were achieved by studying

heat and spin transport and in this chapter we conclude and summarize

the important results presented in this thesis and give directions for future

work wherever possible.

We started with the introduction of the reduced density matrix (RDM)

formulation, via the theory of open quantum systems, using perturbative

quantum master equations (QMEs). A simple derivation showed that in

the steady state the RDM obtained by the 2-nd order QME is correct only

up to 0-th order in the system-bath coupling (the perturbative parame-
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ter). In particular, the RDM obtained from a 2-nd order QME produced

incorrect 2-nd order diagonal elements, whereas the 2-nd order off-diagonal

elements were correct. This simple derivation was one of the key observa-

tions in order to obtain the modified Redfield solution (MRS), where we

correctly obtained the 2-nd order diagonal elements using analytic contin-

uation. One of the biggest advantage of our novel approach is the fact that

it does not require any 4-th order relaxation tensors, which are extremely

cumbersome and tedious to obtain. This not only simplifies the theoretical

construction but also the numerical complexity of the problem reduces to

N3 from N6, where N is the system Hilbert space dimension. We even

attempted to correctly evaluate the 2-nd order diagonal elements using the

Dyson expansion: In this context it must be noted that since the Dyson

series is asymptotically divergent [168], and although the off-diagonals in

fact agree, the second order diagonals are found not to match the exact

result obtained via nonequilibrium Green’s function (NEGF) by Dhar et al.

[97] for the harmonic oscillator problem.

In order to validate our MRS, for the equilibrium limit, we compared it

with canonical perturbation theory and demonstrated that the MRS agrees

with the generalized Gibb’s distribution up to 2-nd order in the system-

bath coupling for a general system that is coupled to harmonic oscillator

bath. This clearly indicates that even in the weak, but finite, coupling

112



CHAPTER 5. CONCLUSIONS AND FUTURE WORK

limit, the system thermalizes to a generalized Gibb’s distribution and not a

canonical one as typically indicated by the Lindblad master equation. We

also numerically tested our MRS by comparing against the exact NEGF

results and found perfect agreement up to 2-nd order for a harmonic os-

cillator connected to both one and two baths. Comparisons of the RDM

populations obtained via MRS with the Redfield quantum master equation

(RQME) and Lindblad master equation showed that the MRS gives physi-

cally correct results for a wide range of system-bath coupling strengths and

easily goes beyond the weak coupling limit established by the RQME for the

single harmonic oscillator problem. On the other hand, the Lindblad formu-

lation does not vary with system-bath coupling and always results in the

incorrect canonical distribution (for finite coupling), whereas the RQME

violates the positivity property of the RDM for weak but finite coupling

strengths. Thus, the MRS turns out to be a novel and reliable approach

which accurately captures weak but finite system-bath coupling effects.

Several unresolved challenges exist and a major one is the extension

of our scheme to time-dependent relaxation of the RDM and to study the

differing relaxation processes that stem from different initial preparation

schemes. Another unresolved objective presents the perturbative, accurate

study of multi-time correlations of open system observables, both time-

homogeneous thermal and time-dependent nonequilibrium correlations be-
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yond the weak coupling limit. These extensions would not only make the

MRS advantageous but also place it on a rigorous theoretical ground.

We next considered the field of phononics and studied heat transport

in anharmonic molecular junctions. Equipped with the theoretical tools

of QMEs, we first introduced a fully quantum-mechanical non-Markovian

theory based on perturbation in the system-bath coupling to evaluate heat

current in general anharmonic systems. The approach was formulated us-

ing the basic definition of heat current, i.e., change in energy of the bath.

In order to integrate the technique with the typical QME formulations,

quantities like the bath correlators C(τ) and the transition rates W̃ij were

used. The resulting quantum master equation like formulation can thus

be used to study transient as well as steady-state heat transport and most

importantly it requires only the 0-th order RDM. Since the RQME is ac-

curate at the 0-th order in both transients and steady state it is employed

to obtain the RDM and hence subsequently the heat current. Despite its

ability to treat any system potential, the theory is limited by the weak

coupling approximation. We overcome this limitation for a specific model

of quartic anharmonicity with the help of NEGF technique and formulate

the self-consistent mean-field (QSCMF) approach for heat transport. In

the QSCMF approach we first show that the equations of motion for the

Green’s function on the Keldysh contour do not close on to themselves in
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the presence of interactions, thus forming the BBGKY hierarchy. In order

to provide a closure condition, we make an important approximation by

replacing the 4-point correlation function with the Green’s function and

thus closing the 1-st BBGKY equation. The approximated closure condi-

tion leads to a modified force constant matrix K̃ which is then evaluated

self consistently, thus giving rise to the QSCMF approach.

Several examples and corroborations were considered for both, quantum

master equation like formulation and QSCMF approach. In case of the

quantum master equation like formulation we first verified the approach

for a harmonic system by comparing against the exact NEGF results given

by the Landauer formula and found excellent agreement between both ap-

proaches for weak system-bath coupling, i.e. up to 10% of the spring con-

stant of the harmonic oscillator. We then considered the systems with

quartic anharmonicity namely the FPU-β and ϕ4 model and found that

anharmonicity can significantly affect not only the high-temperature be-

havior of thermal conductance, but also the low-temperature behavior. In

specific for the quartic anharmonicity model we observed that whenever

the translational invariance of the anharmonic potential is broken, i.e., in

the presence of quartic on-site potential, the low-temperature thermal con-

ductance differs significantly from the ballistic result. Next, we considered

the Duffing oscillator model which acts like a double-well potential. In this
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completely anharmonic model we found negative differential thermal con-

ductance (NDTC) which can be easily tuned by varying the height of the

barrier. The NDTC property is a purely quantum effect and is mainly be-

cause of the tunneling of the particles across the barrier. Importantly, our

approach gave conservation of energy for all the systems considered. Energy

conservation has been a major problem with master equation formulations

and it is typically blamed on the perturbative nature of the theory. In our

case since all equations were solved order-by-order we didn’t have to resort

to ad-hoc symmetrization of the current to obtain meaningful results.

After investigating these interesting anharmonic models using the

quantum master equation like formulation we turned our attention to the

QSCMF approach. Since the approximation involved in this approach is

quite drastic, we compared the method with several existing techniques

like: the quantum master equation like formulation, perturbative NEGF

and quantum molecular dynamics. As QSCMF approach makes no approx-

imation in the system-bath coupling strength, we numerically compared

it with the master equation like formulation in the weak coupling limit

and found excellent agreement for one and two particle systems, even for

extremely strong anharmonicity. This surprising result prompted us to

compare our approach with perturbative NEGF, where the anharmonic-

ity is treated perturbatively at one level higher than the QSCMF approach
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without a self-consistent procedure. Again, QSCMF showed excellent agree-

ment for all values of system-bath coupling for small molecular junctions.

Comparisons with quantum molecular dynamics showed similar agreement,

however only for small system sizes. The concordance between the various

theories, even for strong anharmonicity, is mainly accredited to the self-

consistent procedure. The major limitation of the theory being that it is

valid only for molecular junctions is because in our QSCMF approach the

phonon mean free path is infinite. This is indicated by the fact that the

modified spring constant K̃ is real and frequency independent, which is a

valid assumption in case of molecular junctions, where the system-size is

much smaller than the phonon mean-free path. Thus, both our proposed

theories are excellent candidates to study strongly anharmonic molecular

junctions, which seem to be an interesting prospect for future nano-devices.

Despite our advances several interesting problems are open for explo-

ration. In case of the quantum master equation like formulation the ex-

tension of the theory to time-dependent Hamiltonians might be interesting

from a technological point of view since it would allow us to control the ther-

mal current and thus build tunable phononic devices. Also the selection of

materials is an important factor to build devices and hence the merger of the

approach with time-dependent density functional theory (TDDFT), similar

to the QME+TDDFT formulations [169], would be an enriching experience
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enabling us to study real systems. One of the most challenging theoretical

extensions to the approach would be to go beyond the 2-nd order limitation

and extend this theory to higher orders. Although this would be an inter-

esting breakthrough, probably the QSCMF is the most reliable candidate

to treat strong system-bath interactions and one of the most challenging

issue with this approach is the incorporation of phonon life-times from a

rigorous and quantum mechanical point of view.

Lastly, we considered the fascinating field of spintronics and studied spin

transport in magnetic insulators and semiconductors. Keeping the QMEs

as our central theme we first studied magnetic insulators modeled by a

spin-1/2 anisotropic Heisenberg spin chain. Our model was unique since

the baths were a set of harmonic oscillators containing no spins and the

interface between the bath and the system generated a spin current due

to the spin-Seebeck effect, thus allowing us to study spin transport. The

absence of spins from the baths made it impossible to define spin current

as dσz
L/dt and hence we used the local definition of spin current using the

lattice continuity equation. Since the spin current at the lowest order of

perturbation is second order in the system-bath coupling, the MRS became

an essential ingredient to capture all the system-bath coupling effects in the

spin current accurately.

Our unique model was then used to study the phenomenon of spin recti-
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fication, which is an important factor to build spin diodes. We studied two

important aspects of spin rectification in the spin-1/2 anisotropic Heisen-

berg spin chain namely, the effect of system size and the tunability of recti-

fication with the external magnetic field. In case of system size dependence

we found that the rectification ratio shows an oscillatory behavior with odd

and even system size at low temperatures. This unusual oscillatory effect is

mainly because of the fact that at low temperatures the system prefers to be

in its ground state, which is anti-ferromagnetic, but due to the bath pinning

the end spins the ground state is achieved only for odd number of spins. In

case of even number of spins due to spin frustration the
⟨
σz
i

⟩
at each site

reduces drastically which leads to the decrease of the rectification ratio. At

high temperatures, as expected, the effect completely disappears due to the

thermal influence of the heat bath. The low temperature quantum effects

are even evident in case of tuning the rectification ratio with an external

magnetic field. At low temperatures the rectification ratio can be tuned up

to 50% by varying the external magnetic field and at low fields the ratio is

the highest and it decreases to zero as the magnetic field increases. Thus,

the large variation of the rectification ratio by an external field provides

an extra accessible parameter for spin-diodes making magnetic insulators

interesting candidates for spintronic devices.

From an application point of view semiconductors have been the most
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popular material to build spintronic devices and hence we next investigated

the effects of device geometry on spin transport in semiconductors. Inspired

by the semi-classical one-dimensional spin drift diffusion (1D-SDD) equa-

tions, we developed the three-dimensional spin drift diffusion (3D-SDD)

model which takes into account the diffusion of spins in three spatial di-

mensions. The peculiarity in the 3D-SDD equations is mainly in the bound-

ary conditions which are adopted by studying actual experimental devices.

The important additional boundary condition of spin-current conservation

in the entire device, i.e., system + baths was essential in determining a

unique solution for the 3D-SDD model. The model was then applied to

study a basic, yet important, concept of spin-injection, which is essential to

build spintronic devices. We explored several device geometries and found

that a small contact area between the semiconductor and the ferromagnet is

essential to obtain a high spin-injection ratio and a minimum contact area

of 103 nm2 is required to build a direct-contact device. The semiconductor

height also greatly affects the spin-injection ratio and a desirable spin injec-

tion is observed only if the height is greater than the spin diffusion length

of the semiconductor. Traditionally, in order to enhance the spin-injection

ratio a tunneling barrier is used, which is prone to pinhole defects. Hence

we also investigated the effects of pinholes in our 3D-SDD model and found

that the coverage area is the only factor affecting the spin-injection ratio
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and the number of pinholes is not important. In order to completely avoid

such pinhole defects we proposed an alternative to tunneling barriers in the

form of thin metal films and found that these are excellent substitutes if the

contact area between the ferromagnet and semiconductor is small. Even for

large contact areas the metal films give much better results as compared

to direct contact, but are poor against ideal tunneling barriers. Thus, our

innovative semi-classical 3D-SDD model gives several insights into the prob-

lem of spin injection in semiconductors at macroscopic length scales, where

fully quantum-mechanical theories fail.

Even though our efforts on spintronics were focused towards device ap-

plications, there are a few avenues where one could push the boundaries

further. In case of magnetic insulators it would be quite interesting to add

magnetic baths along with the thermal baths and study the Onsager rela-

tions leading towards thermomagnetic effects and thermomagneto power.

The extensions to the 3D-SDD equations are quite challenging and one of

the important extension would be to obtain all the parameters like spin-

dependent conductivity σ↑,↓, spin-diffusion length λ and spin-dependent

boundary resistance rc from first-principle calculations like density func-

tional theory and then corroborate with experiments thus proving the va-

lidity of the SDD equations from a firm theoretical base.
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Appendix A
Bath correlators and transition
rates

One of the most important aspects while solving the master equation

is the evaluation of the bath correlators Eq. (2.10). In this appendix we

evaluate the bath correlators and the transition rates for different types of

harmonic heat baths and also discuss ways to numerically simplify their

evaluation.

A.1 Bath correlator

But first we try to obtain Eq. (2.10) from the basic definition of harmonic

heat baths, i.e., Eq. (2.2). The bath correlators as defined after Eq. (2.9)

are given by,

C(τ) =
⟨
B(τ)B(0)

⟩
,

B = −
∞∑
n=1

cnxn . (A.1)
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where the bath operator in terms of the second quantized creation and

annihilation operators is given by,

B(0) = −
∞∑
n=1

cn

√
1

2mnωn

(b+n + b−n) ,

B(τ) = −
∞∑
n=1

cn

√
1

2mnωn

(b+n e
i ωnτ +b−n e

−i ωnτ ) . (A.2)

Substituting Eq. (A.2) in Eq. (A.1) and noting that the number operator

Nn =
⟨
b+nb

−
n

⟩
Thermal

= [exp[βωn]− 1]−1 we obtain,

C(τ) =

∫ ∞

0

dω

π
J(ω)

(
coth

(
βω

2

)
cos(ωτ)− i sin(ωτ)

)
, (A.3)

Above we have used the definition of the spectral density,

J(ω) = π

∞∑
n=1

c2n
2mnωn

δ(ω − ωn) . (A.4)

Using the spectral density we define the damping kernel at zero time as,

γ0 =
∞∑
n=1

c2n
mnω2

n

= 2

∫ ∞

0

dω

π

J(ω)

ω
, (A.5)

so that the renormalization term in the Hamiltonian Eq. (2.3) can be written
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as,

HRN = S2

(
1

2

∞∑
n=1

c2n
mnω2

n

)
= S2γ0

2
, (A.6)

In order to ease the computational complexity of solving the time tran-

sient Redfield master equation it is favorable to obtain the bath correlator

analytically, which is sometimes done using a special decomposition of the

spectral density [170, 171].

A.2 Transition rates via Plemelj

In this thesis we will mainly be interested in the steady state and in

this limit it is sometimes easier to obtain the transition rates rather than

the bath correlator. According to Eq. (2.17) the transition rates in the long

time limit are given by,

W̃ij =

∫ ∞

0

dτ e−i∆ijτ

∫ ∞

0

dω

π
J(ω)

(
coth

(
βω

2

)
cos(ωτ)− i sin(ωτ)

)
.

(A.7)

Exchanging the ω and τ integrals1 and performing the τ integral using the

1The exchange is only true iff the ω integral is convergent.
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Sokhotskyi - Plemelj formula we obtain,

W̃ ′
ij =



J(∆ij)n(∆ij) ∆ij > 0 ,

−J(−∆ij)n(∆ij) ∆ij < 0 ,

J(∆ij)

β∆ij
∆ij = 0 ,

(A.8)

W̃ ′′
ij +

γ0

2
=

∆ij

π

[(
2

β
−∆ij

)
P

(∫ ∞

0

dω
J(ω)

ω
(
ω2 −∆2

ij

))

+
4

β

∞∑
l=1

P

(∫ ∞

0

dω
J(ω)ω

(ω2 −∆2
ij)(ω

2 + ν2
l )

)]
. (A.9)

where n(∆ij) is the Bose-Einstein distribution function. In order to ob-

tain the above formula we have decomposed the hyperbolic cotangent2 into

Matsubara frequencies νl = 2πlT . Although this trick does not solve our

problem completely it helps us to obtain the real part of the transition rates

analytically. Now if the Lamb-shifts are neglected as described in Sec. 2.1.2

then the transition rates are known analytically by Eq. (A.8), since in this

approximation the imaginary parts are set to zero.

A.3 Thermal bath models

While obtaining the bath correlator we defined a spectral density J(ω)

which would be used for phenomenological modeling of the bath. In this

section we discuss some of the most commonly used bath models and ob-

2The exact decomposition of the hyperbolic cotangent is given by Coth(ax) = 1/ax+
(2x/a)

∑∞
l=1 1/

(
x2 + ν2l

)
, where νl = πl/a.
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tain an explicit expression for their bath correlators (where possible) and

transition rates.

A.3.1 Rubin Bath

One of the most commonly used bath models is the Rubin bath [172]

in which the bath is modeled as a infinite set of particles connected by

a harmonic nearest neighbor spring. This model exactly represents the

bath Hamiltonian described in Eq. (2.2). As shown in ref. [77] the spectral

density for the Rubin model is given by,

J(ω) =
mωR

2
ω

(
1−

(
ω

ωR

)2
)1/2

Θ(ωR − ω) , (A.10)

where ωR = 2
√

(k/m), k is the harmonic spring constant of the bath and m

is the mass of each bath particle. Using the technique outlined in Sec. A.2

the transition rates are given by,

W̃ ′
ij =


mωR

2
∆ij

(
1−

(
∆ij

ωR

)2)1/2

n(∆ij)Θ(ωR −∆ij) ∆ij ̸= 0

mωR

2β

(
1−

(
∆ij

ωR

)2)1/2

∆ij = 0

(A.11)

W̃ ′′
ij =

m∆ij

4

(
2

β
−∆ij

)
+
m∆ij

β

∞∑
l=1

[
ν2
l

(
(∆ij/ωR)

2 − 1
2

)
+ 1

42
F1 {1, 3/2; 3;−1/ν2

l }
ν2
l (ν

2
l +∆2

ij/ω
2
R)

]
,

γ0

2
=

mω2
R

4
. (A.12)
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where 2F1 is the Gauss hyper-geometric function. Unfortunately for this

model an analytical expression for the correlator cannot be obtained, but

fortunately the imaginary part of the steady state transition rates can be

obtained analytically as given above. Hence the Rubin model is best applied

to study the steady state properties of a system.

A.3.2 Ohmic bath with exponential cut-off

In most phenomenological heat bath models the spectral density is cho-

sen of the ohmic type, i.e., J(ω) ∝ ω. Such a phenomenological modeling is

based on the notion that the lowest frequencies of the heat bath are most

important and significantly contribute to the physical processes. Thus the

ohmic heat bath with exponential cut-off has a spectral density of the form:

J(ω) = ηω e−
ω
ωc , (A.13)

where η decides the strength of the collective coupling to the bath and the

cut-off is chosen of the exponential form and determined by ωc. Realistic

spectral densities should decay in the frequency domain which leads to

the decay of bath correlators in real time. Interested readers should refer

ref. [77] Sec. 7.3 for a detailed discussion on the cut-off in the spectral

density.

In this case an analytic expression for the bath-correlator can be ob-
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tained [173] and is given by,

C(τ) =
η

2π

 2

β2

∞∑
l=0

 1(
1

βωc
− i τ

β
+ l
)2 +

1(
1

βωc
+ i τ

β
+ l
)2


− 1(
1
ωc

− i τ
)2 − 1(

1
ωc

+ i τ
)2 − i 4τ

ωc

1(
1
ω2
c
+ τ 2

)2
 . (A.14)

Unfortunately an analytic expression for the steady state transition rates is

quite difficult to obtain for this case implying that the exponential cut-off

model is better suited for transient studies.

A.3.3 Lorentz-Drude Bath

Lastly, we look at one of the most commonly used phenomenological

models known as the Lorentz-Drude model. As compared to the exponential

cut-off case this model has a much slower cut-off in the spectral density,

whose form is given by

J(ω) =
Mγω

1 + (ω/ωD)2
, (A.15)

where ωD is the cut-off frequency, γ ∝
∑

n c
2
n is the phenomenological

Stokesian damping coefficient which characterizes the system-bath coupling

strength. One peculiar feature about this model is that it shows a logarith-

mic divergence as ω → 0, but this divergence is quite harmless and the
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correlator obtained is a smooth function of τ given by

C(τ) =
Mγ

2
ω2

D

(
cot

(
βωD

2

)
− i sgn(τ)

)
e−ωDτ

−2Mγ

β

∞∑
l=1

νl e
−νlτ

1− (νl/ωD)2
. τ > 0 (A.16)

Fortunately for this model we can not only obtain C(τ) but also the steady

state transition rates Wij analytically which are given by,

W̃ ′
ij =


Mγ∆ij

1+(∆ij/ωD)2
n(∆ij) ∆ij ̸= 0

Mγ
β(1+(ω/ωD)2)

∆ij = 0

(A.17)

W̃ ′′
ij =

2Mγ∆ij

β

∞∑
l=1

νl
(1− (νl/ωD)2)(ν2

l +∆2
ij)

− Mγω2
D∆ij

2(ω2
D +∆2

ij)

[
cot

(
βωD

2

)
+

ωD

∆ij

]
,

γ0

2
=

MγωD

2
. (A.18)

Thus since both the bath correlator and the steady state transition rates

can be obtained analytically this model is preferred for both transient and

steady state calculations. Another nice feature of this model is that in the

limit ωD → ∞ the model represents a pure ohmic model with J(ω) = Mγω,

which is frequently used in Langevin and classical simulations.
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A.4 Richardson extrapolation

In the previous section we evaluated the transition rates for different

types of heat baths using a Matsubara expansion for the hyperbolic cotan-

gent. The simplest idea to evaluate the Matsubara sum is a brute force

calculation, but this typically leads to summing up millions of terms (espe-

cially at low temperatures) to reach a decent ≈ 10−6 convergence. This is

undesirable when the system Hilbert space is large and alternative methods

to calculate this sum are much needed. In this section we will discuss a

simple approach known as the Richardson extrapolation [174], which will

help us drastically reduce the computational complexity. We begin with a

n-th partial sum An of a slowly converging series which has the form

An ≈ A+
a1

n
+

a2

n2
+

a3

n3
+ · · · , (A.19)

where A is the infinite series we would like to obtain. In the Richardson

expansion it is not important to know the exact form of the coefficients

a1, a2, · · · but the fact that such a series exists is crucial.

In order to obtain the first Richardson expansion we keep only the first

correction term and assume a2 = a3 = a4 = · · · = 0. Now using the n and
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n+ 1 partial sums we eliminate the coefficient a1 to obtain

A[1]

n = (n+ 1)An+1 − nAn , (A.20)

where the left-hand side represents the first order (indicated by the super-

script) Richardson extrapolation to the exact series sum. Similar to the

first order, a general N -th order Richardson extrapolation can be obtained

by solving a set of N + 1 simultaneous equations given by

An = A+
a1

n
+

a2

n2
+

a3

n3
+ · · ·+ aN

nN
,

An+1 = A+
a1

n+ 1
+

a2

(n+ 1)2
+

a3

(n+ 1)3
+ · · ·+ aN

(n+ 1)N
,

...

An+N = A+
a1

n+N
+

a2

(n+N)2
+

a3

(n+N)3
+ · · ·+ aN

(n+N)N
.

The above set has a closed-form solution for A which is known as the N -th

order Richardson extrapolation given by

A[N ]

n =
N∑
k=0

An+k (n+ k)N (−1)k+N

k! (N − k)!
. (A.21)

In case of the Lorentz-Drude model described in Sec. A.3.3 the imaginary

part of the transition rates W̃ ′′
ij satisfies Eq. (A.19) and hence we can ap-

ply the Richardson expansion for the Lorentz-Drude model to reduce the
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computational costs especially at low temperatures.
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Appendix B
Canonical Perturbation Theory

With this Appendix we outline the basic reasoning underlying canonical

perturbation theory [83, 94, 95] (CPT). This will assist us in determining

the correct equilibrium reduced density matrix in the weak coupling regime

up to second order. The basic idea dates back to the works of Peierls [175]

and Landau [176] who calculated the free energy of the full system using

a similar expansion. Here we employ similar techniques for the reduced

density matrix, which in the case of the equilibrium problem is well defined

by the generalized Gibbs distribution [177]:

ρeq =
TrB e−βHtot

Tr e−βHtot
, (B.1)

where Htot is defined in Eq. (2.1) with only one bath. We now use the

Kubo identity to expand e−βHtot up to second order in the coupling strength.
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Tracing over the bath degrees of freedom we obtain,

TrB(e
−βHtot) = e−βHS

[
I− γ0

2

∫ β

0

dβ1S̃(−i β1)S̃(−i β1)

+

∫ β

0

dβ1

∫ β1

0

dβ2S̃(−i β1)S̃(−i β2)C(−i (β1 − β2))

]
,

(B.2)

where S̃(−i β1) = eβ1HS S e−β1HS is the free evolving system operator in

imaginary time and C(−i (β1 − β2)) is the imaginary-time bath correlator

as defined in Append. A. Using Eq. (B.2) in Eq. (B.1) the CPT reduced

density matrix thus reads

ρCPT =
e−βHS

ZS

+
D

ZS

−
e−βHS TrS(D)

(ZS)2
, (B.3)

where ZS = TrS(exp[−βHS]) and the matrix D is given by,

D =

∫ β

0

dβ1

∫ β1

0

dβ2S̃(−i β1)S̃(−i β2)C(−i (β1 − β2))

−γ0

2

∫ β

0

dβ1S̃(−i β1)S̃(−i β1) . (B.4)

Next writing Eq. (B.3) in the basis of the system Hamiltonian we obtain,

ρCPT

nm =
e−βEn

ZS

δn,m +
Dnm

ZS

−
e−βEn

∑
iDii

(ZS)2
δn,m , (B.5)
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wherein

Dnm =
∑
l

SnlSlm e−βEn

[∫ β

0

dβ1 e
β1∆nl

∫ β1

0

dβ2 e
β2∆lm C(−i (β1 − β2))

−γ0

2

∫ β

0

dβ1 e
β1∆nm

]
. (B.6)

In Eq. (B.6) ∆nm = En − Em has the same definition as in Sec. 2.1.1.

The main task in CPT is to evaluate the elements of the matrix D,

Eq. (B.6). In order to do this we split the matrix D into its diagonal and

off-diagonal elements and deal with each part separately, as detailed below.

B.1 Off-diagonal elements of the matrix D

In order to obtain the off-diagonal elements of the matrix D we make

the following change of variables: x = β1−β2, y = β1+β2 and then perform

the y integral analytically to find,

Dnm =
1

∆mn

∑
l

(
D̃nlSlm − D̃mlSln

)
, (B.7)

where,

D̃nl = Snl e
−βEn

(∫ β

0

dxC(−i x) e−x∆ln −γ0

2

)
. (B.8)
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B.2 Diagonal elements of the matrix D

For the diagonal elements of D, by using the same set of transformations

as before, the integrals simplify and the diagonal elements of matrix D

emerge as

Dnn =
∑
l

D̄nlSln , (B.9)

where,

D̄nl = Snl e
−βEn

[
β

(∫ β

0

dxC(−i x) e−x∆ln −γ0

2

)

−
∫ β

0

dxC(−i x)x e−x∆ln

]
. (B.10)

In summary, the thermal equilibrium reduced density matrix obtain via

CPT is given, up to second order, by the generalized Gibbs state, reading:

ρCPT

nm = ρ(0),CPT

nm + ρ(2),CPT

nm , (B.11)

where,

ρ(0),CPT

nm =
e−βEn

ZS

δn,m , (B.12)

ρ(2),CPT

nm =
Dnm

ZS

−
e−βEn

∑
i Dii

(ZS)2
δn,m . (B.13)
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Here, the off-diagonal elements of Dnm are given by Eq. (B.7) and the

diagonal elements are given by Eqs. (B.9) and (B.10). Eq. (B.11) exhibits

that the equilibrium reduced density matrix obtained via CPT is Hermitian

and is normalized properly with trace over the system degrees of freedom

equal to 1.
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