## PC2135 Thermodynamics and Statistical Mechanics

Midterm test Friday 8 Mar (close book), 1 hour 45 minutes

1. Calculate the average volume occupied by one molecule for an ideal gas at room temperature ( 300 K ) and atmospheric pressure ( $1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ ). Then take the cube root to get an estimate of the average distance between molecules. How does this distance compare to the size of a small molecule like $\mathrm{N}_{2}$ or $\mathrm{H}_{2} \mathrm{O}$ ?
2. A diatomic ideal gas near room temperature is made to undergo the cyclic process shown in the figure. They form a triangular closed loop by paths $\mathrm{A}, \mathrm{B}$, and C . Compute for each of the steps $A, B$, and $C$, (a) work done on the gas; (b) the change in the energy content of the gas; (c) the heat added to the gas. Express the answers in $P$ and $V$ only.

3. Consider a two-state paramagnet where each spin can only be up or down. Let the total number of spins be $N$ and the number of the up spins be $N_{\uparrow}$. (a) Give the multiplicity of the paramagnet in terms of $N$ and $N_{\uparrow}$. (b) Give the expression for entropy assuming $N$ and $N_{\uparrow}$ are large (i.e. use the Sterling's approximation). (c) Rewrite the entropy as a function of temperature $T$. To do this, you need to relate the energy to the number of up spins by $U=\mu B\left(N-2 N_{\uparrow}\right)$ where $\mu$ is magnetic moment per spin, and $B$ is the magnetic induction.
4. Experimental measurements of the heat capacity of aluminum at low temperatures (blow 50 K ) can be fit to the formula $C_{V}=a T+b T^{3}$, where $C_{V}$ is the heat capacity of one mole of aluminum, and constants $a$ and $b$ are approximately $a=$ $0.00135 \mathrm{~J} / \mathrm{K}^{2}$ and $b=2.48 \times 10^{-5} \mathrm{~J} / \mathrm{K}^{4}$.
a. From this data, find a formula for the entropy of a mole of aluminum as a function of temperature.
b. Evaluate your formula at $T=1 \mathrm{~K}$ and $T=10 \mathrm{~K}$, expressing your answers both in conventional units ( $\mathrm{J} / \mathrm{K}$ ) and as unitless numbers (i.e. in units of the Boltzmann constant, $\left.k=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$.
5. The Otto cycle consists four steps as shown on the $P-V$ diagram, two vertical lines (isocharic) and two adiabatic lines, forming a loop. Let the volumes of the two vertical lines be $V_{1}$ and $V_{2}$ with $V_{2}<V_{1}$. Show that the ideal Otto cycle using ideal gas a substance has the efficiency $e=\frac{W}{Q_{h}}=1-\left(\frac{V_{2}}{V_{1}}\right)^{\gamma-1}$, where the exponent $\gamma$ is in $P V^{\gamma}=$ const for adiabatic process.


## Formula sheet

Ideal gas law: $P V=N k T$
Equipartition theorem: $U=\frac{f}{2} N k T$
First law: $\Delta U=Q+W$
Second law: $\Delta S \geq Q / T$
Thermodynamic identity: $d U=T d S-P d V+\mu d N$
Physical constants: $k=1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}, N_{A}=6.022 \times 10^{23}, e=1.602 \times 10^{-19} \mathrm{C}$
Adiabatic process: $P V^{\gamma}=$ const.
Boltzmann principle: $S=k \ln \Omega$
Multiplicity of Einstein solid: $\Omega=\frac{(q+N-1)!}{q!(N-1)!}$
Sterling formula: $\ln N!\approx N \ln N-N$
Sackur-Tetrode formula: $S=N k\left[\ln \left(\frac{V}{N^{5 / 2}}\left(\frac{4 \pi m U}{3 h^{2}}\right)^{3 / 2}\right)+\frac{5}{2}\right]$
Carnot efficiency: $e=\frac{W}{Q_{h}}=1-T_{c} / T_{h}$

