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Abstract

Based on Raman spin-phonon interaction, we theoretically and numerically

studied the phonon Hall effect (PHE) in the ballistic multiple-junction finite

two-dimensional (2D) lattices by nonequilibrium Green’s function (NEGF)

method and and in the infinite 2D ballistic crystal lattices by Green-Kubo

formula.

We first proposed a theory of the PHE in finite four-terminal paramagnetic

dielectrics using the NEGF approach. We derived Green’s functions for the

four-terminal junctions with a spin-phonon interaction, by using which a for-

mula of the relative Hall temperature difference was derived to denote the

PHE in four-terminal junctions. Based on such proposed theory, our numeri-

cal calculation reproduced the essential experimental features of PHE, such as

the magnitude and linear dependence on magnetic fields. The dependence on

strong field and large-range temperatures was also studied, together with the

size effect of the PHE. Applying this proposed theory to the ballistic thermal

rectification, two necessary conditions for thermal rectification were found: one

is phonon incoherence, another is asymmetry. Furthermore, we also found a

universal phenomenon for the thermal transport, that is, the thermal rectifi-

cation can change sign in a certain parameter range.

In the second part of the thesis, we investigated the PHE in infinite periodic

systems by using Green-Kubo formula. We proposed topological theory of

the PHE from two different theoretical derivations. The formula of phonon

Hall conductivity in terms of Berry curvatures was derived. We found that
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there is no quantum phonon Hall effect because the phonon Hall conductivity

is not directly proportional to the Chern number. However, it was found

that the quantization effect, in the sense of discontinuous jumps in Chern

numbers, manifests itself in the phonon Hall conductivity as singularity of the

first derivative with respect to the magnetic field. The mechanism for the

change of topology of band structures comes from the energy bands touching

and splitting. For honeycomb lattices, there is one critical point. And for the

kagome lattices there are three critical points correspond to the touching and

splitting at three different symmetric center points in the wave-vector space.

From both the theories of PHE in four-terminal junctions and in infinite crys-

tal systems, we found a nonmonotonic and even oscillatory behavior of PHE

as a function of the magnetic field and temperatures. Both these two theories

predicted a symmetry criterion for the PHE, that is, there is no PHE if the lat-

tice satisfies a certain symmetry, which makes the dynamic matrix unchanged

and the magnetic field reversed.

In conclusion, we confirmed the ballistic PHE from the proposed PHE theories

in both finite and infinite systems, that is, nonlinearity is not necessary for

the PHE. Together with the numerical finding of the various properties, this

theoretical work on PHE can give sufficient guidance for the theoretical and

experimental study on the thermal Hall effect in phonon or magnon systems for

different materials. The topological nature and the associated phase transition

of the PHE we found in this thesis provides a deep understanding of PHE and

is also useful for uncovering intriguing Berry phase effects and topological

properties in phonon transport and various phase transitions.
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Chapter 1

Introduction

To transport energy in solids traditionally there are two ways: one is conduct-

ing by electron, another is carrying by phonons. For electrons, very matured

theories have been developed and many wide applications have already entered

every aspect of our daily life. However, for phonons, in the last century there

were few applications because of the difficulty to control phonons, which are

collective vibrations, not real particles. In spite of such difficulty, it is very

desirable to efficiently control phonons because the phonon-carrying heat per-

meates everywhere in our lives, such as water heating, air conditioning, and

heat dissipating from the computer. Not until the beginning of this century

did the controlling of phonons and processing information by phonons become

a reality, which has emerged as a new discipline – phononics. Various thermal

devices such as thermal rectifiers or diode [1], thermal transistor [2], thermal

logical gates [3], thermal memory [4] and some molecular level thermal ma-

chines [5, 6] have been proposed, which make the new discipline very exciting

and hot nowadays [7]. To manipulate phonons, one can tune the mechanical

parameters, change geometry of the structures, introduce disorder scattering,
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Chapter 1. Introduction 2

or apply external electrical field. Moreover, the magnetic field is another de-

gree of freedom which could be potentially used to control thermal transport

in the magnetic materials.

The thermal transport in magnetic systems has become an active field

recently, where some experimental and theoretical works on the spin chains

showed anomalous transport due to integrability [8–11], such as the anisotropic

Heisenberg S=1/2 model, the t-V model, and the XY spin chain. In the

magneto-thermal transport systems, there are three kinds of particles or qusi-

particles contributing to the heat conduction: electrons, magnons and phonons.

For the insulating magnetic compounds, the contributions of electrons can be

ignored, thus only the magnons and phonons carry the heat. Most of the

work done on the magneto-thermal transport is on the spin chains, where

only the magnons are considered. However for the magnetic insulating crys-

tals, phonons will contribute a lot to the thermal transport. Therefore it is

highly desirable to study the phonon transport in the magnetic materials with

magnetic fields.

Very recently, a novel phenomenon – the phonon Hall effect (PHE)– has

been experimentally discovered by Strohm, Rikken, and Wyder, where the au-

thors found a temperature difference in the direction perpendicular to both

the applied magnetic field and the heat current flowing through an ionic para-

magnetic dielectric sample [12] (see Fig. 1.1). Due to the Lorentz force, the

electronic Hall effect is easily understood. However, the PHE is indeed a big

surprise, because the phonons, charge-free quisparticles, cannot couple the

magnetic field directly through the Lorentz force. Similar to the quantum
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Figure 1.1: Schematic of the phonon Hall effect

effect of spin-orbit interaction, the spin or the local magnetization can inter-

act with the lattice vibration, which can be called spin-phonon interaction.

Based on such spin-phonon interaction, only two theoretical works have stud-

ied the phonon Hall effect using perturbation approximation [13, 14], and the

underlying mechanism on the PHE is still unclear so far.

1.1 Phononics

Phononics, the science and technology in controlling heat flow and manipu-

lating phonons, becomes a new physical dimension of information processing

in addition to electronics and photonics after about one decade rapid develop-

ment.

In 2002, Marcello Terraneo and co-workers proposed a simple model of

a thermal rectifier based on resonance [15]. The authors found that heat can

easily flow in one direction but not the other. By coupling two nonlinear

one-dimensional lattices, Li et al. demonstrated a thermal diode model that

worked in a wide range of system parameters, in which the rectification effect
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was increased up to three orders of magnitude [1]. Inspired by this theoreti-

cal progress in thermal diode, in 2006 Chih-Wei Chang and co-workers built

the first microscopic solid-state thermal rectifier, where they found the con-

ductance was 3 ∼ 7% greater in one direction than the one in the other [16].

Another experimental observation of thermal rectification of 11% in a semicon-

ductor quantum dot was reported by Scheibner and his co-workers [17]. The

thermal diode was a major step towards phononics, which stimulated many

works on the thermal rectification in spin-boson model, billiard systems, har-

monic or nonlinear lattices, nano structures, quantum systems including spin

chains, quantum circuits and quantum dots [18–35].

In 2006, Li et al. first demonstrated thermal transistor [2], which consisted

of two segments (the source and the drain) with different resonant frequencies

as well as a third segment (the gate) through which the input signal is trans-

ferred. The thermal transistor made it possible to build thermal logic gates,

which was realized one year later by Wang and Li [3]. Shortly after the ther-

mal resistor, via numerical simulation the same group demonstrated a thermal

memory in which thermal information can be retained for a long time without

being lost and also can be read out without being destroyed [4]. Therefore all

the elements including thermal diode, thermal transistors, thermal logic gates,

and thermal memory were theoretically and numerically proposed; perhaps

even thermal computers would be realized in the near future.

Such rapid progress in phononic devices encourages lots of works on the

thermal transport targeting for investigating the thermal properties such as

thermal conductance and conductivity of different materials which include
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carbon nanotubes [36–42], carbon nanotube networks [43, 44], graphene sheet

and nanoribbons [45–47], silicon nanowires [48–50] and some interface struc-

tures [51–53]. To manipulate the thermal transport, there have been devel-

oped many ways, such as surface roughness [49, 54], doping or disorder ef-

fect [55,56,59] for introducing scattering to decrease the thermal conductivity,

applying an external magnetic field in quantum magnetic systems [22,29,57–59]

to change thermal conductivity or rectification. Applying a magnetic field to

the paramagnetic insulating dielectrics, one could also observe the Hall effect

of phonons. To understand such effect, in the following section, we will briefly

introduce various Hall effects of electrons.

1.2 Hall Effects

In 1879, when Hall applied a magnetic field on a conductor sample where an

electron current flowed through it, he found an electrical potential difference

in the transverse direction perpendicular to both the current and the mag-

netic [60]. This effect was named Hall effect, which could be understood by

the Lorentz force. One century later, quantum Hall effect, a striking mani-

festation of quantum nature, was found in 1980 by Klitzing et al., where the

Hall resistance depends only on integer numbers and fundamental constants

when a high magnetic field is applied on the two-dimensional electron gas at

sufficiently low temperatures [61]. Because of the significance of the work,

Klitzing got the Nobel Prize in Physics in 1985. After the integer quantum

Hall effect, in 1982, Tsui, Stromer and Gossard found the fractional quantum

Hall effect [62], followed by the theory proposed by Laughling in 1983 [63].
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For their discovery of fractionally charged electrons, Laughling, Stromer and

Tsui shared the Nobel Prize in Physics in 1998. The outstanding work of the

integer and fractional quantum Hall effects attracts many theoretical studies

on the condensed matter physics and experimental works on the measuring of

Hall resistance with unprecedented accuracy; until recent years, the quantum

Hall effect is still a very active discipline [64–69].

All of the classical Hall effects, integer and fractional quantum Hall effects

depend on the charge of electrons. Besides the charge of electrons, spin is

another degree of freedom of electrons; and without charge current we can

obtain a pure spin current. A natural question rises - whether can we find the

spin Hall effect. In 1999, Hirsch theoretically proposed the principle of the

extrinsic spin Hall effect [70], followed by the intrinsic spin Hall effect [71,72].

Subsequently, the quantum spin Hall effect was independently proposed in

graphene [73] and in strained semiconductors [74]. Followed by the quantum

spin Hall effect, another topic of topological insulator becomes a very hot field

in recent years [75, 76].

The discipline of Hall effects, which started more than one century ago, is

still an active field. In both the electronic Hall effects and spin Hall effects, we

need the charge carrier - electrons to transport. For the charge-free particles,

such as phonons, photons and magnons, a question whether they have Hall

effects rises naturally. There are few works about them because they cannot

couple to the magnetic field via the Lorentz force. However, the spin-phonon

interaction can make the phonon couple to the external magnetic field, which

can be a possible coupling to induce the Hall effect of phonons.
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1.3 Spin-Phonon Interaction

In quantum physics, when a particle moves, the spin of the particle couples

to its motion by the spin-orbit interaction. The best known example of the

spin-orbit interaction is the shift of an electron’s atomic energy levels. Due

to electromagnetic interaction between the electron’s spin and the nucleus’s

magnetic field, the spin-orbit interaction can be detected by a splitting of

spectral lines. Analogous to this coupling, when phonons transport in the

insulators, the vibration of the ions interacts with the spin of the ions or the

local magnetization of the ions, which we can call a spin-phonon interaction.

Based on the symmetry consideration, a phenomenological description of the

spin-phonon interaction was proposed [77–84], which described the coupling

between the pseudo-spin representing the Kramers doublet and the lattice

vibrations. For rare-earth ionic crystal lattice, one can assume all degeneracies

of the ions except the Kramers one are lifted by the intra-atomic coupling

and crystal fields [83, 84], such that the energy difference between the lowest

excited states and the ground states is greater than the Debye energy. Thus at

lower temperatures, we only consider the lowest Kramers doublet, which can

be characterized by a pseudospin-1/2 operator s⃗n. In the absence of external

magnetic field, the Hamiltonian satisfies the time-reversal symmetry, and also

the spatial symmetry of the crystal, then one could get a Raman spin-phonon

interaction in the form as

HI = g
∑

n

s⃗n · (U⃗n × P⃗n). (1.1)

Here, g denotes a positive coupling constant. U⃗n and P⃗n are the vectors of

displacement and momentum of the n-th lattice site. This interaction is not
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particularly small, which dominates the spin lattice relaxation in many ionic

insulators [77–79,84]. In the presence of a magnetic field B⃗, the Kramers dou-

blet carrying opposite magnetic moments split and give rise to a magnetization

M⃗ . For isotropic SPI, the isospin s⃗n is parallel to M⃗n, and the ensemble av-

erage of the isospin is proportional to the magnetization, that is ⟨s⃗n⟩ = cM⃗ .

Therefore, under the mean-field approximation, the SPI can be represented as

HI =
∑

n

h⃗ · (U⃗n × P⃗n), (1.2)

where, h⃗ = gcM⃗ .

From the microscopic discussion of the phonons in a strong static magnetic

field [85], we can also obtain a similar form of the spin-phonon interaction.

Most of the studies on the spin-phonon coupling were focused on its effect of

magnetic properties and longitudinal thermal transport properties. However,

there were very few works studying the effect of the spin-phonon coupling

on the transverse heat transport because most of the researchers think that

the magnetic field cannot force the phonons to turn around to the transverse

direction, and if it can, the effect is almost immeasurable.

1.4 Phonon Hall Effect

Surprisingly, contrary to general belief, Strohm, Rikken, and Wyder observed

the PHE – a magnetotransverse effect, that is, a temperature difference found

in the direction perpendicular to both the applied magnetic field and the heat

current flowing [12]. The authors set up an experiment on samples of param-

agnetic terbium gallium garnet Tb3Ga5O12 (TGG) to detect the corresponding
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Figure 1.2: (a) Setup and geometry of the magnetotransverse phonon trans-
port. (b) Phenomenology: Isotherms without and with a magnetic field.
Copied from reference [12].

transverse temperature difference (∆Ty) as an odd function of the magnetic

field (B), which can be seen in Fig. 1.2. The authors observed a transverse

temperature difference of up to 200 µK at an average temperature 5.45 K and

a temperature longitudinal temperature difference (∆Tx) of 1 K; and that PHE

is linear in the magnetic field between 0 and 4 T.

The PHE was confirmed later by Inyushkin and Taldenkov [86], they

found the coefficient of the phonon Hall effect ((∇yT/∇xT )/B) is equal to

(3.5± 2)× 10−5 T−1 in a magnetic field of 3 T at a temperature of 5.13 K. In

order to understand the physics underlying the experiments, theoretical mod-
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els for PHE have been proposed in Refs. [13, 14]. In Ref. [13], Sheng et al.

first treated the phonons ballistically, and by using the nondegenerate pertur-

bation theory to deal the spin-phonon interaction, the author then obtained

an analytical expression for the thermal Hall conductivity after many approx-

imations. However, according to Strohm et al [12], the mean free path (1 µm)

is far less than the system size (15.7 mm); therefore, it is not appropriate to

treat the diffusive PHE with a ballistic theory. In the work Ref. [14], Kagan et

al. first considered the two-phonon scattering; however in the final form of the

phonon Hall conductivity obtained by Born approximation in the mean field

approach and a series of approximations, the anhormonicity did not appear.

The theoretical studies on the phonon Hall effect proposed by both Sheng

et al. and Kagan et al. gave the readers an ambiguous picture because they

treated the theories within ballistic phonon transport combining the perturba-

tion of the spin-phonon interaction to explain the diffusive phonon Hall effect,

which was incorrect. During the derivations, these authors used some approx-

imations to obtain the phonon Hall conductivity, which was not rigorous and

unhelpful to understand the mechanism of the PHE. Therefore such theories

are not applicable to explain the phonon Hall effect; an exact theory for the

phonon Hall effect is highly desirable.

1.5 Berry Phase Effect

In 1984, Michael Berry reported [87] about adiabatic evolution of an eigen-

state when the external parameters change slowly and make up a loop in the

parameter space, which has generated broad interests throughout the different
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fields of physics including quantum chemistry [88]. In the absence of degener-

acy, when it finishes the loop the eigenstate will go back to itself but with a

different phase from the original one; the difference equal to dynamical phase

factor (the time integral of the energy divided by h̄) plus an extra which is

later commonly called the Berry phase.

The Berry phase is an important concept because of three key properties

as follows [88]. First it is gauge invariant, which can only be changed by an

integer multiple of 2π but cannot be removed. Second, the Berry phase is

geometrical, which can be written as an integral of the Berry curvature over

a surface suspending the loop. Third, the Berry phase has close analogies

to gauge field theories and differential geometry [89]. In primitive terms, the

Berry phase is like the Aharonov-Bohm phase, while the Berry curvature is

like the magnetic field. The integral of the Berry curvature over closed surfaces

is topological and quantized as integers, known as Chern numbers, which is

analogous to the Dirac monopoles of magnetic charges that must be quantized.

In the following we briefly introduce basic concepts of the Berry phase

following Berry’s original paper [87]. Let a Hamiltonian H varies in time

through a set of parameters, denoted by R⃗ = (R1, R2, . . . ). For a closed path in

the parameter space, denoted as C, R⃗(t) the system evolves with H = H(R⃗(t))

and such that R⃗(T ) = R⃗(0). Assuming an adiabatic evolution of the system

as R⃗(t) moves slowly along the path C, we have

H(R⃗)|n(R⃗)⟩ = εn(R⃗)|n(R⃗)⟩ . (1.3)

However, the above equation implies that there is no relations between the

phases factor of the orthonormal eigenstates |n(R⃗)⟩. One can make a phase
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choice, also known as a gauge, provided that the phase of the basis function is

smooth and single-valued along the path C in the parameter space. A system

prepared in one state |n(R⃗(0))⟩ will evolve with H(R⃗(t)) so be in the state

|n(R⃗(t))⟩ in time t according the quantum adiabatic theorem [90, 91], thus

one can write the state at time t as

|ψn(t)⟩ = eiγn(t)e−
i
h̄

∫ t
0 dt′εn(R⃗(t′))|n(R⃗(t))⟩ , (1.4)

where the second exponential is known as the dynamical phase factor. In-

serting Eq. (1.4) into the time-dependent Schrödinger equation ih̄ ∂
∂t
|ψn(t)⟩ =

H(R⃗(t))|ψn(t)⟩ and multiplying it from the left by ⟨n(R⃗(t)|, one finds that γn

can be expressed as an integral in the parameter space

γn =

∮
C
dR⃗ · A⃗n(R⃗) , (1.5)

where A⃗n(R⃗) is Berry connection or the Berry vector potential written as

A⃗n(R⃗) = i⟨n(R⃗)| ∂
∂R⃗

|n(R⃗)⟩ . (1.6)

The Berry vector potential A⃗n(R⃗) is gauge-dependent. If we make a gauge

transformation |n(R⃗)⟩ → eiζ(R⃗)|n(R⃗)⟩ with ζ(R⃗) being an arbitrary smooth

function, A⃗n(R⃗) transforms according to A⃗n(R⃗) → A⃗n(R⃗)− ∂

∂R⃗
ζ(R⃗) . However

because of the system evolves along a closed path C with R⃗(T ) = R⃗(0), the

phase choice we made earlier on the basis function |n(R⃗)⟩ requires eiζ(R⃗) in the

gauge transformation to be single-valued, which implies ζ(R⃗(0)) − ζ(R⃗(T )) =

2π× integer. This shows that γn can be only changed by an integer multiple of

2π and it cannot be removed. Therefore the Berry phase γn is a gauge-invariant

physical quantity.
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In analogy to electrodynamics, a gauge field tensor is derived from the

Berry vector potential:

Bn
µν(R⃗) =

∂

∂Rµ
An

ν (R⃗) − ∂

∂Rν
An

µ(R⃗)

= i
[
⟨∂n(R⃗)

∂Rµ
|∂n(R⃗)

∂Rν
⟩ − (ν ↔ µ)

]
. (1.7)

This field is called the Berry curvature, which can be also written as a sum-

mation over the eigenstates:

Bn
µν(R⃗) = i

∑
n′ ̸=n

⟨n|∂H(R⃗)
∂Rµ |n′⟩⟨n′|∂H(R⃗)

∂Rν |n⟩ − (ν ↔ µ)

(εn − εn′)2
. (1.8)

Berry phase effects are fundamentally important in understanding elec-

trical transport property in quantum Hall effect [92, 93], anomalous Hall ef-

fect [69, 94], and anomalous thermoelectric transport [95]. It is successful in

characterizing the underlying mechanism of quantum spin Hall effect [96, 97].

Such an elegant connection between mathematics and physics provides a broad

and deep understanding of basic material properties. There also have been

some works using Berry phase description to study the underlying properties

of the phonon transport, such as topological phonon modes in dynamic insta-

bility of microtubules [98], Berry-phase-induced heat pumping [99], and the

Berry-phase contribution of molecular vibrational instability [100]. However,

because of the very different nature of electrons and phonons, the underlying

Berry phase effect and topological picture related to the PHE is not straight-

forward and obvious, and therefore, is still lacking.
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1.6 Objectives

Current theories based on the perturbation approximation are not successful

to explain the phonon Hall effect due to their controversial ambiguous deriva-

tions. It is unclear whether the phonon Hall effect can present in a ballistic

phonon system. Based on the current theories, we still do not know the essen-

tial mechanism of the phonon Hall effect, and the various properties about the

phonon Hall effect are lacking. The main aim of this thesis is to propose exact

theories of the phonon Hall effect to uncover the underlying mechanism to in-

vestigate the existence and properties of phonon Hall effect in two-dimensional

lattices. The objectives of this research are to

1. propose a theory of the phonon Hall effect in finite phonon systems by us-

ing nonequlibrium Green’s function method applicable to a four-terminal

junction crystal lattice;

2. examine conditions for existence of the phonon Hall effect by considering

the symmetry of the dynamic matrix;

3. develop exact theories of the phonon Hall effect in infinite periodic sys-

tems by using the Green-Kubo formula;

4. study topological nature of the phonon Hall effect by looking at the

Berry phase effect of the phonon bands, thus we can examine whether a

quantized phonon Hall effect exists;

5. discuss various properties on the phonon Hall effect, such as dependence

on the large range of magnetic fields and temperatures and associated
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other effects.

The results of the present research may have significance on the understanding

of the mechanism of the phonon Hall effect and could be generally applicable

to different systems. This study may provide insights into the topological

nature of not only the phonon Hall effect but also other boson Hall effects.

The results of various properties could provide guidelines for the experiments

on the phonon Hall effect. The focus of this thesis is to propose exact theories

on the phonon Hall effect based on the Raman spin-phonon interaction. A

first principle investigation on the spin-phonon coupling is excluded from this

study. It should also be noted that the proposed exact theories in this study

are restricted on the ballistic phonon system without nonlinear interaction. In

this thesis, we will introduce the methods of nonequilibrium Green’s function

and Green-Kubo formula in Chapter 2; followed by the study on the phonon

Hall effect in four-terminal junctions in Chapter 3. In Chapter 4, the theory

of the phonon Hall effect in infinite periodic systems is proposed. At last, a

conclusion of this study is given in Chapter 5.



Chapter 2

Methods

In this thesis, to study the PHE in finite junctions and in infinite crystal lat-

tices, we will apply two approaches which have been the most commonly used

methods in the thermal transport study. One is the nonequilibrium Green’s

function (NEGF) method which investigates the nonequilibrium steady state

by connecting a system to heat baths at different fixed temperatures. The

other one is the Green-Kubo Formula which studies the thermal conductivity

relating with the equilibrium current correlation function. In the following two

sections we give a brief introduction of these methods.

2.1 The NEGF Method

The NEGF method, which was first invented for electron transport, is an

elegant and powerful method to calculate steady state properties of a finite

system connected to reservoirs. The NEGF method has its root in quantum

field theory [101]. The NEGF method treats nonequilibrium and interacting

systems in a rigorous way; some of early formulations have been derived by

16
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Schwinger [102], Kadanoff and Baym [103], and Keldysh [104]. Keldysh devel-

oped a diagram approach by using Feynman diagrams; Kadanoff and Baym

created an equations of motion approach. Both approaches are well suitable

for studying a dynamic system in nonequilibrium state. Using the Keldysh

formalism of NEGF, one can obtain formal expressions of the current and

other quantities such as electron density. The Keldysh diagrammatic expan-

sion method has also been generalized to cases of correlated initial states [105].

Many studies on the electrical transport through junctions have been done by

using NEGF [106, 107]; and some necessary backgrounds on the such method

can be found in the books by Datta [147] and Haug and Jauho [109]. However,

the application of NEGF method to thermal transport is relatively new. In

recent ten years, the NEGF apprach has been used on thermal transport not

only in ballistic transport [110–112,135] but also nonlinear transport [114–118].

Very recently, Wang et al. [119] has given a detailed review on the quantum

thermal transport in nanostructures on the application of NEGF method to

the thermal transport.

In the following, we will give an illustration on the NEGF application to

the ballistic transport. For the thermal transport with nonlinear interaction,

the procedure is similar, except for the self energy which could be treated by

perturbation using Feynman diagrams.

2.1.1 Motivation for NEGF

In general, we can use a model of junction connected to two leads to study the

thermal transport. We use a transformation for the coordinates, uj =
√
mj xj,
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where xj is the relative displacement of j-th degree of freedom; and in this way,

the kinetic energy is always in the form of 1
2
u̇T u̇ (where T stands for matrix

transpose). We use a superscript α to denote the region. Then uα
j belongs to

the region α; α = L,C,R, for the left, center, and right regions, respectively.

The Hamiltonian of the system is given by

H =
∑

α=L,C,R

Hα + (uL)TV LCuC + (uC)TV CRuR + Vn, (2.1)

where Hα = 1
2
(u̇α)T u̇α + 1

2
(uα)TKαuα represents the Hamiltonian of the region

α; uα is a column vector consisting of all the displacement variables in region α,

and u̇α is the corresponding conjugate momentum. Kα is the spring constant

matrix and V LC = (V CL)T is the coupling matrix of the left lead to the central

region; similarly for V CR. There is no interaction between the two leads. The

nonlinear part of the interaction Vn can be arbitrary; in this thesis we set

Vn = 0 for ballistic transport.

As well known, the most important quantity to calculate in thermal trans-

port is the heat flux. The heat flux is defined as the energy transferred from

the heat source to the junction in a unit time, which is equal to the energy

transferred from the junction to the heat sink in a unit time, with the as-

sumption that no energy is accumulated in the junction. According to this

definition, the heat flux out of the left lead is

IL = −⟨ḢL(t)⟩ = i⟨[HL(t), H]⟩ = i⟨[HL(t), V LC(t)]⟩. (2.2)

In the steady state, energy conservation means that IL+IR = 0. For simplicity,

we set h̄ = 1 in this section. Using the Heisenberg equation of motion, we
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obtain,

IL = ⟨(u̇L)T (t)V LCuC(t)⟩

=
∑
j,k

⟨u̇L
j (t)V LC

jk uC
k (t)⟩

= lim
t′→t

∑
j,k

V LC
jk ⟨u̇L

j (t′)uC
k (t)⟩. (2.3)

Thus the heat flux depends on the expectation value of u̇L
j (t′)uC

k (t). Such ex-

pectation value can be expressed in terms of the Green’s function G<
CL(t, t′) =

−i⟨uL(t′)uC(t)T ⟩T . Since operators u and u̇ are related in Fourier space as

u̇[ω] = −i ωu[ω], we can eliminate the derivative and get,

IL = − 1

2π

∫ ∞

−∞
Tr

(
V LCG<

CL[ω]
)
ω dω. (2.4)

Therefore, If we obtain the Green’s functions, we can calculate the heat flux.

In the following section, we will introduce the several versions of the Green’s

functions and their relations.

2.1.2 Definitions of the Green’s Functions and Their
Relations

We start with the definition of six Green’s functions [119–121]:

Gr(t, t′) = −iθ(t− t′)⟨[u(t), u(t′)T ]⟩, (2.5)

Ga(t, t′) = iθ(t′ − t)⟨[u(t), u(t′)T ]⟩, (2.6)

G>(t, t′) = −i⟨u(t)u(t′)T ⟩, (2.7)

G<(t, t′) = −i⟨u(t′)u(t)T ⟩T , (2.8)

Gt(t, t′) = θ(t− t′)G>(t, t′) + θ(t′ − t)G<(t, t′), (2.9)

Gt̄(t, t′) = θ(t′ − t)G>(t, t′) + θ(t− t′)G<(t, t′). (2.10)
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They are known as retarded, advanced, greater, lesser, time-ordered, and anti-

time ordered Green’s functions, respectively. u(t) is a column vector of the

particle displacement in Heisenberg picture. The step function θ(t) = 1 if

t ≥ 0 and 0 if t < 0. The notation ⟨[A,BT ]⟩ represents a matrix and should

be interpreted as ⟨ABT ⟩ − ⟨BAT ⟩T .

In equilibrium or nonequilibrium steady states, the Green’s functions de-

pend only on the difference in time, t−t′. The Fourier transform of Gr(t−t′) =

Gr(t, t′) is defined as Gr[ω] =
∫ +∞
−∞G

r(t)eiωtdt. The following linear relations

hold in both frequency and time domains from the basic definitions [119]:

Gr −Ga = G> −G<, (2.11)

Gt +Gt̄ = G> +G<, (2.12)

Gt −Gt̄ = Gr +Ga. (2.13)

Out of the six Green’s functions, only three of them are linearly independent.

However, in systems with time translational invariance, the functions Gr and

Ga are hermitian conjugate of one other:

Ga[ω] = (Gr[ω])†. (2.14)

So in general nonequilibrium steady-state situations, only two of them are

independent. We usually choose Gr and G<, but other choices are possible.

There are other relations in the frequency domain as well [119]:

G<[ω]† = −G<[ω], (2.15)

Gr[−ω] = Gr[ω]∗, (2.16)

G<[−ω] = G>[ω]T =−G<[ω]∗+Gr[ω]T−Gr[ω]∗. (2.17)
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The last two equations show that we only need to compute the positive fre-

quency part of the functions.

Equations (2.11) to (2.17) are generally valid for nonequilibrium steady

states. In thermal equilibrium, there is an additional equation relating Gr and

G<:

G<[ω] = f(ω)
(
Gr[ω] −Ga[ω]

)
, (2.18)

where f(ω) is the Bose-Einstein distribution function at temperature T . In

equilibrium, we also have G>[ω] = eβωG<[ω]. Thus in equilibrium, there is

only one independent Green’s function; we take it to be Gr.

2.1.3 Contour-Ordered Green’s Function

To compute the Green’s functions of the nonequilibrium systems, we need to

use the concept of adiabatic switch-on. We imagine that at t = −∞ the

system has three decoupled regions, each at separate temperatures, TL, TC ,

and TR. The couplings between the regions are turned off. The equilibrium

Green’s functions gα at temperature Tα are known. The couplings V LC and

V CR are then turned on slowly, and a steady state of the linear system is

established at some time t0. For this linear problem, the result does not depend

on TC ; the initial condition of the finite center part is forgotten. If the system

has nonlinear interaction Vn, we need another adiabatic switch-on for Vn. In

this thesis, we will not consider the nonlinear interaction. By the adiabatic

switch-on we can project the density matrix to the initial decoupled system,
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for example, the time-order Green-function can be written as

Gt
jk(t, t

′) = −i⟨Tuj(t)uk(t
′)⟩,

⇓ if t > t′ then

= −iTr
(
ρH(t0)U(t0, t)u

t
jU(t, t0)U(t0, t

′)ut′

kU(t′, t0)
)

⇓ ρH(t0) = ρS(t0) = U(t0,−∞)ρS(−∞)U(−∞, t0)

= −iTr
(
ρS(−∞)U(−∞, t0)U(t0, t)U(t,∞)U(∞, t)

ut
jU(t, t0)U(t0, t

′)ut′

kU(t′, t0)U(t0,−∞)
)

(2.19)

Here U(t, t′) is the evolution operator with interface coupling V LC and V CR; ρH

and ρS are the density matrix in Heisenberg and Schrödinger representations,

respectively. Therefore the Green’s function relates to the evolution along the

path from −∞ to +∞ and back from +∞ to −∞, we can define the contour-

ordered Green’s function as

G(τ, τ ′) = −iTr
(
ρS(−∞)Tτe

−i
∫

c H(τ ′′)dτ ′′
uτuτ ′T

)
= −i⟨Tτu(τ)u(τ

′)T ⟩, (2.20)

where the variable τ is on a Keldysh contour from −∞ to +∞ and back from

+∞ to −∞. The contour-ordered Green’s function includes four different

Green’s functions given earlier [119]:

Gσσ′
(t, t′) = lim

ϵ→0+
G(t+ iϵσ, t′ + iϵσ′), σ = ±(1). (2.21)

We have introduced a branch index σ, such that τ = t+ iϵσ. σ = +1 means τ

is at the −∞ to +∞ branch, while σ = −1 means τ is at the returning branch.

With this notation, we can identify that G++ = Gt, G−− = Gt̄, G+− = G<,
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and G−+ = G>, or in a matrix form

G(τ, τ ′) →

 Gt G<

G> Gt̄

 . (2.22)

In dealing with the contour-ordered Green’s functions, we often encounter

convolution of the form

B(τ, τ ′) =

∫
dτ1

∫
dτ2 · ·A1(τ, τ1)A2(τ1, τ2) · ·An(τn−1, τ

′). (2.23)

This form of expression can be easily translated into the retarded and lesser

Green’s functions in frequency domain by the Langreth theorem as [109, 119,

122,123]

Br,a[ω] = Ar,a
1 [ω]Ar,a

2 [ω] · · ·Ar,a
n [ω], n = 2, 3, · · · (2.24)

B<,>[ω] = Ar
1[ω] · · ·Ar

n−1[ω]A<,>
n [ω] +

Ar
1[ω] · · ·Ar

n−2[ω]A<,>
n−1[ω]Aa

n[ω] +

· · · + A<,>
1 [ω]Aa

2[ω] · · ·Aa
n−1[ω]Aa

n[ω]. (2.25)

2.1.4 Equation of Motion

An efficient method to obtain the Green’s functions of interacting systems is

through the equation of motion of the Green’s functions. The equation of

motion for the nonequilibrium Green’s function is equivalent to the Keldysh

formalism [119,124].

If we regard the system as a whole, the contour ordered Green’s function

satisfies

− ∂2G(τ, τ ′)

∂τ 2
−KG(τ, τ ′) = Iδ(τ, τ ′). (2.26)
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This is obtained from taking derivatives twice to the definition of the contour-

ordered Green’s function [119]. If we partition the matrix G to the submatrices

Gα,α′
, α, α′ = L,C,R, and similarly for K, we can obtain the equations related

on Gα,α′
. We can easily get the free Green’s function for the system decoupled

as

− ∂2gα(τ, τ ′)

∂τ 2
−Kαgα(τ, τ ′) = Iδ(τ, τ ′). (2.27)

The corresponding ordinary Green’s functions in frequency domain can be

written as

gr
α[ω] =

[
(ω + iη)2 −Kα

]−1
, (2.28)

where η is an infinitesimal positive quantity to single out the correct path

around the poles when performing an inverse Fourier transform, such that

gr(t) = 0 for t < 0. Other Green’s functions can be obtained through the

general relations among the Green’s functions, e.g., g<[ω] = f(ω)
(
gr[ω] −

ga[ω]
)
.

We also can obtain the contour-ordered nonequilibrium Green’s functions

as

GLC(τ, τ ′) =

∫
dτ ′′gL(τ, τ ′′)V LCGCC

0 (τ ′′, τ ′), (2.29)

GCC(τ, τ ′) = gC(τ, τ ′) +∫
dτ1

∫
dτ2 g

C(τ, τ1)Σ(τ1, τ2)G
CC(τ2, τ

′). (2.30)

The self-energy Σ(τ1, τ2) is given by

Σ(τ1, τ2) = V CLgL(τ1, τ2)V
LC + V CRgR(τ1, τ2)V

RC . (2.31)
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In ordinary Green’s functions and in frequency domain (ω argument sup-

pressed), the above Dyson equation has solutions [109]:

Gr
CC =

(
(ω + iη)2I −KC − Σr

)−1
, (2.32)

G<
CC = Gr

CΣ<Ga
C . (2.33)

2.1.5 Heat Flux and Conductance

By applying the Langreth theorem Eq. (2.25) to Eq. (2.29), we have G<
CL[ω] =

Gr
CC [ω]V CLg<

L [ω] +G<
CC [ω]V CLga

L[ω]. Then the heat flux can be written as

IL = − 1

2π

∫ +∞

−∞
dω ωTr

(
Gr[ω]Σ<

L [ω] +G<[ω]Σa
L[ω]

)
, (2.34)

For notational simplicity, we have dropped the subscript C on the Green’s

functions denoting the central region. We can obtain a symmetrized expression

with respect to left and right lead and make it explicitly real,

I =
1

4
(IL + I∗L − IR − I∗R) (2.35)

In the end, we can get the Landauer-like formula

I =

∫ ∞

0

dω

2π
h̄ω T [ω]

(
fL − fR

)
, (2.36)

where fL,R =
{
exp[h̄ω/(kBTL,R)]−1

}−1
is the Bose-Einstein (or Planck) distri-

bution for phonons, and T [ω] is known as the transmission coefficient, written

in the so-called Caroli formula as

T [ω] = Tr(GrΓLG
aΓR). (2.37)

Here, Gr = Gr
CC =

[
(ω+ iη)2I−KC −Σr

L−Σr
R

]−1
, the self-energy of the leads

is Σr
α = V Cαgr

αV
αC , and Γα = i(Σr

α − Σa
α) = −2 Im (V Cαgr

αV
αC).
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We define the thermal conductance as

σ = lim
∆T→0

I

∆T
, (2.38)

where ∆T is the difference of the temperatures between the leads, such that

TL = T + ∆T/2 and TR = T −∆T/2. For the ballistic transport, the conduc-

tance can be written as

σ =
1

2π

∫ ∞

0

dω ω T [ω]
∂f(ω)

∂T
. (2.39)

2.2 Green-Kubo Formula

The Green-Kubo formula, which provides a relation between the thermal con-

ductivity κ or the electrical conductivity σ and equilibrium time correlation

functions of the corresponding current, is widely used to study the electrical

and thermal transport. For the thermal conductivity in a classical infinite 1D

system, the Green-Kubo formula reads:

κ =
1

kBT 2
lim
t→∞

lim
L→∞

1

L

∫ t

0

dt⟨J(0)J(t)⟩, (2.40)

where J is the total heat current, ⟨·⟩ denote the average over the equilibrium

ensemble at a temperature T .

Based on certain assumptions, such as normal diffusion, Green and Kubo

first derived the Green-Kubo formula [125–128], followed by a number of var-

ious derivations [129–135], all of which require certain assumptions thus none

of these derivations are rigorous. However, they are quite convincing because

the assumptions made are satisfied in a large number of practical application.

Thus it is justified for the wide use of the Green-Kubo formula in calculating

thermal conductivity and transport properties of different systems [135].
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Very recently, Liu et. al [136] derives a universal equality relating heat

current autocorrelation function to the variance of the energy distribution,

based on which the authors recover the existing theories for normal heat con-

duction using the Green-Kubo formula. And on the other hand, with the

assumption of normal conduction one can easily obtain the Green-Kubo for-

mula. According to Ref. [136], an schematic derivation of the Green-Kubo

formula is given in the following, by which the physical picture can be easily

understood. For a 1D continuous and infinite system in thermal equilibrium,

we have the the energy continuity equation as

∂ϵ(x, t)

∂t
+
∂j(x, t)

∂x
= 0. (2.41)

Where ϵ(x, t) and j(x, t) denote the energy density fluctuation and heat flux

density at position x at time t, respectively. Multiplying Eq. (2.41) by ϵ(x′, t′)

and j(x′, t′) respectively, and taking the average, we obtain [136]:

∂2Cϵϵ(x, t)

∂t2
+
∂2Cjj(x, t)

∂x2
= 0, (2.42)

where Cϵϵ(x, t) = ⟨ϵ(0, 0)ϵ(x, t)⟩ and Cjj(x, t) = ⟨j(0, 0)j(x, t)⟩.

According Ref. [136, 137], the probability density function for the energy

diffusion can be written as

ρ(x, t) =
1

kBT 2c
⟨ϵ(x, t)ϵ(0, 0)⟩ =

1

kBT 2c
Cϵϵ(x, t), (2.43)

which is obtained from equilibrium statistical mechanics. Here, c specific heat

capacity. Based on Eq. (2.43), the variance of the distribution is written as

⟨x2(t)⟩ = 1
kBT 2c

∫ ∞
−∞ x2Cϵϵ(x, t)dx. Using the relation of Eq. (2.42), we obtain

[136]

d2⟨x2(t)⟩
dt2

=
2

kBT 2c

∫ ∞

−∞
Cjj(x, t)dx, (2.44)
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We know that
∫ ∞
−∞Cjj(x, t)dx = limL→∞

1
L
⟨J(0)J(t)⟩, where J is the total heat

current. For a normal diffusion, ⟨x2(t)⟩ = 2Dt (t > 0), where D is the diffusion

coefficient. The energy current satisfies Fourier’s law which we write in the

form J(x, t) = −D∂u(x, t)/∂x where D = κ/c. Based on such assumption, in

the end we can obtain the Green-Kubo formula as

κ =
1

kBT 2
lim

L→∞

1

L

∫ ∞

0

dt⟨J(0)J(t)⟩. (2.45)

For finite systems, people also use the Green-Kubo formula to study the

thermal conductivity by coupling the system to infinite reservoirs [138–140]. It

has been shown that Green-Kubo like expressions for the linear-response heat

current in finite open systems can be derived rigorously by using the steady

state fluctuation theorem [141–145]. which has been done for lattice models

coupled to stochastic Markovian baths [135].

For the ballistic transport, the thermal conductivity diverges; thus the

Green-Kubo formula is not applicable to study the thermal transport. In such

case, one is interested in the conductance instead of the conductivity. For the

phonon Hall conductivity, the spin-phonon interaction plays an key role for

the transverse thermal transport, the conductivity κxy may not be divergent,

thus the Green-Kubo formula could be applicable. The Green-Kubo formula

shown above is the classic version, for quantum transport, we should replace

the current correlation with canonical correlation of the two currents, then the

formula reads as

κ =
1

kBT 2
lim

L→∞

1

L

∫ ∞

0

dt⟨J(0); J(t)⟩, (2.46)
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where the canonical correlation is defined as

⟨a; b⟩ =
1

β

∫ β

0

dξTr[e−βHeξHae−ξHb]/Tr[e−βH ]. (2.47)

By variable substitution λ = ξh̄, and using the relation a(t) = eiHt/h̄a(0)e−iHt/h̄,

in the end the Green-Kubo formula for the quantum thermal transport can be

written as

κ =
1

h̄TL

∫ h̄/(kBT )

0

dλ

∫ ∞

0

dt
⟨
J(−iλ)J(t)

⟩
. (2.48)



Chapter 3

Phonon Hall Effect in
Four-Terminal Junctions

In this chapter, we study the PHE in a finite four-terminal system by taking

into account the actual experimental measuring process. By connecting the

two-dimensional (2D) sample (certain thin film paramagnetic dielectrics) to

two heat baths in two different temperatures, a steady heat flux will flow along

the sample in longitudinal direction. Applying a magnetic field perpendicular

to the heat flux (the plane of the sample), we connect two probe-leads (two

thermometers) to the middle of sample in the transverse direction, as shown

in Fig. 3.1. After the thermal transport reaches a steady state when the heat

enter the probe leads is zero, we would obtain two different temperatures at

the upper and lower probe-leads if the PHE can exist in the system. We will

use the NEGF approach to study the PHE in such four-terminal nanoscale

system to calculate the temperature difference in the transverse direction.

30
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Figure 3.1: The four-terminal PHE setup used for calculating the thermal
conductance and the temperature difference T3 − T4. (a) The left and right
leads have temperatures T1 and T2, the upper and lower probe-leads have
temperatures T3 and T4. The center part can be different lattices, such as
square lattices (b) or honeycomb lattices (c).

3.1 Model

To develop a nonperturbative theory for PHE in nanoscale four terminal junc-

tions, we consider a model shown Fig. 3.1. The left and right heat baths are

at temperature T1 and T2. If we apply a magnetic field normal to the plane of

the setup, we would obtain two different temperatures at the upper and lower

probe-leads, that is, T3 − T4 ̸= 0, if the PHE can occur in the system. The

center part can be different lattices, such as square, triangle or honeycomb

lattices. We denote the lattice as NR ×NC , where NR, NC correspond to the

number of rows and columns, respectively. For Fig. 3.1(b), NR = 4, NC = 6;

for Fig. 3.1(c), NR = 9, NC = 6. Our model systems can produce features

similar to experiments, such as the magnitude of Hall temperature difference

and the linear dependence on magnetic fields, even though our systems are of
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nanometer scale while the experimental systems are of millimeter scale and are

in the diffusive regime.

3.2 Theory for the PHE Using NEGF

3.2.1 Hamiltonian

We consider the Hamiltonian of SPI as discussed in the chapter of introduction,

which is written as

HI =
∑

n

h⃗ · (U⃗n × P⃗n), (3.1)

where, h⃗ = gcM⃗ , has the units of frequency. According to [13], h is estimated

to be 0.1 cm−1 ≈ 3 × 109 Hz at B = 1 T and T = 5.45 K, which is within

the possible range of the coupling strength in ionic insulators [79, 80]. In our

calculation, we will use this relation to map h to magnetic field B.

The total Hamiltonian is assumed to be

H =
∑

α=C,L,R,U,N

Hα +
∑

β=L,R,U,N

(Uβ)TV βCUC + (UC)TAPC , (3.2)

where Hα = 1
2

(
(Pα)TPα + (Uα)TKαUα

)
; and A is an antisymmetric, block

diagonal matrix with the diagonal elements

 0 h

−h 0

 . Here, the notations

C, L, R, U , and N are associated with the center region, left, right, upper,

and nether leads, respectively. Uα (Pα) are column vectors consisting of all

the displacement (momentum) variables in region α. Kα is the spring constant

matrix and V βC = (V Cβ)T is the coupling matrix between the β lead and the
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central region. The dynamic matrix of the full linear system without SPI is

K =



KL 0 V LC 0 0

0 KU V UC 0 0

V CL V CU KC V CN V CR

0 0 V NC KN 0

0 0 V RC 0 KR


. (3.3)

There will be no interaction between the leads. We consider the leads as semi-

infinite quasi-one dimensional square lattices as discussed in Sec.2.1 of Chapter

2.

3.2.2 Green’s Functions

Based on the Hamiltonian Eq. (3.2), we obtain the equation for UC and PC

as

∂UC(τ)

∂τ
= PC(τ) − AUC(τ); (3.4)

∂PC(τ)

∂τ
= −KCUC(τ) −

∑
β=L,R,U,N

V CβUβ − APC(τ). (3.5)

We define the contour-ordered Green’s function as

Gαβ(τ, τ ′) ≡ − i

h̄

⟨
Tc U

α(τ)(Uβ(τ ′))T
⟩
, (3.6)

where α and β refer to the region that the coordinates belong to and Tc is the

contour-ordering operator. Then the first derivative of the contour ordered

Green’s function with respect to τ can be derived as

∂

∂τ
GCC(τ, τ ′) = − i

h̄

⟨
Tc P

C(τ)(UC(τ ′))T
⟩
− AGCC(τ, τ ′). (3.7)
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We define Y (τ, τ ′) ≡ − i
h̄

⟨
Tc P

C(τ)(UC(τ ′))T
⟩
, then we obtain

∂

∂τ
Y (τ, τ ′) = −δ(τ, τ ′)−KCGCC(τ, τ ′)−

∫
Σ(τ, τ

′′
)GCC(τ

′′
, τ ′)dτ

′′−AY (τ, τ ′),

(3.8)

where Σ(τ, τ
′
) =

∑
α=L,R,U,N

Σα(τ, τ
′
), and Σα(τ, τ

′
) is the self energy of each

lead. Combining Eqs. (3.7, 3.8), Y (τ, τ ′) can be eliminated, and the equation

of motion of the Green’s function can be written as

(
∂2

∂τ 2
+KC + A2 + 2A

∂

∂τ
)GCC(τ, τ ′) = −δ(τ, τ ′) −

∫
Σ(τ, τ

′′
)GCC(τ

′′
, τ ′)dτ

′′
.

(3.9)

By doing Fourier transformation, the retarded Green’s function for the central

region in frequency domain is

Gr[ω] =
[
(ω + iη)2 −KC − Σr[ω] − A2 + 2iωA

]−1

. (3.10)

Here, Σr[ω] =
∑

α=L,R,U,N

Σr
α[ω]; and Σr

α[ω] = VCαg
r
α[ω]VαC is the self-energy due

to interaction with the heat bath; and gr
α[ω] = [(ω+iη)2−Kα]−1 is the Green’s

function of the lead. We omit the notation CC here and in the following for

simplicity. The lesser Green’s function of the central region is obtained through

G<[ω] = Gr[ω]Σ<[ω]Ga[ω]

in the usual way. Here A term contributes to the less Green’s function G<

through both Gr and Ga.

3.2.3 Heat Current

The energy flux to the central region from the lead α is,

Iα = −
⟨
Ḣα

⟩
=
i

h̄
⟨[Hα, H]⟩ , α = L,R, U,N. (3.11)
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By inserting the Hamiltonian H,Hα and using the commutation relation be-

tween U and P , we obtain

Iα =
⟨
(UC)TV CαPα

⟩
=

∑
l,j

⟨
UC

l V
Cα
lj Pα

j

⟩
=

∑
l,j

V αC
jl

⟨
Pα

j U
C
l

⟩
. (3.12)

Here, UC and Pα (α ̸= C) commute at the same time, and V Cα
lj = V αC

jl . By

definition of

GCα <
lj (t, t′) ≡ − i

h̄

⟨
Uα

j (t′)UC
l (t)

⟩
, (3.13)

and

∂

∂τ ′
GCα <

lj (t, t′) ≡ − i

h̄

⟨
P α

j (t′)UC
l (t)

⟩
, (3.14)

we can rewrite the heat flux as

Iα =
∑
l,j

V αC
jl ih̄

∂

∂t′
GCα <

lj (t, t′)|t=t′

= ih̄Tr
[
V αC ∂

∂t′
GCα <(t, t′)|t=t′

]
. (3.15)

Using the Fourier transformation

GCα <(t, t′) =

∫ ∞

−∞

dω

2π
GCα <[ω]e−i(t−t′)ω, (3.16)

we obtain

Iα = −
∫ ∞

−∞

dω

2π
h̄ωTr(V αCGCα <[ω]). (3.17)

For our multi-lead system, we also can derive the contour Green’s function of

GCα(τ, τ ′) =

∫
GCC(τ, τ ′′)V Cαgα(τ ′′, τ)dτ ′′, (3.18)
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and applying Langreth theorem, we get

GCα <(t, t′) =

∫ [
Gr(t, t′′)V Cαg<

α (t′′, t) +G<(t, t′′)V Cαga
α(t′′, t)

]
dt′′, (3.19)

in frequency domain which can be written as

GCα <[ω] = Gr[ω]V Cαg<
α [ω] +G<[ω]V Cαga

α[ω], (3.20)

then the heat flux reads as

Iα = −
∫ ∞

−∞

dω

2π
h̄ωTr

(
GrΣ<

α +G<Σa
α

)
. (3.21)

Using the relation of

Σ<
α = fα(Σr

α − Σa
α)

= −ifαΓα, (3.22)

with f =
(
eh̄ω/kBT − 1

)−1
and Γα = i

(
Σr

α[ω] − Σa
α[ω]

)
, we obtain

Iα = −
∫ ∞

−∞

dω

4π
h̄ωTr

(
−ifα(Gr −Ga)Γα +Gr(

∑
β

fβΓβ)GaΓα

)
. (3.23)

Where we replace the heat flux with a half of the sum of itself and its com-

plex conjugate because the heat flux must be real. Using Eq. (3.10) and the

antisymmetric property of A, A† = −A, we obtain

Gr−1 −Ga−1 = i
∑

β

Γβ, (3.24)

then we get

Ga −Gr = iGr
∑

β

ΓβG
a. (3.25)

Therefore, the heat flux can be further written as

Iα =

∫ ∞

−∞

dω

4π
h̄ω

∑
β=L,R,U,N

Tβα[ω](fα − fβ), (3.26)
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where Tβα is the transmission coefficient from αth lead to βth lead, written as

Tβα[ω] = Tr
(
Gr[ω]Γβ[ω]Ga[ω]Γα[ω]

)
. (3.27)

Because of Gr[−ω] = Gr[ω]∗, Ga[−ω] = Ga[ω]∗, and Γ[−ω] = −Γ[ω]∗, we

can get

Tβα[−ω] = Tβα[ω]∗ = Tβα[ω]. (3.28)

We know the Tβα should be real form the above derivation. Using the sum of

Tβα and its complex conjugate to derive the heat flux, therefore we finally get

the heat flux as

Iα =

∫ ∞

0

dω

2π
h̄ω

∑
β=L,R,U,N

Tβα[ω](fα − fβ). (3.29)

If the temperature differences among the leads are very small, we can

treat the system in linear response regime, Tα = T + ∆α. The linearized heat

flux from each heat bath can be written as

Iα =
4∑

β=1

σβα(∆α − ∆β). (3.30)

The conductance from heat bath α to β is defined as

σβα =

∫ ∞

0

dω

2π
h̄ωTβα[ω]

∂f

∂T
. (3.31)

Equations (3.30) and (3.31) are the Landauer-Büttiker theory [147,148] applied

to the multiple-lead thermal transport.

3.2.4 Relative Hall Temperature Difference

In the following we simplify the notation of L, R, U , and N as 1, 2, 3, and

4, respectively. To measure the phonon Hall effect, we adjust temperatures
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of the upper and nether probes T3 and T4 such that the heat currents from

these two leads vanish, namely, I3 = I4 = 0. Because
∑

α Iα = 0, we obtain

I1 + I2 = 0. Using the Eq. (3.30), we then obtain the following equations:

I1 = σ21(∆1 − ∆2) + σ31(∆1 − ∆3) + σ41(∆1 − ∆4) = I; (3.32)

I2 = σ12(∆2 − ∆1) + σ32(∆2 − ∆3) + σ42(∆2 − ∆4) = −I; (3.33)

I3 = σ13(∆3 − ∆1) + σ23(∆3 − ∆2) + σ43(∆3 − ∆4) = 0; (3.34)

I4 = σ14(∆4 − ∆1) + σ24(∆4 − ∆2) + σ34(∆4 − ∆3) = 0. (3.35)

We define the relative Hall temperature difference as

R =
T3 − T4

T1 − T2

=
∆3 − ∆4

∆1 − ∆2

. (3.36)

We can get the relative Hall temperature difference as

R =
σ13σ24 − σ14σ23

(σ13 + σ23 + σ43)(σ14 + σ24 + σ34) − σ43σ34

. (3.37)

3.2.5 Symmetry of Tαβ, σαβ and R

From the above derivation, we know that

Tβα[ω,A] = Tβα[−ω,A]. (3.38)

From Eq. (3.10), we obtain

Gr[−ω,A] = Ga[ω,−A]; (3.39)

and we also have

Γ[−ω] = i(Σr[−ω] − Σa[−ω])

= i(Σa[ω] − Σr[ω])

= −Γ[ω], (3.40)
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which is independent of A, thus we get

Tβα[ω,A] = Tr
(
Gr[−ω,A]Γβ[−ω]Ga[−ω,A]Γα[−ω]

)
= Tr

(
Ga[ω,−A]Γβ[ω]Gr[ω,−A]Γα[ω]

)
= Tr

(
Gr[ω,−A]Γα[ω]Ga[ω,−A]Γβ[ω]

)
= Tαβ[ω,−A]. (3.41)

Then symmetry of the transmission is

Tβα[ω, h] = Tαβ[ω,−h], (3.42)

Using Eq.(3.31), we easily obtain the symmetry of the conductance as

σβα(h) = σαβ(−h). (3.43)

To investigate the phonon Hall effect, we should avoid the transverse tem-

perature difference from the structural asymmetry. Therefore, we choose our

system parameters which have mirror reflection symmetries along both x and

y directions. Then we obtain the following relations,

σ13(h) = σ14(−h), (3.44)

σ23(h) = σ24(−h). (3.45)

Combining the Eq. (3.43), we can easily find that the numerator of R in

Eq. (3.37) is odd function of h, and the dominator of R is even function of h,

thus the symmetry of R is

R(−h) = −R(h). (3.46)

Therefore the PHE is an odd function of the magnetic field if the PHE can

exist in the system, which is consistent with all the experiments and theoretical

studies.
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3.2.6 Necessary Condition for PHE

If R = 0, then we could say that there is no PHE in the system. To yield

R = 0, we could choose

σαβ(−h) = σαβ(h). (3.47)

Within such choice, we could get

σ13(h) = σ13(−h) = σ14(h), (3.48)

σ24(h) = σ24(−h) = σ23(h); (3.49)

Then we easily obtain the result R = 0. Due to Eq. (3.31), for no PHE, we

only need to find the condition to satisfy

Tαβ(−h) = Tαβ(h). (3.50)

Based on such consideration, we find that if there is a symmetry operation S

such that

S K S−1 = K, S AS−1 = −A, (3.51)

where the matrix S is a big matrix which is block diagonal with the symmetry

operation element, such as the mirror reflection for our model. Such symmetry

operation also holds for all the matrices Kα and V αβ then Tαβ(−h) = Tαβ(h),

and no PHE exists in the system. We prove this in the following. Under the

symmetry operation, we get

S gr[ω]S−1 = S [(ω + iη)2 −Kα]−1 S−1

= {S [(ω + iη)2 −Kα]S−1}−1

= gr[ω]; (3.52)



Chapter 3. Phonon Hall Effect in Four-Terminal Junctions 41

and we also can get

S Σr[ω]S−1 = Σr[ω]; S Γr[ω]S−1 = Γr[ω]. (3.53)

Based on Eq. (3.10) and the relation Eq. (3.51), we get

SGr(A)S−1 = S
[
(ω + iη)2 −KC − Σr[ω] − A2 + 2iωA

]−1

S−1

=
{
S
[
(ω + iη)2 −KC − Σr[ω] − A2 + 2iωA

]
S−1

}−1

= Gr(−A). (3.54)

That means SGr(h)S−1 = Gr(−h) because A is proportional to h. Simi-

larly we can derive SGa(h)S−1 = Ga(−h). In the end, by inserting some S−1S

to Eq. (3.27), we obtain Tβα[h] = Tβα[−h]. Therefore, if the dynamic matrix

of the system could satisfy the symmetry of Eq. (3.51), there is no PHE. In

other words, the necessary condition for PHE is that there is no symmetric

operation can make the system satisfy the relation of Eq. (3.51).

3.3 Numerical Results and Discussion

In the following calculation, we assume a lattice constant a = 2.465 Å, and

the force constants KL = 0.02394 eV/(amu·Å2), KT = KL/4. The ratio of

the longitudinal and transverse sound speed is assumed to be δ = vL/vT ≈√
KL/KT = 2. As mentioned above, h is estimated to be about 3 × 109 Hz ≈

2.0 × 10−6 eV/h̄ at B = 1 T. We set all the couplings between the leads and

central region the same; and all the leads and central region have the same

spring constants for simplicity.

We discuss numerical results in the following. Fig. 3.2 shows the tempera-

ture difference vs magnetic field at temperature T = 5.45 K for the honeycomb
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Figure 3.2: The relative Hall temperature difference R versus magnetic field
B at temperature T = 5.45 K. The hexagon and square line correspond cen-
tral regions for the honeycomb and square lattices with a nearest-neighbor
coupling. The red dotted line is a best fit line from 0 to 40 T. The size of the
center region for honeycomb lattices is 9 × 6, the same with the inset (c) in
Fig. 3.1
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and square lattices with nearest-neighbor couplings. For the honeycomb case,

the Hall temperature is odd and linear in the magnetic field between 0 and

40 T, in that range the slope of the curve is 3 × 10−5 K/T, comparable to the

experimental data in Ref. [12]. When the magnetic field is extremely large,

it will decrease. From our calculation, we find that the triangular lattice has

a similar behavior. However, for a square lattice with the nearest-neighbor

coupling, there is no PHE at all. The spring constant matrix between every

nearest coupling sites is diagonal for the square lattice. This matrix and also

the full matrix K are invariant with respect to a reflection in x or y direction,

thus satisfying Eq. (3.51). If we consider next-neighbor couplings of the lattice,

the dynamic matrix K will not have the mirror reflection symmetry, and the

PHE appears.

We show the conductances among different leads in Fig. 3.3. Because

of the symmetry of the system, we have additional relations, σ13 = σ32 =

σ24 = σ41, and σ14 = σ42 = σ23 = σ31. We find that the conductances be-

tween two longitudinal leads or two transverse probe-leads are even functions

of the magnetic field, which can be seen in Fig. 3.3(a), σ34 has the same

property. However, for honeycomb lattice the conductance between one longi-

tudinal lead and one transverse probe-lead is not an even function of magnetic

field [Fig. 3.3(b)], which gives contribution to the Hall temperature difference.

Therefore, for honeycomb lattice, the temperature difference is not zero. But

for square lattices, σ13 is an even function of magnetic field, the same is true

for other components. no PHE exists in such systems.

We show the numerical results of the relative Hall temperature difference
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Figure 3.3: Thermal conductance versus the magnetic field at temperature
T = 5.45K for the honeycomb lattice. (a) shows the conductance between two
longitudinal leads σ12. (b) shows the conductance between one longitudinal
lead and one transverse probe-lead. The circle and triangular lines correspond
to σ13 and σ14, respectively. The size of center region is 9 × 6.
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Figure 3.4: The relative Hall temperature difference R versus the large mag-
netic field B (a) and high equilibrium temperature T for honeycomb lattice
(b). (a) square shows R changing with the magnetic field (left scale), the
red solid line shows the conductance difference σ13 − σ14 versus magnetic field
(right scale). (b), R vs. equilibrium temperature at B = 1 T.
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Figure 3.5: (a) The relative Hall temperature difference versus magnetic field
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The inset shows R versus δ at B = 1T. The data are for 9 × 6 honeycomb
lattices at T = 5.45K. (b) The relative Hall temperature difference versus the
number of rows of atoms for fixed aspect ratio NR : NC = 1 : 2 at B=1 T and
T = 5.45 K.
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R at T = 5.45K for honeycomb lattices in Fig. 3.4(a). The temperature

difference R will not be linear when the magnetic field is larger than 40 T;

after about 110 T, it will decrease; and about Bc ≈ 230 T, R changes sign

to negative. It is the same critical point for the difference of conductances

σ13−σ14, which is consistent with Eq. (3.37). In Fig. 3.4(b), we show R versus

temperature at B = 1 T. When the temperature increases, R will increase

almost linearly. After some value, it decreases, and then increases again. In

the end, it tends to a constant. This behavior is due to the competition of the

numerator and denominator in Eq. (3.37). When the temperature is very high,

all conductances tend to constants due to the ballistic thermal transport.

In Ref. [13], it was shown that R decreases with increasing ratio of the

longitudinal and transverse sound speed δ = vL/vT and changes sign when δ

becomes large than 5. However, we find that when the ratio (δ > 1) becomes

large, R increases, see Fig. 3.5(a). At exactly δ = 1, when the longitudi-

nal speed equals to the transverse speed, there is no PHE, which testifies our

condition, Eq. (3.51), for the absence of PHE. All the spring constant matri-

ces between the nearest-neighbors become diagonal at δ = 1; the condition

Eq. (3.51) holds for a mirror reflection operation. If δ < 1, R increases again

with the decreasing of δ. Although the ratio R does not change sign with δ,

due to the ballistic nature of a small system, the ratio R is sensitive to the

geometric details, which is shown in Fig. 3.5(b), the magnitude and the sign

of R change as the size increases.
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Figure 3.6: Rectification as a function of relative temperature difference of
the hot and cold heat baths. The parameter of the setup is NR = 9, NC =
16, NCL = 2. The temperature of the heat bath are T+ = T0(1+∆) and T− =
T0(1 − ∆), where T0 = 0.2 is the mean temperature. The solid square, solid
circle, solid triangle, diamond, hollow triangle, hollow circle, hollow square
correspond to NCD = −7, -5, -3, 0, 3, 5 and 7, respectively. The inset: The
three-terminal junction setup to study the ballistic thermal transport. The
left and right leads have temperatures TL and TR, the control terminal lead is
adjusted to be TC .
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3.4 An Application

The ballistic thermal transport in two-terminal junctions can be described by

the Landauer formula. Since the temperatures enter only through the Bose

distribution, it is obvious that if we reverse the heat bath temperatures, the

heat flux only changes sign, and no rectification is expected. How about the

ballistic thermal transport in multiple-terminal junctions? We know that the

third terminal can introduce incoherence or phase breaking to the transport.

So it is our interest to investigate whether a multiple-terminal junction is a

proper option for ballistic thermal rectification, that is, whether the incoher-

ence through the third terminal can induce rectification effect. In the following

we apply our formulas of multiple-terminal thermal transport from NEGF to

study the thermal rectification.

We consider the ballistic thermal transport in a three-terminal nano-

junction as shown in inset of Fig. 3.6, where a two-dimensional atomic lattice

sample, which is a honeycomb lattice, is connected with three ideal semi-

infinite leads. The atoms are coupled through nearest neighbors by elastic

springs (with longitudinal and transverse force constants). We denote the cen-

ter lattice as NR ×NC , where NR, NC correspond to the number of rows and

columns, respectively. The external magnetic field can be perpendicularly ap-

plied to this part. We use NCL to denote the number of columns of the control

lead and NCD to denote the number of columns deviating from the middle of

the center part; if NCD = 0, the whole setup is symmetric. In the inset of

Fig. 3.6, NR = 9, NC = 8, NCL = 4, NCD = −2.
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3.4.1 Ballistic Thermal Rectification

We set h̄ = 1 and kB = 1 in the following calculation for ballistic rectification.

Using the formulas above, in the forward process, TL = T+, TR = T−, we can

calculate J+ and JC , and also can get the heat fluxes J− and J
′
C in the backward

process TL = T−, TR = T+. From the equations of JC = 0 and J
′
C = 0 we can

obtain the temperatures of the control bath TC and T
′
C ; inserting them to the

formulae of J+ and J−, the rectification

R = (J+ − J−)/max{J+, J−}, (3.55)

can be calculated.

Firstly, we consider the ballistic thermal transport in an asymmetric struc-

ture without an external magnetic field. We set the longitudinal spring con-

stant kL = 1.0, and the transverse one kT = 0.25. If the control lead is

connected to the middle of upper edge of the center, that is, NCD = 0, the

forward process and backward one are exactly the same; no rectification will

be expected, as shown in Fig. 3.6 (the diamond symbols). If the control lead

moves away from the center, the rectification effect appears. When the lead

is moved the same distance to the left or right, the rectification coefficient has

the same magnitude but opposite sign, which is because that the two cases

only exchange the value of J+ and J−. If the distance between the control lead

and the middle of the center part is longer, the rectification effect is larger. In

Fig. 3.6, we can see that the case of NCD = ±7, when the control lead is next

to left or right lead, has biggest rectification. The rectification increases with

the temperature difference at far-from-linear-response regime.
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From the previous studies on thermal rectification, we know that in or-

der to get rectification, we need the structural asymmetry. However, in the

nanoscale rectifier, it is not easy to control the structural asymmetry or to

distinguish the rectification direction by the structural asymmetry. Is there

any other means to introduce asymmetry to induce rectification? From the

above study of phonon Hall effect it is known that the magnetic field can influ-

ence the thermal transport by the spin-phonon interaction. Thus the magnetic

field can break the symmetry of the phonon transport. We apply an external

magnetic field perpendicular to the center part of a symmetric structure to

study the ballistic thermal transport, the results are shown in Fig. 3.7. The

thermal rectification effect as a function of the temperature difference is shown

in Fig. 3.7(a). R increases with the temperature difference, and can be about

3% if ∆ = 0.8 and h = 0.3 at T0 = 0.2. Figure 3.7(b) shows that the rectifica-

tion can monotonically increase with the external magnetic field in the range

of h = 0 ∼ 0.3.

3.4.2 Reversal of Thermal Rectification

Figure 3.8(a) shows the rectification dependence on temperature, and repro-

duce the reversal of rectification found in Ref. [31]. At a low temperature, the

contribution to thermal transport only comes from the low frequency phonons;

if the temperature increases, more high frequency phonons will contribute to

the heat transport. From Fig. 3.8(b), the relations between transmissions τLC

and τRC in low frequency domain and high frequency domain are opposite, so

that the rectification reverses with the temperature increasing. When the tem-

perature increases further, the system will go to the classic limit, the rectifica-
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T− = T0(1−∆). (b) The difference of transmission coefficients: τLC − τRC , as
a function of frequency. The solid, dot curves correspond to NCD = −3 and
NCD = −7, respectively. For both (a) and (b), NR = 9, NC = 16, NCL = 2.
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tion disappears. The reversal of rectification is also found in our another study

on the thermal rectification in quantum spin-chain systems by using quantum

master equations [31]. It shows that rectification can change sign when the

magnetic field, temperature, the anisotropy, and the system size change. Al-

though the reversal of rectification is complicated parameter-dependent, we

believe that it shall be a universal phenomenon for the thermal transport in

low dimensional systems.

3.5 Summary

In summary, a theory for PHE in nanoscale lattices by NEGF approach is

developed. Using the proposed formula of the relative Hall temperature differ-

ence, we can efficiently study the PHE in four-terminal junctions. Our results

are consistent with the essential experimental features of PHE, such as the

magnitude and linear magnetic-field dependence of the observed transverse

temperature difference. With increasing of the magnetic field, the PHE will

change from the linear dependence to sublinear one, then decrease and change

the sign from positive to negative after certain magnetic field. We find a sym-

metry criterion for the PHE, that is, there is no PHE if the lattice satisfies a

certain symmetry, which makes the dynamic matrix unchanged and the mag-

netic field reversed. The symmetry broken of the dynamic matrix K plays a

pivotal role for the existence of PHE. The Hall temperature difference changes

with equilibrium temperature and tends to be a constant at last. And the Hall

temperature difference does not change sign with the ratio of the longitudinal

and transverse sound speed in the range of δ ∈ (0.1, 10); but it changes sign
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as the system size increases. Therefore, the PHE can indeed be present in the

ballistic system provided the symmetry criterion is not satisfied.

By applying our theory to the ballistic thermal rectification in three ter-

minal junctions, we find two necessary conditions for thermal rectification.

One is the phonon incoherence, which can be induced by nonlinearity or scat-

tering boundaries or scattering leads. The other one is asymmetry, which can

be introduced by structural asymmetry or an applied external magnetic field

through the spin-phonon interaction. Furthermore, we find that the thermal

rectification can change sign in certain parameter range, which is a universal

phenomenon for the thermal transport.



Chapter 4

Phonon Hall Effect in
Two-Dimensional Periodic
Lattices

In the previous chapter, we find that the ballistic four-terminal junctions are

capable of producing the PHE provided that certain symmetry is broken. How-

ever, in such four-terminal structure, the relative Hall temperature difference

is dependent on the system size, which could not be used as a good physical

quantity to embody the PHE property of a certain material. The thermal

conductivity is a good candidate to represent the capability of the thermal

transport. With an applied magnetic field, in two-dimensional systems the

thermal conductivity is a tensor ( 2×2 matrix); and the off-diagonal elements,

which we call the phonon Hall conductivity here, can reflect the PHE of the

special material.

In this chapter, we study the PHE in two-dimensional infinite periodic

lattice. We will propose exact theories for the PHE to calculate the phonon

Hall conductivity. When phonons transport is investigated in the moment

56



Chapter 4. Phonon Hall Effect in Two-Dimensional Periodic Lattices 57

space, a nontrivial Berry phase may come out to play an important role for

the PHE. Therefore it is also our key task to investigate the Berry phase effect

for the phonons transport with an applied magnetic field, and to study the

topological nature of the PHE.

4.1 Hamiltonian

In the presence of a magnetic field, the kinetic energy of each site in ionic

crystal lattices is expressed as [85]:

Tα =
1

2
mα|ṙα|2 =

1

2mα

|pα

√
mα − qαAα|2, (4.1)

where, rα = Rα + uα/
√
mα, Rα is the equilibrium coordinate of the ion at

site α, and uα denotes the displacement multiplied by the square root of the

ion mass mα. pα is the corresponding momentum divided by the square root

of mass mα. qα is the ionic charge at site α. Aα denotes the electromagnetic

vector potential, which, by using the Lorenz gauge condition, can be related

to the ionic displacement as [85]

Aα =
1

2
B × uα/

√
mα. (4.2)

Thus, Eq. (4.1) is recasted as:

Tα =
1

2
|pα − qα

2mα

B × uα|2. (4.3)

If a magnetic field with magnitude B is applied along z direction and we only

consider the two-dimensional (x and y direction) motion of the system, then

the kinetic energy of ion α can be expressed (it is straightforward to generalize

to high dimensions) as:

Tα =
1

2
(pα − Λαuα)T (pα − Λαuα), (4.4)
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where pα = (pαx, pαy)
T , uα = (uαx, uαy)

T , and Λα =

 0 hα

−hα 0

, where

hα = −qαB/(2mα). Note that there are both positive and negative ions in

one unit cell. For a general ionic paramagnetic dielectric, mostly, the mass

of the positive ion is larger than that of the negative one. For instance, in

the experimental sample Tb3Ga5O12, the ratio m(+q)/m(−q) is about 4.3 in

one unit cell. Therefore the negative ions will dominate the contribution to

hα, which makes hα have the same sign as that of the applied magnetic field

B. Under the mean-field approximation, we can set hα = h, which is site-

independent and is proportional to the magnitude of the applied magnetic

field.

Combining the kinetic energy with the harmonic inter-potential energy,

we can write the whole Hamiltonian as

H =
1

2
(p− Ãu)T (p− Ãu) +

1

2
uTKu, (4.5)

where Ã is an antisymmetric real matrix with block-diagonal elements Λα. u

and p are column vectors denoting displacements and momenta respectively,

for all the degrees of freedom. K indicates the force constant matrix. Finally,

after the rearrangement, we have

H =
1

2
pTp+

1

2
uT (K − Ã2)u+ uTÃ p, (4.6)

which is positive definite.

The Hamiltonian Eq. (4.6) is essentially the same as Eq. (3.2) in Chapter

3 and that used in Refs. [13, 14], resulting from the phenomenological Raman

interaction. The only difference is the term proportional to Ã2 which makes
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the above Hamiltonian positive definite. As discussed in Chapter 3, in the

mean-field approximation, the Raman type SPI reduces to

HI = h · (u × p), (4.7)

where h = gcM, and M is proportional to the magnetic field B. If the magnetic

field is applied along the z direction, then the SPI can be written as

HI = uT Ã p. (4.8)

By treating the phonon system under harmonic approximation, the total Hamil-

tonian for the whole lattice can be written as (Refs. [13,14,149])

H =
1

2
pTp+

1

2
uTKu+ uTÃ p. (4.9)

Note that this Hamiltonian Eq. (4.9) is not positive definite. In Ref. [149], the

authors added an arbitrary onsite potential in order to make the Hamiltonian

positive definite. However, in the calculation of phonon Hall effect for the

four-terminal junctions, such non-positive-definite Hamiltonian does not cause

any problem because the thermal junctions will stabilize the system [150].

From the first physical picture of spin-phonon interaction in ionic crystal

lattice with an applied magnetic field (Eqs. (4.1∼4.6)), the additional term

proportional to Ã2 emerges naturally to make the Hamiltonian positive def-

inite. Therefore, in this chapter we choose the positive definite Hamiltonian

Eq. (4.6).
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4.2 Eigenvalue Problem

The Hamiltonian Eq. (4.6) is quadratic in u and p, and we can write the

equation of motion as

ṗ = −(K − Ã2)u− Ãp, (4.10)

u̇ = p− Ãu. (4.11)

The equation of motion for the coordinate is,

ü+ 2Ãu̇+ Ã2u+ (K − Ã2)u = 0. (4.12)

Since the lattice is periodic, we can apply the Bloch’s theorem ul = ϵei(Rl·k−ωt).

The polarization vector ϵ satisfies

[
(−iω + A)2 +D

]
ϵ = 0, (4.13)

where

D(k) = −A2 +
∑

l′

Kl,l′e
i(Rl′−Rl)·k (4.14)

denotes the dynamic matrix with a shift A2, and A is block diagonal with

elements Λ. D,Kl,l′ , and A are all nd×nd matrices, where n is the number of

particles in one unit cell and d is the dimension of the motion.

From Eq. (4.13), we can require the following relations:

ϵ∗−k = ϵk; ω−k = −ωk. (4.15)

Here, we use the short-hand notation k = (k, σ) to specify both the wavevector

and the phonon branch. −k means (−k,−σ), the negative branch index σ < 0

will be explained later.
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Equation (4.13) is not a standard eigenvalue problem. However, we can

describe the system by the polarization vector x = (µ, ϵ)T , where µ and ϵ

are associated with the momenta and coordinates, respectively. And from

Eq. (4.11), the momentum and displacement polarization vectors are related

through

µk = −iωkϵk + Aϵk. (4.16)

Using Bloch’s theorem, Eqs. (4.10) and (4.11) can be recasted as:

i
∂

∂t
x = Heffx, Heff = i

 −A −D

Ind −A

 . (4.17)

Here the Ind is the nd× nd identity matrix.

We need to find both the right and left eigenvectors. Because of the

special form of Heff , then the eigenvalue problem of the equation of motion

(4.17) reads:

Heff xk = ωk xk, x̃T
k Heff = ωk x̃

T
k . (4.18)

where the right eigenvector xk = (µk, ϵk)
T , the left eigenvector

x̃T
k = (ϵ†k,−µ

†
k)/(−2iω,k ) (4.19)

in such choice the second quantization of the Hamiltonian Eq. (4.6) holds.

Because the effective Hamiltonian Heff is not hermitian, the orthonormal con-

dition then holds between the left and right eigenvectors, as

x̃T
σ,k xσ′,k = δσσ′ . (4.20)

We also have the completeness relation as∑
σ

xσ,k ⊗ x̃T
σ,k = I2nd. (4.21)
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The normalization of the eigenmodes is equivalent to [149]

ϵ†k ϵk +
i

ωk

ϵ†k Aϵk = 1. (4.22)

4.3 PHE Approach One

By taking into account only positive eigen-modes (ω > 0), displacement and

momentum operators are taken in the second quantization form [149,152]:

ul =
∑

k

ϵke
i(Rl·k−ωkt)

√
h̄

2ωkN
ak + h.c., (4.23)

pl =
∑

k

µke
i(Rl·k−ωkt)

√
h̄

2ωkN
ak + h.c., (4.24)

where σ > 0, ak is the annihilation operator, and h.c. stands for hermitian con-

jugate. We can verify that the canonical commutation relations are satisfied:

[ul, p
T
l′ ] = ih̄δl,l′Ind, and H =

∑
k h̄ωk(a

†
kak + 1/2).

4.3.1 Heat Current Density Operator

The energy current density is given as [151]:

J =
1

2V

∑
l,l′

(Rl−Rl′)u
T
l Kl,l′u̇l′ , (4.25)

where V is the total volume of N unit cells. Inserting the Eq. (4.23) and its

first derivative the current density vector can be expressed in two parts as

J = J1(a
†a) + J2(a

†a†, aa), (4.26)

Due to the definition of the dynamic matrix Eq. (4.14), we have the following

property:

Dab(−k) = D∗
ab(k) = Dba(k); (4.27)
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and

∂D(k)

∂k
=

∑
l′

i(Rl′ − Rl)Kl,l′e
i(Rl′−Rl)·k; (4.28)

Combining the relation of

∑
l

eiRl·(k′−k) = Nδk′k, (4.29)

then we can obtain

J1 = h̄
4V

∑
k,k′

(√
ωk

ωk′
a†kak′ +

√
ωk′
ωk
ak′a†k

)
ϵ†k

∂D(k)
∂k

ϵk′δk,k′ei(ωk−ωk′ )t;

J2 = h̄
4V

∑
k,k′

√
ωk′
ωk

(ϵ†k
∂D(k)

∂k
ϵ∗k′a

†
ka

†
k′ei(ωk+ωk′ )t + ϵTk

∂D∗(k)
∂k

ϵk′akak′e−i(ωk+ωk′ )t)δk,−k′ .

(4.30)

Due to the commutation relation of [ak,σ′ , a†k,σ] = δσ′,σ, we can rewrite J1 as

J1 =
h̄

4V

[∑
k,k′

(√
ωk

ωk′
+

√
ωk′

ωk

)
ϵ†k
∂D(k)

∂k
ϵk′ a†kak′δk,k′ei(ωk−ωk′ )t +

∑
k,σ

2ϵ†k
∂D(k)

∂k
ϵk

]
(4.31)

And from the Eq. (4.18), we get

∂Heff

∂k
xk +Heff

xk

∂k
=

ωk

∂k
xk + ωk

xk

∂k
. (4.32)

Using x̃T
k to multiply both sides from left, and due to Eq. (4.20), we obtain

x̃T
k

∂Heff

∂k
xk =

ωk

∂k
, (4.33)

which means

ϵ†k
∂D(k)

∂k
ϵk = −2iωk

ωk

∂k
, (4.34)

which is an odd function of k, then we obtain

∑
k

ϵ†k
∂D

∂k
ϵk = −2i

∑
k

ωkx̃
T
k

∂Heff

∂k
xk = −2i

∑
k

ωk
∂ωk

∂k
= 0, (4.35)

thus second term of J1 is zero.
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Therefore, the heat flux operator can be written as

J = J1(a
†a) + J2(a

†a†, aa),

J1 = h̄
4V

∑
k,k′

(√
ωk

ωk′
+

√
ωk′
ωk

)
ϵ†k

∂D(k)
∂k

ϵk′ a†kak′δk,k′ei(ωk−ωk′ )t;

J2 = h̄
4V

∑
k,k′

√
ωk′
ωk

(ϵ†k
∂D(k)

∂k
ϵ∗k′a

†
ka

†
k′ei(ωk+ωk′ )t + ϵTk

∂D∗(k)
∂k

ϵk′akak′e−i(ωk+ωk′ )t)δk,−k′ .

(4.36)

We note that the a†a† and aa terms also contribute to the off-diagonal elements

of the thermal conductivity tensor, although they have no contribution to the

average energy current.

4.3.2 Phonon Hall Conductivity

Based on the expression of heat current, the phonon Hall conductivity can be

obtained through the Green-Kubo formula [121]:

κxy =
V

h̄T

∫ h̄/(kBT )

0

dλ

∫ ∞

0

dt
⟨
Jx(−iλ)Jy(t)

⟩
eq
, (4.37)

where the average is taken over the equilibrium ensemble with Hamiltonian H.

Substituting the expression J into Eq. (4.37), the phonon Hall conductivity is

obtained as

κxy = κ
(1)
xy + κ

(2)
xy ;

κ
(1)
xy = V

h̄T

∫ h̄/(kBT )

0
dλ

∫ ∞
0
dt

⟨
Jx

1 (−iλ)Jy
1 (t)

⟩
eq

;

κ
(2)
xy = V

h̄T

∫ h̄/(kBT )

0
dλ

∫ ∞
0
dt

⟨
Jx

2 (−iλ)Jy
2 (t)

⟩
eq
.

(4.38)

Note that the averages of the cross terms
⟨
Jx

1 (−iλ)Jy
2 (t)

⟩
eq

and
⟨
Jx

2 (−iλ)Jy
1 (t)

⟩
eq

are zero.

First we calculate the term κ
(1)
ab . Combining the result

⟨a†iaja
†
kal⟩eq = fifkδijδkl + fi(fj + 1)δilδjk, (4.39)
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where fi = (eβh̄ωi − 1)−1 is the Bose distribution function, with the result of

Eq. (4.35), we obtain

κ(1)
xy =

h̄

16V T

∑
k,σ>0,σ′>0

[f(ωσ) − f(ω′
σ)](ωσ + ω′

σ)2 i

ωσωσ′

ϵ†σ
∂D
∂kx
ϵσ′ϵ†σ′

∂D
∂ky
ϵσ

(ωσ − ωσ′)2
.

(4.40)

Because of Eq. (4.15) and Eq. (4.27), we can transform from the positive-

frequency bands to the negative-frequency band. Before this transformation,

we only consider the branches of σ > 0. Using ω(−k,−σ) = −ω(k, σ), we

transform the half of the summation in Eq. 4.40 from σ > 0, σ′ > 0 to σ <

0, σ′ < 0 and then sum them together; the summation will be done for all

branches of σσ′ > 0, which can be written as

κ(1)
xy =

h̄

8V T

∑
k,σσ′>0

[f(ωσ) − f(ωσ′)](ωσ + ωσ′)2 i

4ωσωσ′

ϵ†σ
∂D
∂kx

ϵσ′ϵ†σ′
∂D
∂ky
ϵσ

(ωσ − ωσ′)2
.

(4.41)

Here, it should be noted that σ, σ′ can be both positive or negative.

Second, we calculate κ
(2)
ab . Utilizing the results

⟨a†ia
†
jakal⟩eq = fifj(δikδjl + δilδjk);

⟨aiaja
†
ka

†
l ⟩eq = (1 + fi)(1 + fj)(δikδjl + δilδjk),

(4.42)

and the relation f(−ω) = −1 − f(ω), after some algebraic derivation similar

to the above, we obtain

κ(2)
xy =

h̄

8V T

∑
k,σσ′<0

[f(ωσ) − f(ωσ′)](ωσ + ωσ′)2 i

4ωσωσ′

ϵ†σ
∂D
∂kx

ϵσ′ϵ†σ′
∂D
∂ky
ϵσ

(ωσ − ωσ′)2
.

(4.43)

Therefore, the total phonon Hall conductivity can be written as

κxy =
h̄

8V T

∑
k,σ ̸=σ′

[f(ωσ) − f(ωσ′)](ωσ + ωσ′)2 i

4ωσωσ′

ϵ†σ
∂D
∂kx

ϵσ′ϵ†σ′
∂D
∂ky
ϵσ

(ωσ − ωσ′)2
. (4.44)



Chapter 4. Phonon Hall Effect in Two-Dimensional Periodic Lattices 66

We can prove κxy = −κyx, such that

κxy =
h̄

16V T

∑
k,σ ̸=σ′

[f(ωσ) − f(ωσ′)](ωσ + ωσ′)2Bσσ′

kxky
, (4.45)

Bσσ′

kxky
=

i

4ωσωσ′

ϵ†σ
∂D
∂kx

ϵσ′ϵ†σ′
∂D
∂ky
ϵσ − ϵ†σ

∂D
∂ky
ϵσ′ϵ†σ′

∂D
∂kx

ϵσ

(ωσ − ωσ′)2
. (4.46)

Because of Bσσ′

kxky
= −Bσ′σ

kxky
, the phonon Hall conductivity can be written

eventually as

κxy =
h̄

8V T

∑
k,σ ̸=σ′

f(ωσ)(ωσ + ωσ′)2Bσσ′

kxky
, (4.47)

where V is the total volume of N = N2
L unit cells. In the above formula, the

phonon branch σ includes both positive and negative values without restric-

tion. We start with the positive frequency bands to derive the conductivity

formula. Through some transformations, we finally obtain the simplified for-

mula for phonon Hall conductivity which combines the contribution from all

the frequency bands. The formula Eq. (4.47) is different from that given in

Ref. [149]. In Ref. [149] the contribution for phonon Hall conductivity from J2

was omitted, which is incorrect.

4.3.3 Onsager Relation

From the Eq. (4.13), we obtain

ϵ∗−k,σ(−A) = ϵk,σ(A); ω−k,σ(−A) = ωk,σ(A). (4.48)

We know that most lattices, such as square, triangle, honeycomb or kagome lat-

tices, have inversion symmetry (2-fold symmetry). Then the dynamic matrix

D is hermitian conjugate, and the determinant of (−iω+A)2 +D in Eq. (4.13)

is a an even function of k. Thus the eigen values satisfy ωσ(k) = ωσ(−k).
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Combining Eq. (4.15, 4.48) we obtain

ωσ(k,−A) = ωσ(k, A), ωσ(−k, A) = ωσ(k, A), ω−σ(k, A) = −ωσ(k, A).

(4.49)

And because of D(k) = D∗(−k), ϵTσ
∂D∗

∂kx
ϵ∗σ′ = ϵ†σ′

∂D
∂kx

ϵσ, we have

Bσσ′

kxky
(k,−A) = Bσσ′

kykx
(−k, A) = −Bσσ′

kxky
(−k, A). (4.50)

So we obtain

κxy(−A) = κyx(A) = −κxy(A). (4.51)

The Onsager reciprocal relations are satisfied.

4.3.4 Symmetry Criterion

If the system possesses the symmetry which satisfies

SDS−1 = D, SAS−1 = −A, (4.52)

where S represents any symmetric operation, and from Eq. (4.13), we obtain

Sϵ(A) = ϵ(−A). (4.53)

Using the definition of the dynamic matrix D = −A2 +
∑

l′ Kl,l′e
i(Rl′−Rl)·k and

SDS−1 = D, we can obtain

S
∂D

∂kα

S−1 =
∂D

∂kα

, (α = x, y). (4.54)

Inserting S−1S = I into Eq. (4.46), we obtain

Bσσ′

kxky
(−A) = Bσσ′

kxky
(A). (4.55)
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Then it is easy to obtain κxy(−A) = κxy(A), and because of the Onsager

relation, one can easily obtain that

κxy = 0, if SDS−1 = D, SAS−1 = −A. (4.56)

This symmetry criterion is the same as the necessary condition for PHE which

is discussed in Sec. 3.2.6 of Chapter 3 by using the NEGF approach.

4.3.5 The Berry Phase and Berry Curvature

Using the similar method proposed by Berry [87], we derive the Berry phase

and Berry curvature in the following. Starting from

i
∂

∂t
x(t) = Heffx(t) (4.57)

and substituting

x(t) = eiγσ(t)−i
∫ t
0 dt′ωσ(k(t′))xσ(k(t)), (4.58)

we can obtain the Berry phase across the Brillouin zone as

γσ =

∮
Aσ(k)dk, Aσ(k) = ix̃T

σ

∂

∂k
xσ. (4.59)

Here Aσ(k) is the so-called Berry vector potential.

Therefore the Berry curvature is obtained through the Stokes theorem as:

Bσ
kxky

=
∂

∂kx

Aσ
ky

− ∂

∂ky

Aσ
kx

= i
∑
σ′ ̸=σ

x̃T
σ

∂Heff

∂kx
xσ′x̃T

σ′
∂Heff

∂ky
xσ − (kx ↔ ky)

(ωσ − ωσ′)2
(4.60)

Inserting the vector x and the expression of matrix Heff , we obtain

Bσ
kxky

=
∑
σ′ ̸=σ

i

4ωσωσ′

ϵ†σ
∂D
∂kx

ϵσ′ϵ†σ′
∂D
∂ky
ϵσ − (kx ↔ ky)

(ωσ − ωσ′)2
=

∑
σ′ ̸=σ

Bσσ′

kxky
(4.61)
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Thus we find the physical picture of Eq. (4.46), that is, Bσσ′

kxky
indicates

the contribution to the Berry curvature of the band σ from a different band σ′.

Therefore, the phonon Hall conductivity formula Eq. (4.47) can be interpreted

in terms of the Berry curvature. The topological Chern number is obtained by

integrating the Berry curvature over the first Brillouin zone as

Cσ =
1

2π

∫
BZ

dkxdkyB
σ
kxky

. (4.62)

For numerical calculation, we use

Cσ =
2π

L2

∑
k

Bσ
kxky

. (4.63)

where 1
L2

∑
k

=
∫ dkxdky

(2π)2
and V = L2a, L2 is the area of the sample.

In this section, firstly from the Green-Kubo formula and considering the

contributions from all the phonon bands, we obtain the general formula for

the phonon Hall conductivity Eq. (4.47). We start from the positive bands

for the derivation. It should be noted that the correlation of aa and a†a†

contributes to the Hall conductivity. Considering the eigensystem of vectors

of both momenta and displacements, the eigenvalues include both positive

and negative frequencies. Using the relations between positive frequencies and

negative ones, we can obtain the formula of phonon Hall conductivity in which

the contribution from negative frequencies has the same weight as that from

the positive ones. Then by looking at the phases of the polarization vectors

of both the displacements and conjugate momenta as a function of the wave

vector, a Berry curvature Eq. (4.61) can be defined uniquely for each band

which can have a positive or negative frequency. Combining the above two

steps, at last the phonon Hall conductivity can be written in terms of Berry
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curvatures. Such derivation gives us the clear picture of the contribution to the

phonon Hall current from all the phonon branches, and the relation between

the phonon Hall conductivity with the geometrical phase of the polarization

vectors, thus can help us to understand the topological picture of the PHE.

4.4 PHE Approach Two

We know that for the Hall effect of the electrons, in addition to the normal

velocity from usual band dispersion contribution, the Berry curvature induces

an anomalous velocity always transverse to the electric field, which gives rise to

a Hall current, thus the Hall effect occurs. For the magnon Hall effect recently

observed, the authors also found the anomalous velocity due to the Berry

connection which is responsible for the thermal Hall conductivity. However,

the above section of PHE approach one [152] cannot give us such a picture.

Therefore in this section we will derive PHE approach two [153] in a more

natural way where the Berry phase effect inducing the anomalous velocity

contributes to the extra term of the heat current. Thus the Berry phase effect

is straightforward to take the responsibility of the PHE.

4.4.1 The Second Quantization

In PHE Approach One, we first only take the positive phonon branch, that is

σ, ω ≥ 0, as a convention. However, from the eigenvalue problem Eq. (4.18), we

know that the complete set contains the branch of the negative frequency. And

by some transformation from positive branches to negative ones, the formulas

of both the Berry curvature and phonon Hall conductivity are written in the
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form comprising the contribution of all the branches including both positive

and negative frequency branches. Therefore it would be more convenient to

take both positive and negative frequencies at the beginning. In order to

simplify the notation, for all the branches, we define

a−k = a†k. (4.64)

The time dependence of the operators is given by:

ak(t) = ake
−iωkt, (4.65)

a†k(t) = a†ke
iωkt. (4.66)

The commutation relation is

[ak, a
†
k′ ] = δk,k′sign(σ). (4.67)

And we can get

⟨a†kak⟩ = f(ωk)sign(σ); (4.68)

⟨aka
†
k⟩ =

[
1 + f(ωk)

]
sign(σ). (4.69)

The displacement and momentum operators can be written in the follow-

ing second quantization forms

ul =
∑

k

ϵke
iRl·k

√
h̄

2N |ωk|
ak; (4.70)

pl =
∑

k

µke
iRl·k

√
h̄

2N |ωk|
ak. (4.71)

Here, |ωk| = ωksign(σ). We can verify that the canonical commutation rela-

tions are satisfied: [ul, p
T
l′ ] = ih̄δll′Ind by using the completeness Eq. (4.21) and
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the commutation relation Eq. (4.67). The Hamiltonian Eq. (4.6) then can be

written as

H =
1

2

∑
l,l′

χ̃T
l

 Aδl,l′ Kl,l′ − A2δl,l′

−Indδl,l′ Aδl,l′

χl′ (4.72)

where

χl =

 pl

ul

 =

√
h̄

N

∑
k

xke
iRl·kck ak; (4.73)

χ̃l =

 ul

−pl

 =

√
h̄

N

∑
k

x̃ke
−iRl·kc̃k a

†
k. (4.74)

Here ck =
√

1
2|ωk|

and c̃k = (−2iωk)
√

1
2|ωk|

. It is easy to verify that [χl, χ̃
T
l′ ] =

−ih̄δll′I2nd.

Because of ei(Rl′ ·k′−Rl·k) = ei(Rl·(k′−k)+(Rl′−Rl)·k′) and the definition of the

dynamic matrix D, then the Hamiltonian can be written as

H =
h̄

2N

∑
k,k′,l

eiRl·(k′−k)c̃k ck′x̃T
k

 A D(k′)

−Ind A

xk′a†kak′

=
h̄

2N

∑
k,k′,l

eiRl·(k′−k)c̃k ck′x̃T
k iHeffxk′a†kak′

=
1

2

∑
k

h̄|ωk|a†kak (4.75)

which contains both the positive and negative branches. Here we use the iden-

tity
∑

l e
iRl·(k′−k) = Nδk′k and the eigenvalue problem Eq. (4.18). Using the

relations Eqs. (4.64) and (4.67), it is easy to prove that Eq. (4.75) is equiva-

lent to the form H =
∑

k h̄ωk(a
†
kak +1/2) which only includes the nonnegative

branches.



Chapter 4. Phonon Hall Effect in Two-Dimensional Periodic Lattices 73

4.4.2 Heat Current Density Operator

Because of the equation of motion Eq. (4.11), we can rewrite the heat current

of Eq. (4.25) as

J =
1

4V

∑
l,l′

χ̃T
l Ml l′χl′ , (4.76)

where

Ml l′ =

 (Rl − Rl′)Kll′ −(Rl − Rl′)(Kll′A+ AKll′)

0 (Rl − Rl′)Kll′

 . (4.77)

Inserting the Eqs. (4.73,4.74), we obtain

J =
h̄

4V N

∑
k,k′,l,l′

c̃kck′ei(Rl′ ·k′−Rl·k)x̃T
k Ml l′xk′a†kak′ . (4.78)

Because of

∑
l

eiRl·(k′−k)
∑

l′

ei(Rl′−Rl)·k′
(Rl − Rl′)Kll′ = iNδk′k

∂D

∂k′ , (4.79)

the heat current can be written as

J =
ih̄

4V

∑
σ,σ′,k

c̃σ,kcσ′,kx̃
T
σ,k

∂H2
eff

∂k
xσ′,ka

†
σ,kaσ′,k, (4.80)

here we use

∂H2
eff

∂k
=

 ∂D
∂k

−(A∂D
∂k

+ ∂D
∂k
A)

0 ∂D
∂k

 (4.81)

by doing the first derivative of the square of the effective Hamiltonian Eq. (4.17)

with respect to the wave vector k. From the eigenvalue problem Eq. (4.18),

we have

HeffX = XΩ; X̃THeff = ΩX̃T . (4.82)
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Where the 2nd × 2nd matrices X = (x1, x2, ..., x2nd) = {xσ} (the system has

2nd phonon branches), X̃ = {x̃σ}, and Ω = diag(ω1, ω2, ..., ω2nd) = {ωσ}.

Because of the completeness relation Eq. (4.21), XX̃T = I2nd, then we get

H2
eff = XΩ2X̃T . (4.83)

By calculating the derivative of the above equation, and using the definition

of Berry connection,

A = X̃T ∂X

∂k
. (4.84)

Taking the first derivative of Eq. (4.83) with respect to k, we obtain

∂H2
eff

∂k
= X

(
∂Ω2

∂k
+ [A,Ω2]

)
X̃T . (4.85)

Because of the the orthogonality relation between left and right eigenvector

Eq. (4.20), at last we obtain the heat current as

J =
ih̄

4V

∑
σ,σ′,k

c̃σ,kcσ′,ka
†
σ,k

(
∂Ω2

∂k
+ [A,Ω2]

)
σ,σ′

aσ′,k. (4.86)

The first term ∂Ω2

∂k
in the bracket is a diagonal one corresponding to ωσ

∂ωσ

∂k

relating to the group velocity. The second term in the bracket [A,Ω2] gives

the off-diagonal elements of the heat current density, which can be regarded as

the contribution from anomalous velocities similar to the one in the intrinsic

anomalous Hall effect. The Berry connection A, or we can call it Berry vector

potential matrix (the Berry vector potential defined in Ref. [152], Aσ(k), is

equal to iAσσ = ix̃T
σ

∂xσ

∂k
), induces the anomalous velocities to the heat current,

which will take the responsibility of the PHE. Therefore, the Berry vector

potential comes naturally into the heat current and the PHE, such picture is

clearer than that in PHE Approach One.
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4.4.3 Phonon Hall Conductivity

Inserting the coefficients c̃ and c to Eq. (4.86), we get

J =
h̄

4V

∑
σ,σ′,k

ωσ,k√
|ωσ,kωσ′,k|

a†σ,k

(
∂Ω2

∂k
+ [A,Ω2]

)
σ,σ′

aσ′,k. (4.87)

This expression is equivalent to that given in Refs. [152] and [154]. Based on

such expression of heat current, the phonon Hall conductivity can be obtained

through the Green-Kubo formula Eq. (4.37).

The time dependence of the creation and annihilation operators are given

as Eqs. (4.65) and (4.66), which are also true if t is imaginary. Inserting the

heat current operators, we can write the phonon Hall conductivity as

κxy =
V

h̄T

(
h̄

4V

)2 ∑
σ,σ′,k;σ̄,σ̄′,k̄

ωσ,k√
|ωσ,kωσ′,k|

ωσ̄,k̄√
|ωσ̄,k̄ωσ̄′,k̄|

×
(
∂Ω2

∂kx

+ [Akx ,Ω
2]

)
σ,σ′

(
∂Ω2

∂k̄y

+ [Ak̄y
,Ω2]

)
σ̄,σ̄′

⟨a†σ,kaσ′,ka
†
σ̄,k̄
aσ̄′,k̄⟩

×
∫ h̄/kBT

0

dλ

∫ ∞

0

dtei(ωσ,k−ωσ′,k)(−iλ)ei(ωσ̄,k̄−ω
σ̄′,k̄)t. (4.88)

From the Wick theorem, we have

⟨a†σ,kaσ′,ka
†
σ̄,k̄
aσ̄′,k̄⟩ = ⟨a†σ,kaσ′,k⟩⟨a†σ̄,k̄

aσ̄′,k̄⟩

+ ⟨a†σ,ka
†
σ̄,k̄

⟩⟨aσ′,kaσ̄′,k̄⟩

+ ⟨a†σ,kaσ̄′,k̄⟩⟨aσ′,ka
†
σ̄,k̄

⟩. (4.89)
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Using the properties of the operators a† and a as Eq. (4.68), we have

⟨a†σ,kaσ′,k⟩⟨a†σ̄,k̄
aσ̄′,k̄⟩

= f(ωσ,k)f(ωσ̄,k̄)δσσ′δσ̄σ̄′sign(σ)sign(σ̄),

⟨a†σ,ka
†
σ̄,k̄

⟩⟨aσ′,kaσ̄′,k̄⟩

= f(ωσ,k)(f(ωσ′,k) + 1)δk̄,−kδσ,−σ̄δσ′,−σ̄′sign(σ)sign(σ′)

⟨a†σ,kaσ̄′,k̄⟩⟨aσ′,ka
†
σ̄,k̄

⟩

= f(ωσ,k)(f(ωσ′,k) + 1)δk̄,kδσ,σ̄′δσ′,σ̄sign(σ)sign(σ′).

(4.90)

Then the phonon Hall conductivity κxy can be written in three parts.

The first part relating to the normal velocities has no contribution to the

PHE, because of the odd function of ∂Ω2

∂k̄α
. And the other two parts have the

equal contribution. After some algebraic calculations, we get the phonon Hall

conductivity as

κxy =
h̄

8V T

∑
k,σ,σ′ ̸=σ

[f(ωσ) − f(ωσ′)](ωσ + ωσ′)2

× i

4ωσωσ′

ϵ†σ
∂D
∂kx
ϵσ′ϵ†σ′

∂D
∂ky
ϵσ

(ωσ − ωσ′)2
. (4.91)

Here we simplify the notation of the subscripts of ω, ϵ which have the same wave

vector k. Using κxy = −κyx, thus we obtain the same formula as Eq. (4.47) in

PHE Approach One, with

Bσσ′

kxky
=

i

4ωσωσ′

ϵ†σ
∂D
∂kx

ϵσ′ϵ†σ′
∂D
∂ky
ϵσ − (kx ↔ ky)

(ωσ − ωσ′)2

= i
x̃T

σ
∂Heff

∂kx
xσ′x̃T

σ′
∂Heff

∂ky
xσ − (kx ↔ ky)

(ωσ − ωσ′)2
. (4.92)

Because of the relation x̃T
σ

∂Heff

∂kx
xσ′ = (ωσ′ − ωσ)x̃T

σ
∂

∂kx
xσ′ and the definition of
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A in Eq. (4.84), we obtain

Bσσ′

kxky
= −i

(
Aσσ′

kx
Aσ′σ

ky
− (kx ↔ ky)

)
. (4.93)

And the Berry curvature is

Bσ
kxky

=
∑
σ′ ̸=σ

Bσσ′

kxky

= −i
∑
σ′

(
Aσσ′

kx
Aσ′σ

ky
− (kx ↔ ky)

)
= i

(
∂

∂kx

Aσσ
ky

− (kx ↔ ky)

)
, (4.94)

by using the orthonormal condition Eq. (4.20) and the completeness relation

Eq. (4.21).

Such Berry curvature is the same with that of PHE Approach One, that

is, Bσ
kxky

= ∂
∂kx

Aσ
ky
− ∂

∂ky
Aσ

kx
. From the above derivation, we find that a Berry

curvature can be defined uniquely for each band by looking at the phases of

the polarized vectors of both the displacements and conjugate momenta as

functions of the wave vector. If we only look at the polarized vector ϵ of the

displacement, a Berry curvature cannot properly be defined. We need both

ϵ and µ. The nontrivial Berry vector potential take the responsibility of the

PHE.

4.5 Numerical Results and Discussion

From both the PHE Approach One and the PHE Approach Two, we obtain

the phonon Hall conductivity as

κxy =
h̄

8V T

∑
k,σ,σ′ ̸=σ

f(ωσ)(ωσ + ωσ′)2Bσσ′

kxky
,
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Figure 4.1: The schematic picture of honeycomb lattice. Each unit cell has
two atoms such as the number shown 1,2. The coupling between the atoms are
K01, K02, K03. Each unit cell (shown in the ellipse) has four nearest neighbors;
the coupling between the unit cell and the neighbors are K1, K2, K3, and K4.

here Bσσ′

kxky
= i

4ωσωσ′

ϵ†σ
∂D
∂kx

ϵσ′ϵ
†
σ′

∂D
∂ky

ϵσ−(kx↔ky)

(ωσ−ωσ′ )2
, and the Berry curvature and Chern

number of a phonon band is

Bσ
kxky

=
∑
σ′ ̸=σ

Bσσ′

kxky
, Cσ =

1

2π

∫
BZ

dkxdkyB
σ
kxky

.

Based on these formulas, in the following we can study the phonon Hall con-

ductivity and the related topological nature of the PHE.
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4.5.1 Honeycomb Lattices

Dynamic matrix

In order to calculate the phonon Hall conductivity, we first need to calculate

the dynamic matrix D(k). In the following, we give two examples, honeycomb

and kagome lattices. We only discuss the two-dimensional motion and consider

the nearest neighbor interaction. The spring constant matrix along x direction

is

Kx =

 KL 0

0 KT

 . (4.95)

KL = 0.144 eV/(uÅ2) is the longitudinal spring constant and the transverse

oneKT is 4 times smaller. The unit cell lattice vectors are (a, 0) and (a/2, a
√

3/2)

with a = 1 Å.

Firstly we discuss the two-dimensional honeycomb lattice, where n =

2, d = 2, shown in Fig. 4.1. To obtain the explicit formula for the dynamic

matrix, we first define a rotation operator in two dimensions as:

U(θ) =

 cos θ − sin θ

sin θ cos θ

 .

The three kinds of spring-constant matrices between two atoms are K01 =

U(π/2)KxU(−π/2), K02 = U(π/6)KxU(−π/6), K03 = U(−π/6)KxU(π/6),

shown in Fig. (4.1), which are 2× 2 matrices. Then we can obtain the on-site

spring-constant matrix and the four spring-constant matrices between the unit
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cell and its four nearest neighbors as:

K0 =

 K01 +K02 +K03 −K02

−K02 K01 +K02 +K03

 ,

K1 =

 0 0

−K03 0

 , K2 =

 0 0

−K01 0

 ,

K3 =

 0 −K03

0 0

 , K4 =

 0 −K01

0 0

 , (4.96)

which are 4 × 4 matrices. Finally we can obtain the 4 × 4 dynamic matrix

D(k) as

D(k) = −A2 +K0 +K1e
ikx +K2e

i(kx/2+
√

3ky/2) +K3e
−ikx +K4e

−i(kx/2+
√

3ky/2),

(4.97)

where, A2 = −h2 · I4, and I4 denotes the 4 × 4 identity matrix.

Phonon Hall conductivity

After we get the expression for the dynamic matrix, we can calculate the

eigenvalues and eigenvectors of the effective Hamiltonian. Inserting the eigen-

values, eigenvectors and the D matrix to the formula Eq. (4.47), we are able

to compute the the phonon Hall conductivity.

Fig. 4.2 shows the phonon Hall conductivity with magnetic field for differ-

ent temperatures. We find that in the weak magnetic field range, the phonon

Hall conductivity κxy is proportional to the magnetic field, which is consistent

with all the experimental and our results of PHE in four-terminal junctions.
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Figure 4.2: Phonon Hall conductivity vs applied magnetic field for a two-
dimensional honeycomb lattice. The solid, dashed and dotted lines correspond
T = 10, 50, and 300 K, respectively.
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With increasing the magnetic field, we find that the dependence of κxy on h

becomes nonlinear, which also verify our results in the previous chapter.

At low temperatures, if we increase the magnetic field h, we find that the

phonon Hall conductivity κxy will not be linear with h, after some maximum

point, κxy will decrease, to zero, then to negative, which is shown in Fig. 4.3(a).

The phonon Hall conductivity can change sign with increasing magnetic field

at low temperatures. As shown in Fig. 4.3(b), with increasing temperature, the

magnitude of the negative Hall conductivity decreases; after the temperature

T > T0 = 30.5552 K (for the parameters concerned), there is no negative

Hall conductivity in the whole range of positive magnetic field. When the

temperature is high, more high energy modes are excited, the strong spin-

phonon interaction can not easily turn around the phonons, therefore, there is

no negative phonon Hall conductivity.

From Fig. 4.3, we find the phonon Hall conductivity is not a monotonic

function of temperature, thus we plot the κxy as a function of a large range of

temperature at a fixed magnetic field h = 1 rad/ps in Fig. 4.4. At very low

temperatures, the phonon Hall conductivity is proportional to 1/T . kxyT will

be constant for different temperatures lower than 1 K, which can be seen in

the inset of Fig. 4.4 . This is due to the contribution from κ
(2)
xy of Eq. (4.43): if

T → 0, 1+ f → 1, then the conductivity linear with 1/T tends infinity. While

the longitudinal thermal conductivity κxx is infinite for any temperature [149],

thus when T → 0, the transverse Hall conductivity, κxy → ∞, has the ballistic

property similar to the longitudinal one. If temperature is very high, all the

modes contribute to the thermal transport, and f ≃ kBT/(h̄ω), then the
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Figure 4.3: Phonon Hall conductivity vs magnetic field for different tempera-
tures. (a) The solid, dash, dot, dash-dot, and dash-dot-dot lines correspond to
fixed temperature T = 5, 10, 20, 30, and 40 K, respectively. (b) The solid, dash,
dot, and dash-dot lines correspond to fixed temperature T = 50, 100, 200, and
300 K, respectively.
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Figure 4.4: Phonon Hall conductivity vs temperature at fixed magnetic field
h = 1 rad/ps. The inset of (b) shows the product of phonon Hall conductivity
and temperature κxyT vs magnetic field h for different temperatures.
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Figure 4.5: dκxy/dh as a function of h at different temperatures: T = 50
(dotted line), 100 (dashed line), and 300 K (solid line); here NL = 400. The
inset in (b) shows the h-dependence of dκxy/dh for different size NL at T = 50
K, around h ≈ 25.5 rad/ps; from top to bottom, NL = 80, 320, and 1280,
respectively.

phonon Hall conductivity becomes a constant, which can be seen in Fig. 4.4.

At the relative higher temperatures, the phonon Hall conductivity will

have a sudden decrease at the same magnetic field. From Fig. 4.3(b), for

all the high temperatures, the sudden changes for the hall conductivity all

happen at the same magnetic field around h ≃ 25 rad/ps, we thus plot the

first derivative of κxy with respect to h at different temperatures in Fig. 4.5. It

shows that, at the relatively high temperatures, the first derivative of phonon

Hall conductivity has a minimum at the magnetic field hc ≃ 25.4778 rad/ps for
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the finite-size sample NL = 400 (the sample has N = N2
L unit cells). The first

derivative dκxy/dh at the point hc diverges when the system size increases to

infinity. The inset in Fig. 4.5 shows the finite-size effect. At the point hc, the

second derivative d2κxy/dh
2 is discontinuous. Therefore, hc is a critical point

for the PHE, across which a phase transition occurs. At low temperatures,

the divergence of dκxy/dh is not so evident as that at high temperatures.

However, if the sample size becomes larger, the discontinuity of d2κxy/dh
2 is

more obvious, as illustrated in Fig. 4.5. For different temperatures, the phase

transition occurs at exactly the same critical value hc, which strongly suggests

that the phase transition of the PHE is related to the topology of the phonon

band structure.

Chern numbers of the phonon bands

To calculate the integer Chern numbers, large k-sampling points N is needed.

However there is always a zero eigenvalue at the Γ point of the dispersion

relation, which corresponds to a singularity of the Berry curvature. Therefore,

we cannot sum up the Berry curvature very near this point to obtain Chern

number of this band, unless we add a negligible on-site potential 1
2
uTVonsiteu

to the original Hamiltonian. In Fig. 4.6(a), without the on-site potential,

the Chern number of the fourth band is not an integer, no matter how large

the sample size N = N2
L is (see Fig. 4.6(b)). If we add the external on-

site potential, the Chern number of the fourth band will become an integer.

In Fig. 4.6(a), the C4 changes gradually to −1 with increasing the on-site

potential, while other Chern numbers do not change. And from Fig. 4.6(b),

we see that with larger on-site potential, the Chern number of the fourth band
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Figure 4.6: (a) The four Chern number vs onsite potential Vonsite. The unit for
onsite potential is longitudinal spring constant KL. Here N = N2

L = 160000;
(b) The Chern number of the fourth band changes with NL for different onsite
potentials. For both (a) and (b), h = 1 rad/ps.
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could be an integer for smaller sample sizes.

Without Raman spin-phonon interaction, that is, h = 0, the contribu-

tion from different band σ′ to the Berry curvature of band σ: Ωσσ′

kxky
= 0,

thus Berry curvature is zero everywhere and the phonon Hall conductivity is

zero. When we apply nonzero magnetic field, the Berry curvature changes to

nonzero, which can be seen from Fig. 4.7, and the phonon Hall conductivity

becomes nonzero, phonon Hall effect can be present in the lattice. In Fig. 4.7,

we plot the Berry curvatures and Chern numbers for four energy bands with

negative eigenvalues ωσ, the ones for other four bands have the opposite values.

Figure 4.7 (a)-(d) show the contour maps of Berry curvature at the magnetic

field h = 1 rad/ps. Near the Γ points and/or K,K ′ points, the Berry cur-

vatures have nonzero values. But for different bands, the Berry curvatures

are different, and all of which show the symmetry of the reciprocal lattice. If

the magnetic field changes, the Berry curvatures change. From Fig. 4.7(a)-(d)

to Fig. 4.7(e)-(h), the magnetic field changes from 1 to 2 rad/ps, the Berry

curvatures are quite different. However, we find that the corresponding Chern

numbers are kept constant integers in a large range of the magnetic field.

From Fig. 4.7(i), the Chern numbers of the first band and the fourth band

are nonzero integer, and the ones of other two bands are zero. Therefore, the

Chern numbers given by Eq. (4.62) are topological invariant integers, which

indeed illustrate the topology of the band structure of the ballistic phonon Hall

model. For the triangular lattice, the topology of band structure has the sim-

ilar property: an applied magnetic field induces nonzero Berry curvature, and

the corresponding Chern numbers are topological invariant integers. Although

the Chern numbers are quantized as integers, because of the phonon Hall con-
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Figure 4.7: (a)-(d) The contour map of Berry curvatures for 1 - 4 energy
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4, respectively.
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ductivity written in the form as Eq. (4.47) which can not be represented as a

simple relation with Chern numbers, we can not obtain a quantized phonon

Hall conductivity.

Associated phase transition

In the vicinity of the critical magnetic field hc, we find that the phase transition

is indeed related to the abrupt change of the topology of band structures. The

Berry curvatures for different bands near the critical magnetic field are illus-

trated in Fig. 4.8(a-h). We find that with an infinitesimal change of magnetic

field around hc, the Berry curvatures around the Γ (k = 0) point of bands 2

and 3 are quite different, whereas those of band 1 and 4 remain unchanged. To

illustrate the change of the Berry curvatures clearly, we plot the cross section

of the Berry curvatures along the kx direction for bands 2 and 3 in Fig. 4.8(i),

which shows explicitly that the Berry curvatures change dramatically above

and below the critical magnetic field hc. Below the critical point, the Berry

curvature for band 2 in the vicinity of Γ point contributes Berry phase 2π

(−2π for band 3), which cancels that from K,and K ′ points, so that the Chern

number is zero for bands 2 and 3, as indicated in Fig. 4.8(j). However, above

the critical point, the sum of Berry curvature at Γ point is zero, and only the

monopole at K, and K ′ points contributes to Berry phase (−2π for band 2

and 2π for band 3). Therefore, the Chern numbers jump from 0 to ±1, as

shown in Fig. 4.8(j). This jump indicates that the topology of the two bands

suddenly changes at the critical magnetic field, which is responsible for the

phase transition.

To further investigate the mechanism of the abrupt change of the phonon
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Figure 4.8: (a)-(d) The contour map of Berry curvatures for bands 1 − 4
at hc− = hc − 10−2 rad/ps; (e)-(h) The contour map of Berry curvatures for
bands 1− 4 at hc+ = hc +10−2 rad/ps. For (a)-(h), the horizontal and vertical
axes correspond to wave vector kx and ky, respectively. (i) Ω at different
magnetic fields. The solid and dashed lines correspond to Ω2 and Ω3 at hc−
respectively, while dotted and dash-dotted lines correspond to those at hc+.
(j) Chern numbers of four bands: C1 (solid line), C2 (dashed line), C3 (dotted
line), and C4 (dash-dotted line). (k) The dispersion relation of band 2 and 3
at different magnetic fields in the vicinity of hc. The dashed, solid and dotted
lines correspond to the bands at hc−, hc, and hc+, respectively. The lower three
and upper three correspond to bands 2 and 3, respectively. ky = 0 in (i) and
(k).
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band topology, we study the dispersion relation near the critical magnetic field.

From Fig. 4.8(k), we can see that band 2 and 3 are going to touch with each

other at the Γ point if the magnetic field increases to hc; at the critical magnetic

field, the degeneracy occurs and the two bands possess the cone shape; above

the critical point hc, the two bands split up. Therefore, the difference between

the two bands decreases below and increases above the critical point hc. The

property of the dispersion relation in the vicinity of the critical magnetic field

directly affects the Berry curvature of the corresponding bands.

4.5.2 Kagome Lattices

Dynamic matrix and dispersion relations

For the two-dimensional kagome lattice, as shown in Fig. 4.9, each unit cell

has three atoms, thus n = 3. The three kinds of spring-constant matrices

between two atoms are K01 = Kx (between atoms 1 and 2 in Fig. 4.9), K02 =

U(π/3)KxU(−π/3) (between atoms 2 and 3), K03 = U(−π/3)KxU(π/3) (be-

tween atoms 3 and 1), which are 2×2 matrices. Then we can obtain the on-site

spring-constant matrix and the six spring-constant matrices between the unit

cell and its nearest neighbors as:

K0 =


2(K01 +K02) −K01 −K02

−K01 2(K01 +K03) −K03

−K02 −K03 2(K02 +K03)

 ,
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Figure 4.9: The schematic picture of kagome lattice. Each unit cell has three
atoms such as the number shown 1,2,3. The coupling between the atoms are
K01, K02, K03. Each unit cell has six nearest neighbors; the coupling between
the unit cell and the neighbors are K1, K2, ..., K6.
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Figure 4.10: The contour map of dispersion relations for the positive frequency
bands. For all the insets, the horizontal and vertical axes correspond to wave
vector kx and ky, respectively. The upper six insets are the dispersion relations
for bands 1 to 6 (from left to right) at h = 0, respectively. And h = 10 rad/ps
for the lower ones.

K1 =


0 0 0

−K01 0 0

0 0 0

 , K2 =


0 0 0

0 0 0

−K02 0 0

 ,

K3 =


0 0 0

0 0 0

0 −K03 0

 , K4 =


0 −K01 0

0 0 0

0 0 0

 ,

K5 =


0 0 −K02

0 0 0

0 0 0

 , K6 =


0 0 0

0 0 −K03

0 0 0

 ,
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Figure 4.11: The phonon Hall conductivity vs magnetic field at different
temperatures. The inset is the zoom-in curve of the phonon Hall conductivity
at weak magnetic field. Here the sample size NL=400.

which are 6 × 6 matrices. Finally we can obtain the 6 × 6 dynamic matrix

D(k) as

D(k) = −A2 +K0 +K1e
ikx +K2e

i( kx
2

+
√

3ky
2

)

+K3e
i(− kx

2
+

√
3ky
2

) +K4e
−ikx

+K5e
i(− kx

2
−

√
3ky
2

) +K6e
i( kx

2
−

√
3ky
2

), (4.98)

where, A2 = −h2 · I6, here I6 is the 6 × 6 identity matrix.

Inserting the dynamic matrix Eq. (4.98) to the effective Hamiltonian

Eq. (4.18), we can calculate eigenvalues and eigenvectors of the system, and

also get the dispersion relation of the system.
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For a kagome lattice, because each unit cell has three atoms, and we

only consider the two-dimensional motion, we can get six phonon branches

with positive frequencies. The branches with negative frequencies have similar

behavior because of ω−σ(−k) = −ωσ(k). We show the contour map of the

dispersion relation in Fig. 4.10. We can see that the dispersion relations have

a 6-fold symmetry. For different bands, they are different. With a changing

magnetic field, the dispersion relations vary. The point Γ (k = (0, 0)) is the

6-fold symmetric center; the point K (k = (4π
3
, 0)) is 3-fold symmetric center;

and the middle point of the line between two 6-fold symmetric centers, X

(k = (π,
√

3π
3

)) is a 2-fold symmetric center.

The PHE and the associated phase transition

Using the formula Eq. (4.47), we calculate the phonon Hall conductivity of

the kagome lattice systems in Fig. 4.11. Similar to the honeycomb case, we

find a nontrivial behavior of the phonon Hall conductivity as a function of

the magnetic field. When h is small, κxy is proportional to h, which is shown

in the inset of Fig.4.11; while the dependence becomes nonlinear when h is

large. As h is further increased, the magnitude of κxy increases before it

reaches a maximum magnitude at certain value of h. Then the magnitude of

κxy decreases and goes to zero at very large h. The on-site term Ã2 in the

Hamiltonian (4.6) increases with h quadratically so as to blockade the phonon

transport, which competes with the spin-phonon interaction. Because of the

coefficient of f(ωσ) in the summation of the formula Eq. (4.47), the sign of the

Hall conductivity will change with temperatures.

For kagome lattices , we plot the curves of the Chern numbers of bands 2
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Figure 4.12: (color online) The Chern numbers and the phonon Hall conduc-
tivity vs magnetic field. The dashed line and the dotted line correspond to the
Chern numbers of phonon bands 2 and 3 (left scale). The solid line correspond
to the phonon Hall conductivity (right scale) at T = 50 K.
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Figure 4.13: The first derivative of the phonon Hall conductivity dkxy/dh
at T = 50K and the Chern numbers of bands 2 and 3 in the vicinity of the
magnetic fields. The solid line correspond to the dkxy/dh at T = 50K (left
scale); the dashed and dotted lines correspond to the Chern numbers of bands
2 and 3, respectively (right scale). The inset shows the second derivative with
respective to the magnetic field dk2

xy/dh
2 (vertical axis) vs magnetic field h

(horizontal axis) at T = 50 K.
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and 3 as a function of the magnetic field in Fig. 4.12. In Fig. 4.12, we set the

Vonsite = 10−3KL similar as the honeycomb-lattice case. The Chern numbers

of bands 2 and 3 have three jumps with the increasing of the magnetic field,

although the phonon Hall conductivity is continuous. For other bands, the

Chern numbers keep constant: C1 = C4 = −1, C5 = 0, and C6 = 1. For the

electronic Hall effect, we know it is quantized because the Hall conductivity is

proportional to the quantized Chern numbers. Here we also find the quantized

effect of the Chern numbers from Fig. 4.12, while there is no quantization for

the phonon Hall conductivity. Such difference of the PHE from the electronic

Hall effect comes from the different nature of phonons respective to electrons.

In Eq. (4.47), in the summation, an extra term (ωσ + ωσ′)2 relating to the

phonon energy which is an analog of the electrical charge term e2 in the elec-

tron Hall effect, can not be moved out from the summation. Combining with

the Bose distribution, the term f(ωσ)(ωσ+ωσ′)2 make the phonon Hall conduc-

tivity smooth, no discontinuity comes out although the Chern numbers have

some sudden jumps. From the above discussion on honeycomb lattices the

discontinuity of the Chern numbers correspond to the phase transitions and

would relate to the divergency of derivative of the phonon Hall conductivity.

Figure 4.13 shows the curves of the derivative of the phonon Hall con-

ductivity and the Chern numbers at the critical magnetic fields. The first

derivative of phonon Hall conductivity has a minimum or maximum at the

magnetic fields hc1 = 5.07, hc2 = 6.75, andhc3 = 20.39 rad/ps for the finite-size

sample (the sample has N = N2
L unit cells). The first derivative dκxy/dh at the

the points hc1, hc2, hc3 diverges when the system size increases to infinity [152].

At the three critical points the second derivative d2κxy/dh
2 is discontinuous,
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Figure 4.14: The dispersion relations around the critical magnetic fields. (a),
(b), and (c) show the dispersion relations along the direction from Γ (k=(0,0))

to K (k = (4π
3
, 0)) and to X (k = (π,

√
3π
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)) at the critical magnetic fields
hc1 = 5.07rad/ps, hc2 = 6.75rad/ps, and hc3 = 20.39rad/ps, respectively. (d)-
(f) show the contour maps of the dispersion relation of band 2 at the three
critical magnetic fields. (g)-(i) show the contour maps of the dispersion relation
of band 3 at the three critical magnetic fields. The squares with number 1, 2,
and 3 are marked for the touching points. In (d), (g) and (e), (h), we only mark
one of the six symmetric points by squares of number 1 and 2 for simplicity.
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which is shown in the inset of Fig. 4.13, across which phase transitions oc-

cur. For different temperatures, the phase transitions occur at exactly the

same critical values. Thus the temperature-independent phase transition does

not come from the thermodynamic effect, but is induced by the topology of

the phonon band structure, which corresponds to the sudden change of the

Chern numbers. While there is one discontinuity of the Chern numbers for

the honeycomb lattice system, for the kagome lattice system, there are three

discontinuities corresponding to the divergency of the derivative of the phonon

conductivity, which can be seen in Fig. 4.13.

The touching and splitting of the phonon bands near the critical magnetic

field induces the abrupt change of Chern numbers of the phonon band [152].

In the above discussion on honeycomb lattices, we know that band 2 and

3 are going to touch with each other at the Γ point if the magnetic field

increases to hc; at the critical magnetic field, the degeneracy occurs and the

two bands possess the cone shape; above the critical point hc, the two bands

split up. Therefore, the difference between the two bands decreases below and

increases above the critical magnetic field, and is zero at the critical point. The

eigenfrequency difference is in the denominator of the Berry curvature; thus

the variation of the difference around the critical magnetic field dramatically

affects the Berry curvature of the corresponding bands. In the kagome lattice

systems, we find that the touching and splitting of the phonon bands not

only occurs at the Γ point, but also occurs at other points, which is shown

in Fig. 4.14. At the first critical points hc1, the bands 2 and 3 touch at the

point K (marked by a square with number 1); at hc2 the two bands touch at

X ( marked by a square with number 2); while only for the third critical one
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hc3, band 2 and 3 degenerate at the point Γ (marked by a square with number

3). From the contour maps of bands 2 and 3, we clearly see that the critical

magnetic fields hc1, hc2, and hc3, there are local maximum for the band 2 and

the local minimum for the band 3. Therefore, for all the critical magnetic fields

where the Chern numbers have abrupt changes, in the wave-vector space we

can always find the phonon bands touching and splitting at some symmetric

center points.

4.5.3 Discussion on Other Lattices

For a square lattice with nearest-neighbor interaction, we find that Ωσσ′

kxky
=

0, thus κxy = 0, which verify our symmetry criterion we proposed earlier.

Therefore, if the system exhibits symmetry satisfying SDS−1 = D, SAS−1 =

−A (e.g., mirror reflection symmetry), the phonon Hall conductivity is zero.

For a triangular lattice, we also find that, in the absence of applied mag-

netic field, the Berry curvature is zero everywhere, and the phonon Hall con-

ductivity is also zero. If a magnetic field is applied, the Berry curvature will

be nonzero, which can be seen from Fig. 4.15 (we use the same spring constant

of the honeycomb lattice for calculation triangular lattices). In Fig. 4.15(a),

(b) are the Berry curvatures for first and second bands at h = 5 rad/ps, and

(c), (d) are the ones at h = 20 rad/ps. For different applied magnetic field, the

Berry curvature are different; however, the Chern numbers are always zero.

The Berry curvatures at Γ and K (or K ′) points cancel each other, the sum is

zero. Although all the Chern numbers are zero, the Berry curvatures are not

zero, and the phonon Hall conductivity is nonzero for the triangular lattice
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system, which can be seen from Fig. 4.16(a). The phonon Hall conductivity

can change sign with an applied magnetic field. However, there is no phase

transition in this system. Without the magnetic field, there are only acoustic

modes in the system, with increasing magnetic field, the two acoustic modes

will split, see Fig. 4.16(b) (the phonon band 1 and 4 are opposite numbers,

band 2 and band 3 are also opposite ones ). Figure 4.16(c) shows that the fre-

quency difference of this two levels are linear with magnetic field, they never

touch again, therefore the topology of Brillouin torus will not change, the

Chern numbers keep zero, and no phase transition for the phonon Hall effect

in the triangular lattice.

4.6 Summary

In summary, we have studied the PHE from a topological point of view.

We have proposed two different theoretical derivations for the PHE in two-

dimensional periodic lattice systems. In the first derivation, from the Green-

Kubo formula and considering the contributions from all the phonon bands,

we obtain the general formula for the phonon Hall conductivity; then by look-

ing at the phases of the polarization vectors of both the displacements and

conjugate momenta as a function of the wave vector, a Berry curvature can be

defined uniquely for each band. Combining the above two steps, at last the

phonon Hall conductivity can be written in terms of Berry curvatures. Such

derivation gives us the clear picture of the contribution to the phonon Hall

current from all the phonon branches, and the relation between the phonon

Hall conductivity with the geometrical phase of the polarization vectors, thus
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helps us to understand the topological picture of the PHE. In the second the-

oretical derivation, by the modified second quantization for the Hamiltonian,

we obtain the formula for the heat current density, which considering all the

phonon bands including both positive and negative frequencies. The heat cur-

rent density can be divided into two parts, one is the diagonal, another is

off-diagonal. The diagonal part corresponds to the normal velocity; and the

off-diagonal part corresponds to the anomalous velocity which is induced by

the Berry vector potential. Such anomalous velocity induces the PHE in the

crystal lattice. Using the Green-Kubo formula, we derive the formula of the

phonon Hall conductivity. The second theoretical derivation of the PHE pro-

vides a clear picture of the Berry phase effect inducing the anomalous velocity

which contributes to the extra term of the heat current. Thus the Berry phase

effect is straightforward to take the responsibility of the PHE.

We also find the same symmetry criterion for the PHE as described in last

chapter - if under a symmetry operation the magnetic field reverses while the

system dynamic matrix keeps constant, there is no PHE in this system, such

as square lattices with nearest neighbor interaction. For a general lattice, the

PHE presents with an applied magnetic field.

Both of the theories give us exactly the same formula of phonon Hall con-

ductivity in terms of Berry curvatures, which are defined uniquely for each

band. We find a nonmonotonic behavior of phonon Hall conductivity as a

function of the magnetic field. Our formulism predicts that the direction of

phonon Hall conductivity can be reversed by tuning magnetic fields or temper-

atures, which we hope can be verified by experiments in the future. Because
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of the nature of phonons, the phonon Hall conductivity, which is not directly

proportional to the Chern number, is not quantized. However, the quantiza-

tion effect, in the sense of discontinuous jumps in Chern numbers, manifests

itself in the phonon Hall conductivity as a singularity of the first derivative

with respect to the magnetic field. For honeycomb lattices, with increasing

the magnetic field, we find the discontinuous in the second order derivative

of the phonon Hall conductivity with respect to the magnetic field, which a

phase transition occurs. Such phase transition corresponds to a jump of the

Chern numbers of two phonon bands at the critical point. The mechanism for

the change of topology of band structures comes from the energy bands touch-

ing and splitting. And in the kagome lattices there are three singularities of

d2kxy/dh
2 induced by the abrupt change of the phonon band topology, which

correspond to the touching and splitting at three different symmetric center

points in the wave-vector space.



Chapter 5

Conclusion

This dissertation presented theoretical studies of phonon Hall effect in finite

lattice systems and infinite periodic lattices. To investigate the existence of

ballistic PHE and its various properties, the nonequilibrium Green’s function

method was applied to the finite-junction systems and the Green-Kubo formula

was applied to the infinite periodic lattices.

To examine whether the ballistic PHE can exist, a theory of the PHE in

finite paramagnetic dielectrics was proposed. By using the NEGF approach,

we derived the Green’s functions for the four-terminal junctions with a spin-

phonon interaction. Using the derived Green’s functions, this thesis developed

a formula of the relative Hall temperature difference to denote the PHE in

four-terminal junctions. The results calculated from our theory are consistent

with the essential experimental features of PHE, such as the magnitude of the

PHE and linear dependence of the observed transverse temperature difference

on magnetic fields. The dependence on large range of magnetic fields and tem-

peratures was also studied. With increasing magnetic field, the PHE changes

from a linear dependance to a sublinear one, and then decreases and changes

108
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sign from positive to negative after a certain magnetic field. The size effect of

the PHE was also discussed; it was found that the Hall temperature difference

changes sign as the system size increases, which could be verified by experi-

ments in nanostructures. Our theory of the PHE in four-terminal junctions

provides an efficient way to study the PHE in finite systems, which is generally

applicable for different crystal systems.

By applying our theory of PHE in the multi-terminal junctions to the bal-

listic thermal rectification, two necessary conditions for thermal rectification

were found: one is phonon incoherence, another is asymmetry. This result is

significant because this two conditions are more fundamental for understand-

ing the thermal rectification than the current prevalent view which takes the

nonlinearity and structural asymmetry as necessary conditions. Furthermore,

it was found that the thermal rectification can change sign in a certain param-

eter range, which is a universal phenomenon for the thermal transport.

To investigate the PHE in infinite periodic systems, by using Green-Kubo

formula we proposed a topological theory of the PHE from two different theo-

retical derivations. In the first derivation, firstly the phonon Hall conductivity

and Berry curvatures were separately derived. Then combining these two for-

mulae, the phonon Hall conductivity in terms of Berry curvatures was devel-

oped. Such derivation gives us a clear picture of the contribution to the phonon

Hall current from all the phonon branches, which include both positive and

negative frequencies. The connection between the phonon Hall conductivity

and the Berry curvatures is helpful to understand the topological picture of the

PHE. To investigate how the Berry phase effect affect the heat current and thus
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take responsibility of the PHE, we proposed a second theoretical derivation.

By proposing a proper second quantization for the non-Hermite Hamiltonian

in the polarization-vector space, we obtained a new heat current density oper-

ator with two separate contributions: the normal velocity responsible for the

longitudinal phonon transport, and the anomalous velocity manifesting itself

as the Hall effect of transverse phonon transport. By inserting the new heat

current to the Green-Kubo formula, a phonon Hall conductivity in terms of

Berry curvature was derived in the same form as that in the first derivation.

This derivation is systematic and straightforward to inspect the Berry phase

effect of the PHE.

The proposed topological theory of the PHE offers us a useful way to

study the phonon Hall conductivity in the infinite periodic system and a new

understanding of the topological nature of the PHE. Similar to the relative Hall

temperature difference in a four terminal junction, a nonmonotonic behavior

of phonon Hall conductivity as a function of the magnetic field was found. It

was also found that the direction of phonon Hall conductivity can be reversed

by tuning magnetic field or temperature, which we hope can be verified by

experiments in the future.

Because of the nature of phonons, the phonon Hall conductivity, which

is not directly proportional to the Chern number, is not quantized. Therefore

different from the quantum Hall effect of electrons, there is no quantum phonon

Hall effect. However, it was found that the quantization effect, in the sense

of discontinuous jumps in Chern numbers, manifests itself in the phonon Hall

conductivity as discontinuities of the second derivative with respect to the
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magnetic field. For honeycomb lattices, there exists a phase transition which

occurs at the critical magnetic field corresponding to the discontinuity. The

mechanism for the change of topology of band structures comes from the energy

bands touching and splitting. And in the kagome lattices there are three

singularities of d2kxy/dh
2 induced by the abrupt change of the phonon band

topology, which correspond to the touching and splitting at three different

symmetric center points in the Brillouin zone.

Both the theories of PHE in four-terminal junctions and in infinite crystal

systems predicted a symmetry criterion for the PHE, that is, there is no PHE

if the lattice satisfies a certain symmetry which makes the dynamic matrix

unchanged and the magnetic field reversed. The symmetry broken of the dy-

namic matrix is the necessary condition for the existence of PHE. For instance,

there is no PHE in square lattices with nearest neighbor interaction. For a gen-

eral lattice with an applied magnetic field, the PHE can exist. This finding

is of crucial importance in terms of theoretical applications and experimental

measurement on the PHE because it is the necessary condition for PHE and

provides guidance for searching the PHE in different structures.

Overall, one key contribution of our study is the confirmation of the bal-

listic PHE from the proposed PHE theories in both finite and infinite systems,

that is, nonlinearity is not a necessary condition for the PHE. Our proposed

PHE theories are general and can be applied to the thermal Hall effect in

phonon and magnon systems for different materials in low temperatures in

which the thermal transport is ballistic. Combing with the numerical find-

ing of the various properties this study can give sufficient guidance for the
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experimental study on the PHE. The proposed topological interpretation of

the PHE is very important not only for deep understanding of PHE but also

for the discipline of phononics especially for the studies aimed at uncovering

intriguing Berry phase effects and topological properties in phonon transport.

The new finding of the associated phase transition in the PHE, which is ex-

plained from topological description and dispersion relations, suggests a novel

understanding on various phase transitions.

In this study, we did not consider the nonlinearity in the phonon trans-

port. Although the nonlinearity is not necessary for the PHE, it may give more

ample properties in the diffuse PHE. To address the issue of nonlinear inter-

action, future studies should attempt to consider it in the phonon transport.

This study did not explore much on the spin-phonon interaction, a first prin-

ciple investigation on this interaction in the future will give the PHE deeper

understanding.
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