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INSTRUCTIONS TO CANDIDATES 

 

1. This assessment paper contains 5 questions and comprises 3 printed pages. 

2. Answer all the questions. 

3. Answers to the questions are to be written in the answer books.  Write each question on a new 

page. 

4. This is a CLOSED BOOK examination.  
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1. Answer or explain briefly the following questions/concepts: 

a. The difference between steady state and equilibrium state. 

b. The Kelvin temperature scale. 

c. Duality for the Ising model. 

d. The eutectic point. 

e. Curie-Weiss law. 

 

a) The steady state is characterized by ρ, the density matrix or classical distribution, 

“independent of time”, so that all thermodynamic observables are time-independent.  

Equilibrium is the same plus more restrictive conditions, such as no currents exist.  

Examples of equilibrium states are the canonical distribution and micro-canonical 

distribution. 

b) Temperature 0 K is fixed by 3rd law; the triple point of water is fixed at the value 

273.16K; other temperatures can be calibrated by Carnot cycle (through measuring 

heat). 

c) Duality has two aspects, one, dual lattice can be defined for planar graphs, two, the 

low temperature expansion and high temperature expansion of partition function of a 

nearest neighbor Ising model are related by the duality relation. 

d) Eutectic point is the lowest temperature point for which the mixture of alloy stays in 

liquid phase for a specific concentrate.  It is best to show a phase diagram to 

illustrate this, see Callen book (2nd ed) on page 250 figure 9.18. 

e) The magnetic susceptibility is given by /( )CC T T   , according to Curie and 

Weiss, which is, of course, not true near critical point. 

 

  

2. The heat capacities can behave differently in canonical ensemble and micro-canonical 

ensemble in a finite system of N degrees of freedom.  We elaborate this point with the 

following questions. 

a. Express the heat capacity, C1 = dU/dT, in terms of the fluctuation of the energy, 
22H H , where the average is over the canonical distribution.  Other model 

parameters, such as system volume, external field, etc., are fixed.       Show that 

C1 ≥ 0. 

b. Suppose that the entropy is calculated as a function of energy as, S = S(U), in a 

micro-canonical ensemble.  Derive a formula relating the heat capacity C2 to the 

entropy function. 

c. Discuss the condition for C1 = C2. Is it possible that C2 < 0, and why? 

 

a) The required relation between C1 and the fluctuation is C1 = [<H2>-<H>2]/(kBT2) =  

<(H-<H>)2>/(kBT2) ≥ 0.  This is obtained by differentiating the average energy U = 

<H>, where <H> is the canonical distribution average, i.e., < …> = ∑… exp(-

H/(kBT))/Z.  Z is partition function. Since kB > 0, T2 > 0, and an average of a positive 

quantity (H-<H>)2 is positive, so C1 must be positive. 
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b) The entropy function S(U) gives us inverse temperature 1/T = dS(U)/dU=S’(U).  This 

means we have a relation of T as a function of U, i.e., T =T(U) = 1/(dS(U)/dU).  The 

heat capacity C2 = dU/dT = 1/ (dT/dU) = -1/(T2 d2 S/dU2)=-1/(T2S’’(U))=-

S’(U)2/S’’(U), which is obtained by differentiate with respect to U on both side of the 

equation 1/T = S’(U).  That is, C2 is expressed by first and second derivatives of S 

with respect to U.  

c) Ensemble equivalence occurs only in the thermodynamic limit, N->∞, so we expect 

C1 and C2 are equal only in that limit.  We have proved that C1 ≥ 0 in (a), but no 

similar prove can be given within finite N statistical mechanics without evoking the 

thermodynamic arguments (such as concavity of S, which may be true only in the 

thermodynamics limit).  So within statistical mechanics of finite N, C2 < 0 is possible, 

and not against any known laws. 

 

3. Consider the standard ferromagnetic Ising model with nearest neighbor interactions in a 

magnetic field,   

, 1

( )
N

i j i

i j i

H J h   


    ,  

where each nearest neighbor interaction with coupling constant J is summed once only.  

We derive the mean-field equation in the following way different from the methods used 

in class. 

 

a. First, split the Hamiltonian into two terms of the form,
cavity( ) i iH H h   , where 

Hcavity is the cavity Hamiltonian, and hi depends on the spins of nearest neighbors 

of site i only.  Give the explicit forms of Hcavity and hi.  This will be helpful for the 

next step. 

b. Prove an exact identity, known as the Callen identity:

 
 nn of 

tanhi j

j i

h J  


  
   

   
 ,  

where β = 1/(kBT).  The average has the usual meaning of 
{ }

/He Z



  

and the summation is over the nearest neighbor sites j of a fixed center site i. 

c. Assuming that the spins are uncorrelated, in the sense,

i j k i j k      , for any number of spins, show that the usual 

mean-field equation is recovered. 

 

a)  Let the site of interest i be called 0 instead of i.  Then 
0

nearest neighbors of site 0

j

j

h h J 


   . 

The cavity Hamiltonian is the remaining terms which is an Ising model with site 0 

and the interaction with it removed, i.e., 
cavity

, 0, 0 , 0

i j i

ij i j i i

H J h  
    

    . 
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b) We have 
 

0 0 cavity 0 0

1
exp ( )H h

Z 

        . We split the sum over all spins into 

sum over only 0 and sum over the rest of the spins, then 

 
 

cavity0 0

0

, 0

1

i

Hh h

i

e e e
Z

 








  . Now we multiply the summand by 

 0 0 0 0

0

1 /
h h h

e e e
  




  .  The required identity is proved. 

c) Expand the tanh function as a power series, then expand h0 and the final expression 

as a power series in σ, using the assumption given, we can move the average sign 

inside, to get 
 nn of  nn of 

tanh tanhi j j

j i j i

h J h J    
 

      
           

         
  . 

 

 

 

 

4. The finite-size scaling for an Ising ferromagnetic system takes the form 

 ( , , / ) ( , , )Y X Df b t b h b L b f t h L   

where f is the singular part of the free energy per site, t = |T-Tc|/Tc is the relative deviation 

away from the critical temperature,  h is magnetic field, and L is the linear size (length) of 

the system and D is dimension of the system.  Exactly at the critical point when t=0 and 

h=0, show that 

a. Magnetization per spin 1m L and determine the exponent  ∆1 in terms of X, Y, 

and D. 

b. Magnetic susceptibility 2L  and also determine the exponent ∆2. 

c. Finally, find (or argue) the exponent ∆3 for the quantity 3

4

2
2

i

i

i

i

L







 
 
 



 
 
 





. 

 

a) 
f

m
h


 


, we can set t=0, b=L, to get (0, , ) (0, ,1)D Xf h L L f L h . Differentiating 

with respect to h, then set h=0, assuming the limit h->0 exists, we get ∆1=X-D. 

b) Differentiate one more time with respect to h of f(0,h,L), we get ∆2 = 2X-D. 

c) Differentiate 4 times, we get 4 4/ X DM N L  , and 2 /( )B

m
M k TN

h



 


(assuming t>0), where  ,D

i

i

N L M   .  Taking the ratio of 4-th moment to the 

second moment squared, we find ∆3 = 0. 
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5. Consider a Langevin equation subject to two independent random noises R1(t) and R2(t), 

with the following equation:   

1 2( ) ( )
dv

m m v R t R t
dt

    ,  

where  ( ) ( ') ( ')R t R t C t t      , α, β = 1, 2, δαβ is the Kronecker delta and ( ')t t 

is the Dirac delta function.  

a. Derive the Fokker-Planck equation associated with the above Langevin equation.  

You can use standard well-known results without proof. 

b. Based on the result in a, determine the steady-state solution (that is, when the 

average probability distribution does not change, ( , ) / 0P v t t   ). 

c. Compute the steady-state average energy dissipation to the environment per unit 

time due to the damping force m v , as a function of the model parameters m, γ, 

C1, and C2. 

 

a) Let R(t)=R1(t) + R2(t), we find 1 2( ) ( ') ( ) ( ')R t R t C C t t   .  This means that the 

two independent noises are effectively equivalent to one noise with a new constant 

C=C1+C2.  The Langevin equation is the same as the standard one, i.e., 

 
2

2 22

P C P
vP

t v m v


  
 

  
. 

b) Steady state means ∂P/∂t=0, or 
2

const
2

C P
vP

m v



 


.  The constant must be 0 in 

order to be consistent with the fact that P is normalizable (integrable).  The first 

order equation can be solved as 
2 2

0 exp
m v

P P
C

 
  

 
. P0 can be determined by 

normalization. 

c)  The steady-state energy dissipation per unit time (power) is frictional force times 

velocity = <mγv·v>=mγ<v2>.  Since v is distributed according to Gaussian, <v2> is 

its variance, which can be read off from the result in b), given mγ·C/(2γm2) = C/(2m). 

 

---- End of Paper --- 
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