PC2135 Thermodynamics and Statistical Mechanics

Midterm test Friday 8 Mar (close book), 1 hour 45 minutes

- 1. Calculate the average volume occupied by one molecule for an ideal gas at room temperature (300 K) and atmospheric pressure ($1.013 \times 10^5 \text{ N/m}^2$). Then take the cube root to get an estimate of the average distance between molecules. How does this distance compare to the size of a small molecule like N₂ or H₂O?
- 2. A diatomic ideal gas near room temperature is made to undergo the cyclic process shown in the figure. They form a triangular closed loop by paths A, B, and C. Compute for each of the steps A, B, and C, (a) work done on the gas; (b) the change in the energy content of the gas; (c) the heat added to the gas. Express the answers in *P* and *V* only.

- 3. Consider a two-state paramagnet where each spin can only be up or down. Let the total number of spins be N and the number of the up spins be N_{\uparrow} . (a) Give the multiplicity of the paramagnet in terms of N and N_{\uparrow} . (b) Give the expression for entropy assuming N and N_{\uparrow} are large (i.e. use the Sterling's approximation). (c) Rewrite the entropy as a function of temperature T. To do this, you need to relate the energy to the number of up spins by $U = \mu B(N 2N_{\uparrow})$ where μ is magnetic moment per spin, and B is the magnetic induction.
- 4. Experimental measurements of the heat capacity of aluminum at low temperatures (blow 50 K) can be fit to the formula $C_V = aT + bT^3$, where C_V is the heat capacity of one mole of aluminum, and constants a and b are approximately $a = 0.00135 \text{ J/K}^2$ and $b = 2.48 \times 10^{-5} \text{ J/K}^4$.

- a. From this data, find a formula for the entropy of a mole of aluminum as a function of temperature.
- b. Evaluate your formula at T = 1 K and T = 10 K, expressing your answers both in conventional units (J/K) and as unitless numbers (i.e. in units of the Boltzmann constant, $k = 1.381 \times 10^{-23}$ J/K).
- 5. The Otto cycle consists four steps as shown on the *P*-*V* diagram, two vertical lines (isocharic) and two adiabatic lines, forming a loop. Let the volumes of the two vertical lines be V_1 and V_2 with $V_2 < V_1$. Show that the ideal Otto cycle using ideal gas a substance has the efficiency $e = \frac{W}{Q_h} = 1 \left(\frac{V_2}{V_1}\right)^{\gamma-1}$, where the exponent γ is in $PV^{\gamma} = \text{const for adiabatic process.}$

Ideal gas law: PV = NkTEquipartition theorem: $U = \frac{f}{2}NkT$ First law: $\Delta U = Q + W$ Second law: $\Delta S \ge Q/T$ Thermodynamic identity: $dU = TdS - PdV + \mu dN$ Physical constants: $k = 1.381 \times 10^{-23}$ J/K, $N_A = 6.022 \times 10^{23}$, $e = 1.602 \times 10^{-19}$ C Adiabatic process: $PV^{\gamma} = \text{const.}$ Boltzmann principle: $S = k \ln \Omega$ Multiplicity of Einstein solid: $\Omega = \frac{(q+N-1)!}{q!(N-1)!}$ Sterling formula: $\ln N! \approx N \ln N - N$ Sackur-Tetrode formula: $S = Nk \left[\ln \left(\frac{V}{N^{5/2}} \left(\frac{4\pi m U}{3h^2} \right)^{3/2} \right) + \frac{5}{2} \right]$ Carnot efficiency: $e = \frac{W}{Q_h} = 1 - T_c/T_h$