PC2135, Thermodynamics and Statistical Mechanics

Midterm test, closed book 1:45 min, 7 March 2025

Each question carries 25 marks.

- 1. Consider the Einstein model for vibration in solids.
 - a. Let the solid A have N_A oscillators with energy $U_A = \epsilon q_A$, give the formula for the multiplicity Ω_A .
 - b. Assuming the solid B is similar but with N_B oscillators and the energy units are the same as that of the solid A, so that the energy of solid B is $U_B = \epsilon q_B$. Compute the entropy S_B of the solid B using Sterling's approximation, $\ln N! \approx N \ln N - N$.
 - c. If the solids A and B in parts a and b are put into thermal equilibrium such that the temperatures of the two systems are the same, $T_A = T_B$, what will be the energies of each of the systems? Here, we assume the total energy remains the same before and after equilibration. A derivation is required.
- 2. Consider a monoatomic ideal gas with the following loop in the P-V diagram consisting of one isothermal expansion from V_1 to V_2 starting from pressure P_2 , then go vertically with an isochoric process down to pressure P_1 , then go horizontally back to volume $V_1 < V_2$. Finally, close the loop by another isochoric process back to the starting point. Express your results in terms of P_1, P_2, V_1, V_2 .
 - a. Compute the total work W done by the gas.
 - b. Compute the heat absorbed by the gas (negative if it releases heat) for each of the four processes, Q_i , i = 1,2,3,4.
 - c. Compute the efficiency $e = W/Q_{absorp}$, here, the denominator is all the heat absorbed during the loop.

- 3. For a monoatomic ideal gas, we can count the multiplicity by considering the possible positions of an atom proportional to the volume V, as well as the hyper-volume in momentum space of N atoms, proportionally to $U^{3N/2}$.
 - a. Write down the multiplicity for the ideal gas and give the volume and energy dependence of the entropy, ignoring the complicated factor involving the number of particles.
 - b. Show that you can derive the same result in part a from the thermodynamic identity, dU = TdS PdV, together with the equipartition theorem and the ideal gas law, PV = NkT.
 - c. A liter of air, initially at room temperature (300K) and atmospheric pressure $(1.013 \times 10^5 \text{Pa})$, is heated at constant pressure until it is doubled in volume. Calculate the increase in its entropy ΔS during this process.
- 4. Consider N magnetic dipoles or spins in a magnetic field B at energy $U = \mu_B B (N 2N_{\uparrow})$, where N_{\uparrow} the number of up spins.
 - a. Write down the multiplicity of the paramagnet in terms of the total number of spins N and the number of up spins N_{\uparrow} .
 - b. Assuming both N and N_{\uparrow} are large, derive the entropy S of the system using Sterling's approximation. Eliminate N_{\uparrow} and simplify your result as much as you can, and express the final answer in terms of U, B, N.
 - c. Give the definition of chemical potential (at fixed U and B) treating each spin as a particle. Compute the chemical potential for the spins.

Physical Constants

$$\begin{split} k &= 1.381 \times 10^{-23} \text{ J/K} \\ &= 8.617 \times 10^{-5} \text{ eV/K} \\ N_{A} &= 6.022 \times 10^{23} \\ R &= 8.315 \text{ J/mol·K} \\ h &= 6.626 \times 10^{-34} \text{ J} \cdot \text{s} \\ &= 4.136 \times 10^{-15} \text{ eV} \cdot \text{s} \\ c &= 2.998 \times 10^8 \text{ m/s} \\ G &= 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2 \\ e &= 1.602 \times 10^{-19} \text{ C} \\ m_e &= 9.109 \times 10^{-31} \text{ kg} \\ m_p &= 1.673 \times 10^{-27} \text{ kg} \end{split}$$
 Unit Conversions
 1 atm = 1.013 bar = 1.013 \times 10^5 \text{ N/m}^2 \\ 1 atm &= 1.013 bar = 1.013 \times 10^5 \text{ N/m}^2 \\ = 14.7 \text{ lb/in}^2 &= 760 \text{ mm Hg} \\ 1 atm &= 1.013 \text{ bar} = 1.013 \times 10^5 \text{ N/m}^2 \\ = 1.603 \times 10^{-34} \text{ J} \cdot \text{s} \\ (T \text{ in } ^{\circ}\text{C}) &= (T \text{ in } \text{K}) - 273.15 \\ (T \text{ in } ^{\circ}\text{F}) &= \frac{9}{5}(T \text{ in } ^{\circ}\text{C}) + 32 \\ 1 \text{ cal} &= 4.186 \text{ J} \\ 1 \text{ Btu} &= 1054 \text{ J} \\ 1 \text{ eV} &= 1.602 \times 10^{-19} \text{ J} \\ 1 \text{ u} &= 1.661 \times 10^{-27} \text{ kg} \end{split}