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PC5202 Advanced Statistical Mechanics 

Midterm test, closed book, 10:00-12:00 Friday 8 March 2019 

 

1. Callen thermodynamics. 

a. State the Callen postulate II, which is about the entropy of a composite system. 

b. Consider ideal gas in two equal volume 𝑉 and 𝑉.   Initially all the molecules are in the 

first volume with total number of particle 𝑁 and energy 𝑈 (and volume 𝑉).  And the 

second volume has no particle and zero energy 𝑈.  Entropy of such a constrained 

equilibrium state is given by the Sackur-Tetrode formula, 𝑆(𝑁, 𝑈, 𝑉) =

𝑘𝐵𝑁 ln (𝑉𝑈
3

2) +
5

2
𝑘𝐵𝑁 ( 1 − ln𝑁) + const.   If we connect the two volumes with a 

diathermal and permeable wall such that atom number 𝑁 and energy 𝑈 can be 

partitioned freely in the two volumes, what is the final equilibrium values of energy 𝑈1 

and 𝑈2 and particle numbers 𝑁1 and 𝑁2 in the two volumes.   Answer this question 

using the Callen’s postulates. 

c. What is the total entropy in the final state?  

            

               N1 = N2 = N/2, U1 = U2 = N/2, entropy increases by kBN ln 2. 

 

2. Consider N non-interacting atoms, each atom has three energy levels with energy – 𝜖, 0, and +𝜖.  

a. Determine the partition function 𝑍 of a canonical ensemble, and derived the associated 

entropy of the system 𝑆1. 

b. Now work in micro-canonical ensemble.  Work out a formula for the count Ω(𝐸), which 

is the number of states with a total energy 𝐸 of 𝑁 atoms.  Since energy is discrete in 

units of 𝜖 > 0, the total energy 𝐸 should be a multiple of 𝜖.    From the Boltzmann 

principle, determine the entropy 𝑆2. 

c. Show that the two entropies 𝑆1 and 𝑆2 calculated in the canonical and micro-canonical 

ensembles are equal in the thermodynamic limit. 

 

The partition function is Z = zN,  𝑧 = 𝑒𝛽𝜖 + 1 + 𝑒−𝛽𝜖.  Entropy S1 is from −𝜕𝐹/𝜕𝑇. The 

number of states in b is sum of N!/(N+!N0!N-!) consistent with N+ + N0 + N- = N, and N+ - N- 

= E/𝜖.  To show the equivalence, we note that only one term in the sum dominates in the 

thermodynamic limit (N becomes very large).    

 

3. Consider the van der Waals equation  

𝑝 =
𝑁𝑘𝐵𝑇

𝑉−𝑁𝑏
− 𝑎 (

𝑁

𝑉
)
2

. 

a. We introduce the density variable 𝜌 = 𝑁/𝑉 and making so-called virial expansion.  Find 

the first two terms of the power series expansion in 𝜌 of the pressure 𝑝.   That is, let us 

write this expansion as 𝑝 = 𝑐1𝜌 + 𝑐2𝜌
2 + 𝑂(𝜌3), give the explicit expressions for 𝑐1 and 

𝑐2 in terms of the original parameters of the van der Waals equation, 𝑇, 𝑎, 𝑏. 

b. As the 𝑐1 term linear in 𝜌 is just the same as the ideal gas law, we focus on the second 

term 𝑐2.   If the potential energy between two molecules (treated as point particles) is 



2 
 

𝑉(𝑟) where 𝑟 is the distance between the two molecules, derive an expression relating 

this potential to the second virial coefficient 𝑐2.  [Hint, better use grand-canonical 

ensemble]. 

 

c1=kbT, c2 = kBTb – a.   The formula in b is 𝑐2 = −
𝑘𝐵𝑇

2𝑉
∫ (𝑒−𝛽𝑉(𝑟) − 1)4𝜋𝑟2𝑑𝑟

∞

0
, a result 

of cluster expansion for the equation of state. 

 

4. A generalized Ising model defined on a triangular lattice takes the form 

        𝐻(𝜎) = −𝐽∑ 𝜎𝑖<𝑖𝑗> 𝜎𝑗 + 𝑔∑ 𝜎𝑖𝜎𝑗𝜎𝑘<𝑖𝑗𝑘> . 

Here the summation of the first term < 𝑖𝑗 > is over the nearest neighbors of the spins summed 

once, each site has six neighbors.  The triple < 𝑖𝑗𝑘 >  denotes the three sites of a triangle and 

the summation is over all the triangles.  

a. Use the Feynman-Jensen-Bogoliubov inequality, with 𝐻0(𝜎) = −ℎ ∑ 𝜎𝑖𝑖 , and 𝐻′(𝜎) =

𝐻(𝜎) − 𝐻0(𝜎), derive a mean-field approximation for the Helmholtz free energy 𝐹, 

from it, derive the mean-field equation. 

b. Discuss qualitatively, what sort of phase transition, if any, the system may have. 

 

The inequality is 𝐹 ≤ 𝐹0+< (𝐻 − 𝐻0) >0= Ψ.   The function is Ψ(𝑚, ℎ) = −𝑘𝐵𝑇𝑁 ln ( 𝑒𝛽ℎ +

𝑒−𝛽ℎ) − 3𝐽𝑁𝑚2 + 2𝑔𝑁𝑚3 + ℎ𝑁𝑚.   Making partial derivatives with respect to m and h 

obtained a pair of mean-field equations.  For b, the system has a first order phase transition as 

the free energy is an odd function of the order parameter m. 
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PC5202 Advanced Statistical Mechanics 

Midterm Test, Wednesday 7 March 2018 

 

1. The Stefan-Boltzmann thermal radiation law says the radiative energy (thermal photon gas 

energy) per unit volume is  
𝑈

𝑉
= 𝑎𝑇4, here 𝑎 is some universal constant, and the pressure 

produced by the photon gas is 𝑝 =
𝑈

3𝑉
.   From these equations of state, determine the entropy 𝑆 

of photon gas, as a function of temperature 𝑇 and volume 𝑉. 

 

 

2. Consider a collection of 𝑁 classical ideal rotators, each characterized by an angle 0 ≤ 𝜃𝑗 < 2𝜋 

and the moment of inertia 𝐼𝑗 such that the Hamiltonian is  𝐻 = ∑
𝐿𝑗
2

2𝐼𝑗

𝑁
𝑗=1  , here 𝐿𝑗 is the angular 

momentum canonically conjugating to the angle 𝜃𝑗.  

a. Give the associated Hamilton’s equations of motion, and also solve them.  Discuss the 

physical meaning of your solution  [Note the canonical pair is (𝜃𝑗, 𝐿𝑗)]. 

b. Consider the micro-canonical ensemble, determine the phase space volume constrained 

with 𝐻 ≤ 𝑈.  You can use the formula that the volume of a hypersphere in 𝑛 dimensions 

is 𝜋𝑛/(𝑛/2)! . 

c. Based on the result in b, determine the thermodynamic entropy 𝑆.   Make a sketch of 

the curve entropy 𝑆  vs energy 𝑈.  How does the answer differ from the ideal gas of the 

Sackur-Tetrode formula? 

d. Show that the equal-partition theorem is valid, i.e.,  〈
𝐿𝑗
2

2𝐼𝑗
〉 = 𝑘𝐵𝑇/2.  Explain the meaning 

of the average 〈⋯ 〉 you are using. 

 

 

3. We can turn the above question 2 as a quantum problem.   

a. Focusing on one single rotator, with angle 𝜃 and angular momentum operator 𝐿̂, what 

commutation relation should we give for [𝜃, 𝐿̂]?   Choose a differential operator for 𝐿̂ 

that fulfill this quantization requirement. 

b. Solve the time-independent Schrödinger equation to find the energy eigenvalues the 

rotator.  What determined the discreteness of the eigenvalues? 

c. Using canonical ensemble, determine the partition function 𝑧 of a single rotator.  What 

is the partition of 𝑁 rotators? 

d. Give an expression for the entropy 𝑆.   Try to simply it, and see if you can reduce it to be 

in agreement with the classical result in 2c. in some limit (when temperature is high or 

equivalently when ℏ is negligible). 

 

 

4. What is a Jensen inequality?   What is the Feynman-Jensen-Bogoliubov inequality?  
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PC5202 Advanced Statistical Mechanics 

Midterm test, closed book, 1 March 2017 

1. Answer briefly the short questions below.  Explain your symbols. 

a. What is the Boltzmann principle? 

b. Give a quick derivation of the Gibbs-Duhem relation. 

c. What is the von Neumann equation? 

d. What is a convex function? 

 

a.the Boltzmann principle gives the quantitative relation between entropy in micro-canonical 

ensemble to the number of microscopic states by S = kb ln Ω.  b. Derive the Euler equation U=TS-

pV+μN first using the fact that S is a homogeneous function of degree 1 of U,V,N.  Then combine 

with fundamental thermodynamics relation, dU = TdS – pdV + μdN, given SdT-Vdp + Ndμ=0.  c. 

the equation for the density matrix, 𝑖ℏ
𝑑𝜌

𝑑𝑡
= [𝐻, 𝜌] . d. 𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1) +

(1 − 𝜆)𝑓(𝑥2), for any 0 ≤ 𝜆 ≤ 1. 

 

2. Thermal radiation or photons can be described by equilibrium thermal dynamics.  The pressure 

due to thermal photons is given by / (3 )p U V , where U is internal energy, V is volume.  It is 

also known that the energy density /u U V  is a function of the temperature T  only.  There is 

no particle number N  as a variable as photon numbers are not conserved quantity.  Based on 

the information given, derive the entropy ( , )S S U V  of thermal radiation.  [Note the basic 

thermodynamic equation dU TdS pdV   and the Maxwell relation due to 

2 2S S

U V V U

 


   
]. 

 

The tricky part is to be sure what is varying and what is fixed.  Since we assume S is a function of 

U and V, everything else depends on U and V only.  Most importantly, u(T) = U/V, so T is a 

function of U and V by the combination U/V only.   With that, one can use the Maxwell equation 

to find the u=u(T) dependence to be u = a T4.  Then S  is proportional to VT3 proportional to 

 V1/4 U3/4.  This is exactly what Boltzmann did in 1884, now known as Stephan-Boltzmann law. 

 

3. Consider a collection of quantum harmonic oscillators of Hamiltonian †

1

ˆ ˆ
N

j j j

j

H a a


  with 

eigenvalues j j jn  for each mode j .  Here jn  takes nonnegative integers 0, 1, 2, ….   

a. Compute the entropy js  of the mode j (using canonical ensemble). 

b. If the number of modes are very large ( N  ), and the frequencies j  become a 

continuum, we can change the sum j

j

s   to an integral 
0

( ) ( )s D d  


 .  If the 

density of states in frequency is 2( )D b V   where b  is a constant and V  is the 
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volume, show that the total entropy S  of the system agrees with the thermodynamic 

result in Prob. 2. 

 

a.Fixing on one oscillator of mode j, the energy spectrum is 𝜖𝑛 = ℏ𝜔𝑗𝑛.  The partition 

function is 𝑍𝑗 = ∑ 𝑒−𝛽ℏ𝜔𝑗𝑛 =
1

1−𝑒
−𝛽ℏ𝜔𝑗

∞
𝑛=0 . Entropy is 𝑠𝑗 = −

𝜕𝐹𝑗

𝜕𝑇
= 𝑘𝐵[− ln(1 − 𝑒−𝑥) +

𝑥/(𝑒𝑥 − 1)] , here we have use the short-hand notation 𝑥 = 𝛽ℏ𝜔𝑗.  b  do the integral with 

density of state D(ω), and do a change of variable to x, we find 𝑆 ∝ 𝑉𝑇3, same as in question 

2. 

 

4. Consider the nearest neighbor Ising model with each site having z  neighbors, and total of N  

spins.  The Hamiltonian is of the standard form: 
, 1

N

i j i

i j i

H J h  


    .   

a. Focusing on one particular site, derive the mean-field equation for the average 

magnetization 
im   . 

b. Based on the solution in a, give expression for the zero-field ( 0h  ) heat capacity, 

/C d H dT . Discussion the three cases of asymptotic behavior of the heat capacity 

when temperature T  is low, close to cT  , and high.  Also draw a graph to illustrate your 

results. 

 

a.focusing on one spin, the effective Hamilton for one spin is 𝐻 = −𝐽𝑧𝑚𝜎 − ℎ𝜎.  Find average 

value of the spin, we get 〈𝜎〉 = 𝑚 = tanh [𝛽(𝐽𝑧𝑚 + ℎ)].  This is the mean-field equation.  b. 

setting h=0, energy is 〈𝐻〉 = −𝑁𝐽𝑧𝑚2/2 if T>Tc , m = 0, so heat capacity C = 0.  If T goes to 0, m 

goes to 1, so C decrease exponentially with T.  Near Tc,  m goes (Tc-T)1/2, C goes to a constant.   
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PC5202, Advanced Statistical Mechanics 

Midterm Test, 12:00 noon Wed 2 March 2016 

 

 

1. (a) Three variables, 𝑥, 𝑦, 𝑧, are related through a function 𝑓(𝑥, 𝑦, 𝑧) = 0.  Prove that 
𝜕𝑥

𝜕𝑦

𝜕𝑦

𝜕𝑧

𝜕𝑧

𝜕𝑥
= −1. 

(b) Consider a magnetic system with the following thermodynamic variables, internal energy 𝐸, 

entropy 𝑆, and magnetic field ℎ, as such a triplet of variables satisfying a constraint.  Use the 

result 1(a) to show that 𝑇 (
𝜕𝑆

𝜕ℎ
)
𝐸

= −(
𝜕𝐸

𝜕ℎ
)
𝑆

, where 𝑇 is the thermodynamic temperature. 

(c) Discuss in what condition (
𝜕𝐸

𝜕ℎ
)
𝑆

= 〈
𝜕𝐻̂

𝜕ℎ
〉, where the angular brackets denote some kind of 

ensemble average, and 𝐻̂ is the Hamiltonian (quantum or classical). 

 

 

2.  Consider a collection of 𝑁 classical harmonic oscillators, with the Hamiltonian 

𝐻 = ∑
1

2
(𝑝𝑖

2 + 𝜔2𝑞𝑖
2)

𝑁

𝑖=1

. 

(a) Compute the phase space volume less than a given energy 𝐸.  You may need the formula for 

the volume of a unit hyper-sphere in 𝑑 dimensions, which is given by  𝜋
𝑑

2/(𝑑/2)! 

(b) Based on result in 2(a), compute the Gibbs volume entropy, 𝑆𝐺, and Boltzmann entropy, 𝑆𝐵, 

as a function of energy, 𝐸. 

(c) Show that the two entropies in (b) are equal in the thermodynamic limit. 

 

 

3. Consider photon as particle having energy ℏ𝜔 and chemical potential 𝜇 so that 𝑛 such 

photons have energy 𝑛ℏ𝜔.  (a) Using the grand-canonical ensemble, compute the grand 

partition function Ξ, grand potential 𝜓, entropy 𝑆, and average number of photons 〈𝑁〉. 
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(b) In fact, the chemical potential 𝜇 of photon is 0.  Give an argument as to why this is so. 

(c) Consider a collection of different modes (frequencies) of photons 𝜔𝑘 = 𝑐2𝜋𝑘/𝐿, where 𝑘 =

1,2,3, …, takes all the natural numbers, and 𝑐 is the speed of light, and 𝐿 is the length of a one-

dimensional line on which the photons are constrained.  Determine the (total) energy per unit 

length, 𝑢, of the thermal photons or black-body radiation, as a function of temperature 𝑇.  You 

may assume that 𝐿 is sufficiently large such that the summation can be turned into an integral. 

 

 

4.  Superconductor/superfluid or magnetic spins with a planar rotation symmetry can be 

thought as systems with a two-dimensional vector 𝑀⃗⃗ = (𝑀𝑥, 𝑀𝑦) as the order parameter.  

Construct a Landau theory out of it, i.e., make a proposal of the Landau free energy as a 

function of the vector 𝑀⃗⃗ , considering the symmetries of the problem (that is, how the 

component of  the order parameter enters into the free energy),  then work out its 

consequences.  For example, how the order parameter changes with temperatures in the 

ordered phase.  This is a completely open-ended question.  You may propose to calculate other 

quantities, within the framework of Landau theory for phase transitions. 

 

 

 

[WJS] 

-- The end --  
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PC5202 Advanced Statistical Mechanics 

Midterm Test (closed book), 4 March 2015 

 

1. This question is on the fundamentals of thermodynamics.  

a. State the Postulate II and III of Callen on thermodynamics. 

b. Using the postulates, show that they imply that if two bodies are brought into 

thermal contact, and then equilibrate, the temperatures of the two bodies must be 

the same. 

c. Continue on the above, show that the Clausius statement that ‘heat flows from hot 

body to cold body’, is implied by the Callen postulates. 

 

The answers are in Callen, “Thermodynamics and an introduction to …”, 2nd ed, 

Chap.1.10, page 27-28; Chap.2-4 & 2-5, 43-46. 

 

2. Consider two classical non-interacting Hamiltonian systems with a total Hamiltonian 

𝐻 = 𝐻1 + 𝐻2.  We define the phase space volume less than a given energy of each 

system by Γ𝑗(𝐸𝑗) = ∫ 𝑑𝑝𝑗𝑑𝑞𝑗𝐻𝑗<𝐸𝑗
 where 𝑗 = 1,2, and 𝑑𝑝𝑗𝑑𝑞𝑗 represents all the 

momenta and coordinates of the system 𝑗.  

a. Give an expression for the phase space volume Γ of the combined system 

associated with 𝐻 less than a given energy 𝐸 in terms of Γ1(𝐸1) and Γ2(𝐸2). 

b. Work in canonical ensemble with the partition functions 𝑍𝑗, show that entropy is 

additive, i.e., 𝑆 = 𝑆1 + 𝑆2. 

c. Comment on a similar statement of part b in micro-canonical ensemble starting 

from the result of part a (i.e., is entropy additive in micro-canonical ensemble?) 

 

a. This problem was first discussed in A. I. Khinchin’s book “Mathematical 

Foundations of Statistical Mechanics,” (Dover 1949), Sec.7-8, the result is on 

page 41.  Let’s assume that energy is bounded below by 0, i.e., 0 < H1 or H2, then 

1 2

2 1 1 1

1 2

1 1 2 2

1 1 2 2

( , )

1 1 1 1 1 1 1 2 1

1 2 1 1 2 2

0

( )

( ) ( ) ( )

( ) ( )

H H E

H E H q p

E E E

E dq dp dq dp

dq dp dq dp

dq dp E H dE E E E

dE dE E E

 

 

  

 



      

   



 

 



 

The prime means derivative with respect to the argument. 

b. For partition function it is easy to show Z = Z1Z2, if Hamiltonian is H=H1+H2 so 

this implies additivity to entropy, since 𝑆 = −
𝜕𝐹

𝜕𝑇
, 𝐹 = −𝑘𝐵𝑇 ln 𝑍. 

c. No, unless thermodynamic limit is taken. 
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3. To a first order approximation, a piece of solid can be thought of as a collection of 𝑁 

independent harmonic oscillators, with a classical Hamiltonian 𝐻 =
1

2
∑ (𝑃𝑗

2 + Ω𝑗
2𝑄𝑗

2)𝑁
𝑗=1 , 

where 𝑃𝑗 , 𝑄𝑗 are the conjugate pairs of dynamic variables, and  Ω𝑗 is the angular 

frequency. Treated as a classical system, compute a) partition function Z, b) entropy S, c) 

internal energy U, and finally d) heat capacity C (which should recover the Dulong-Petit 

law). 

 

The answers are in my notes, http://staff.science.nus.edu.sg/~phywjs/PC5202/stat-

mech-1.pdf page 69-71. 

 

4. One way to derive the mean-field theory more rigorously is to use Jensen’s inequality, 

𝜑(𝑥)̅̅ ̅̅ ̅̅ ≥ 𝜑( 𝑥̅).  

a. State the condition need for the validity of the Jensen’s inequality.  

b. Based on the Jensen inequality or quantum version of the Feynman-Jensen (or 

Bogoliubov) inequality:  𝐹 ≤ 𝐹0 + 〈(𝐻 − 𝐻0)〉0, derive the mean-field estimation 

of the free energy (the right-hand side) for a simplified Heisenberg model 𝐻 =

−𝐽 ∑ 𝑆𝑖
𝑧𝑆𝑗

𝑧 − ℎ∑ 𝑆𝑖
𝑧𝑁

𝑖=1〈𝑖,𝑗〉 , here 𝑆𝑖
𝑧 = −𝑆,−𝑆 + 1,⋯ , 𝑆 − 1, 𝑆, where 𝑆 is either 

an integer or half integer.  𝑖 or 𝑗 denotes lattice site on hyper-cubic lattice in 𝐷 

dimensions and the first sum is over the nearest neighbors only. 

 

a. Need a continuous convex function, so that the straight line is always above the 

function for x inside the interval. 

b. We need first to define H0. Let 
0

1

, , 1,..., 1,
N

z z

i i

i

H h S S S S S S


       .  The 

partition function associated with H0 is Z0 = zN,  

 

2 ( 1)

(2 1) sinh ( 1/ 2)(1 )

sinh( / 2)1

z

z

hS hS hS h hS h h S hS

S

hS h S

h

z e e e e e e

h Se e

he

       

 







     

 

     


 





. 

F0 = - kBT N ln z, 
2

0 0 0 0
( ) ( )z zH H JND S h h N S     .  Define Φ = 𝐹0+<

(𝐻 − 𝐻0) >0, we need to minimize Φ with respect to h and zS , which gives us 

mean field equations:

 

0 2 ,

1 1/ 2 1
0

( ) 2 tanh( / 2)tanh ( 1/ 2)

z

z

z

h h JD S
S

z S
S

zh h hh S 


   



  
    

  

 

  

http://staff.science.nus.edu.sg/~phywjs/PC5202/stat-mech-1.pdf
http://staff.science.nus.edu.sg/~phywjs/PC5202/stat-mech-1.pdf
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PC5202 Advanced Statistical Mechanics 

Midterm test, closed book, 5 March 2014 

1.  

a. Explain the meaning of “Schrödinger picture” and “Heisenberg picture” in the 

contexts of time-dependent classical statistical-mechanical averages. 

b. State the von Neumann equation for the quantum-mechanical density matrix ρ. 

c. State the Maxwell construction used in the van der Waals equation describing gas-

liquid phase transition; then sketch the reasoning/proof of the Maxwell construction. 

 

2. Consider a general quantum system of identical particles with the Hamiltonian of the form 
2

1 2

N
i

i

H V K V
m

   
p

, where m is the mass, pi is momentum, and V is potential energy 

operator that only depends on coordinates.  Let the grand partition function be 

 Tr exp ( )H N    . Show that the average total kinetic energy K of the system can be 

expressed as 
ln

BK mk T
m

 



. 

 

 

3. Beside the micro-canonical, canonical, and grand-canonical ensembles, other ensembles can 

be defined.  Corresponding to  the Legendre transform of the thermal dynamic potentials 

from the Helmholtz free energy to Gibbs free energy, G = F + p V, one can construct an 

isobaric-isothermal ensemble with fixed temperature T, pressure p, and number of particles 

N.  

a.  Show that   
0

ˆ( , , ) Tr expT p N dV H pV


    
   is consistent with the above 

mentioned Legendre transform with G = - kBT ln Ξ. 

b. Compute Ξ for a classical ideal gas. 

c. Determine the equation of state by /G p V   , and show that it is the same as the 

ideal gas law. 

 

 

4.  

a. State the Jensen inequality and condition of its validity. 

b. State the Feynman-Jensen (also known as Bogoliubov) inequality. 

c. Using the above,  determine the best mean-field estimate of the free energy F for the 

N spin Ising model with q number of nearest neighbors with the standard Hamiltonian 

1

N

i j i

ij i

H J h  
  

     and  
0

1

N

eff i

i

H h 


    . 
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5. Bonus question: state the names of authors of textbooks on statistical mechanics, for which 

you have read at least one chapter from. 

 

  



12 
 

PC5202, Advanced Statistical Mechanics 

Midterm Test, 9 March 2013 

1. Consider thermodynamic problems.  

a. Derive the Gibbs-Duhem relation for fluid system. 

b. Use the result above to prove the Clapeyron equation, dP/dT = ℓ/(T Δʋ), for the 

slope of the phase-coexistence curve in a P-T diagram, where P is pressure, and T 

is absolute temperature.  Interpret the meanings of ℓ and Δʋ. 

 

a. Using the extensivity property, U(λS,λV,λN)=λU(S,V,N), by making derivative with 

respect to λ and setting λ=1, we get the Euler equation U=TS-pV+μN. Differentiate 

this (i.e. dU = …) and together with the fundamental thermodynamic equation 

dU=TdS-pdV+μdN, we find the Gibbs-Duhem relation SdT - Vdp + Ndμ=0. 

b. We have two Gibbs-Duhem equations, one for the gas phase and one for liquid phase.  

Subtracting the two after dividing by N, and noting that in phase equilibrium on the 

phase coexistence line, temperature T, pressure p, and chemical potential μ must be 

the same.  We get the Clapeyron equation, where ℓ is the latent heat needed to 

vaporize liquid per mole, and Δʋ=ʋg-ʋl is the volume change per mole. All are 

positive quantities. 

 

For more details, see page 59-62, and 228-231 of the textbook of Callen, 

“thermodynamics and an intro to thermostatistics”, 2nd ed. 

 

 

2. With respect to Liouville’s theorem:  

a. Explain in words that the microcanonical ensemble is consistent with the theorem. 

b. Let D(t) be the Jacobian determinant defined by the transform γ0 =(p,q) to Γ(t) 

=(p(t), q(t)) where Γ(t) is the solution of the Hamilton equations of motion with 

initial condition γ0.  Using the integral form of Liouville’s theorem, show that D(t) 

= 1. 

c. Show that dD(t)/dt|t=0 = 0 as a consequence of the Hamilton equations of motion. 

 

a. If the phase space distribution function  ρ is a function of the Hamiltonian H only, then 

ρ satisfies the Liouville’s equation ∂ρ/∂t=(H,ρ) = 0. The microcanonical distribution, 

ρ=const if E < H < E + ΔE and 0 otherwise is a function of H only, so it is consistent 

with Liouville’s equation.  But so does the canonical distribution.  Liouville says the 

phase space volume is invariant under the Hamiltonian dynamics. This implies that if the 

density was initially uniform (constant in a region), it will stay so, so microcanonical 

ensemble is stationary and consistent with Liouville theorem. 
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b. Let Ω0 be a set of phase space points at initial time t=0.  This region moves to Ωt by 

time t. There is a one-to-one map from points Ω0 to Ωt. The Liouville theorem says (see, 

e.g., V.I. Arnold, “mathematical methods of classical Mechanics,” 2nd ed, page 69): 

0

0

t

td d
 

    

However, according to the usual rule of change of integration variables, we need 

0 0

0 0

0

det ( )

t

t
td d D t d 


  

 
   

 
    

Compare the two, we conclude that the Jacobian determinant D(t) must be 1 for all t. 

c. D(t) is the  determinant of matrix elements i

j




(where  Γ is at time t and γ at time 0). 

Expand Γ for small time t using the Hamilton’s equation, and taking the time derivative 

of the determinant and set time to 0, we obtain. 

2

10 0

( ) N
i

it i t

dD t d

dt dt  

 
  

 
  

Using the solution of Hamilton’s equation near t=0, e.g., Pi = p0
i – t ∂H/∂q0

i + O(t2), we 

can show the sum above is zero due to the fact that the second order  mixed derivative to 

H are equal, where 

1

2

1

2

1

2 2

N

N

N

P

P

P

Q

Q

Q

 
 
 
  
  

     
  
  

   
 
 
 
 

 and similarly for the small γ version. 

 

 

 

 

 

 

3. Consider a non-interacting gas of N monatomic molecules in a cylinder with horizontal 

cross-section area of A and vertical height L in a uniform gravitational field.  The total 

volume is V=AL. In addition to the usual kinetic energy term p2/(2m), there is also a 
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potential energy of mgz, 0<z<L, for each molecule of mass m.   Where g is the 

gravitational acceleration constant. 

a. Give the expression for the Boltzmann entropy S in microcanonical ensemble in 

terms of some integral with proper integral limit or constraint (You need not 

perform the integral analytically). 

b.  Determine the partition function Z of the canonical ensemble. 

c. What is the pressure P at bottom (z=0) and top (z=L) of the cylinder? 

a. Boltzmann entropy is S=kB ln W, where 

2

1

3 3 3

1 2 1 23

2

! N
i

i

i

N

N NN

U mgz U
m

A
W dz dz dz d d d

N h



 
    

 
 






p

p p p  

where 0<zi<L. 

b.Z=zN/N!,  

2 2 2

1

0

0 1

2

3

3/ 2

3

1

2

x y zp p p
z mgz

m

x y z

A z

mgz mgz

z dxdy dz dp dp dp e
h

A m e e

h mg



 

 

  
     
 
 

  

 



  
  

 

    
 

where z0 is close to 0 and z1 close to L.  The reason that we don’t set exactly to 0 and L is 

because we like to see how the free energy varies with the locations of the top and bottom 

of the cylinder so that pressure there can be calculated. 

c. The pressure is the force per unit area, f/A.  The work done to the system is force times 

the displacement.  So we have  dF = f0 dz0 -f1 dz1 - SdT, F = -kBT ln Z.  Differentiate with 

respect to z0 or z1, we get the pressure at the bottom and top as 

( 0) ,
(1 )

( ) .
( 1)

mgL

mgL

Nmg
P z

e A

Nmg
P z L

e A






 



 


 

 

 

 

4. Consider an idealized boson gas (free particle) such that each quantum particle can take 

only two non-degenerate quantum state, either the ground state with energy ε0 = 0, or 

excited state with energy ε1, at a chemical potential μ. 

a. Determine the grand partition function Ξ. 

b. Determine if such a simple system shows Bose-Einstein condensation phase 

transition.  If it does, determine the transition temperature Tc.  If not, discuss why 
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it does not have a phase transition as comparing to the usual problem of non-

interacting Bose particles in a box. 

 

 

a. The grand partition function is  

0 0 1 1 0 1

0 1

1

( )

All Fock states

( )

0,1,2, , 0,1,2,

( )

1 1

1 1

NH N

n n n n

n n

e

e

e e

 

    

  

 

   

 



 



 
 



  

b. The occupation number of the two levels are <n0>=1/(exp(-βμ)-1), 

<n1>=1/(exp(β(ε1-μ))-1).  Thus the total N = <n0>+<n1>. This equation can be used 

to determine the chemical potential μ as a function of T, which is a smooth function of 

T.  Alternatively, one can calculate heat capacity C, which is a smooth function of T 

again.  The reason that the usual particle-in-a-box boson particles have phase 

transition is that there are infinite numbers of excited states.  So the total number of 

particle is determined by a separate term for the ground state, plus an integral for all 

the excited states.  The chemical potential is not a smooth function of T due to this. 
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PC5202 Advanced Statistical Mechanics 

Midterm Test (closed book), Saturday, 3 March 2012 

 

 

 

1. Thermodynamics 

a. State the Postulate II of Callen on thermodynamics, and use it to show that heat 

flows from a hot body to a cold body. 

b. State the Gibbs phase rule.  At the triple point of pure water, the temperature T 

and pressure P have unique values, explain from the fundamental thermodynamic 

point of view why this is so. 

 

 

 

    

2. Foundations of statistical mechanics.  

a. State the Liouville equation for classical dynamics.  Explain the meaning of 

symbols used. 

b. Show that the Jacobian of the transform, Γ0 to Γt for fixed time t, is 1, where 

Γ=(q1, q2, …qN, p1, p2, …pN) is a phase space point and the time dependence 

follows the Hamiltonian dynamics. 

 

 

 

 

3. Consider a two-dimensional oscillator with the classical Hamiltonian 

 2 2 2 21

2
x yH p p x y    . 

a. Compute the entropy S(U) of the system as a function of the total energy U using 

the classical microcanonical ensemble. [You may use the fact that the volume of a 

four-dimensional hyper-sphere of a unit radius is π2/2.] 

b. Using the result in a, determine the heat capacity C of the system. 

c. Is the result consistent with the equipartition theorem? 
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4. Assuming that the Helmhotz free energy of a fluid (the van der Waals fluid) is given by 

the equation 

 
2

3ln( ) ln 1 ,

,
2

B B

B

N
F a Nk T V Nb Nk T N

V

h

mk T






      
 



 

where a, b, are constants, N is the number of particles, T is temperature, kB is the 

Boltzmann constant, and λ is the thermal wavelength, m is the mass, and h is the Planck 

constant. 

a. Compute the internal energy U.  

b. Compute the heat capacity at constant volume, Cv,  at the critical volume Vc. 

c. Compute approximately (asymptotically close to Tc) the heat capacity at constant 

pressure, Cp, at the critical pressure Pc. 
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PC5202  Advanced Statistical Mechanics 

midterm test, closed book, 5 March 2011 

 

1. Thermodynamics: 

a. Give at least two equivalent definitions of the chemical potential μ. 

b. Using Callen’s maximum entropy postulates I, II, and III, show or argue that 

when two phases are in coexistence, e.g., ice in coexistence with liquid water, the 

chemical potentials of the two phases must be equal. 

c. State the Gibbs phase rule. 

 

Ans: 

a) 
, , ,S V T V U V

U F S G
T

N N N N


       
         

       
 

b) Let the two subsystems called 1 and 2, then we have 

1 1 1
1 1 1

1 1 1

2 2 2
2 2 2

2 2 2

,
dU P

dS dV dN
T T T

dU P
dS dV dN

T T T





  

  

 

Since the system as a whole are closed, we have d(U1+U2) = 0, d(V1+V2)=0, 

d(N1+N2)=0, but total entropy S1+S2 must be a maximum with respect to the change 

of U1, V1 or N1, i.e., 

1 2 1 2
1 2 1 1 1

1 2 1 2 1 2

1 1
( ) 0,

P P
d S S dU dV dN

T T T T T T

      
            

     
 

we find T1=T2, P1=P2, and μ1=μ2. 

 

c) f = r – M + 2 where f is the number of degrees of freedom of intensive variables 

(varying of which do not lead to change of phases), r is the number of chemical 

components, and M is the number of coexisting phases.  (see Callen’s book, page 

245-248).  

 

2. The quantum-mechanical mixed state (density operator) is of the form 

i i i

i

w    . 

a. What condition do we must impose for ρ to be a valid density matrix? 

b. Give the equation that ρ satisfies. 

c. What is ρ in a grand canonical ensemble? 

 

Ans: 
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a) For the formula to represent a valid density matrix (read Chap 8 of K. Huang), one 

must have wi a real number and 0, 1.i i

i

w w   

b) The von Neumann equation, 
1ˆ ˆ( , ) [ , ]

d
H H

dt i


    

c) 

ˆ ˆ( )H Ne  


 




. The grand partition function Ξ is fixed by Tr[ρ]=1.  The trace is over 

the Fock space. 

 

 

3. Consider a collection of bosonic particles moving in a 1D parabolic trap such that the 

energy levels of a single particle are given by En = (n+1/2)ħω, n=0, 1, 2, …   

a. Compute the grand partition function Ξ as a function of temperature T and 

chemical potential μ.  

b. What is a typical fluctuation in the number of particles if the trap contains one 

particle on average; what if there are 106 particles.  Answer quantitatively based 

on result in part (a). 

 

Ans: 

a)  

0,1,2,

0 1 2

- ( )

( )

{ , , , }

( )

0,1,2,0

( )
0

Tr[ ]

1 1
, ( )

1 2

N

i i

i

i i

i

i

H N

n

n n n

n

ni

i

i

e

e

e

i
e

 

  

  

  
 





 


 





 


 






  








 

b)  

 

( )
0

( )2
22

( ) ( )2 2 2
0 0

ln 1
,

( ) 1

ln 1

( ) ( 1) ( 1)

i

i

i i

i

i i

N
e

e
N N N

e e

  

  

     










 

 
 

 
 
 

 
    

  



 

 

If the occupation number per state is low (high T), the second term can be ignored.  We 

have that 

<N2> - <N>2 ≈ <N>.  If we have 1 particle on average, the standard deviation (square root 

of the variance) in the particle number is of order 1 (percentage deviation is 100%).  If we 

have 106 particles, the standard deviation (fluctuation) in the particle numbers is of order 
310N   (0.1 percents). 
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4. Consider the problem of a mean-field theory of an infinite long one-dimensional Ising 

model, with the classical Hamiltonian (energy) given by 𝐻 = −𝐽 ∑ 𝜎𝑖𝜎𝑖+1 − ℎ ∑ 𝜎𝑖𝑖𝑖 , 

σ=±1.  Let us have the spins of site 1 and 2 treated explicitly and exactly and the rest of 

the spins of site …, -2, -1, 0, and 3, 4, 5, …, replaced by average, m=<σi>. 

a. Derive the mean-field equations for the average of two spins <σ1> and <σ2>. 

b. If <σ1> = <σ2> =m, discuss if there is a phase transition at h=0, in the sense that 

m>0 for T < Tc and m=0 for T > Tc with Tc > 0. 

 

a) The effective Hamiltonian is obtained by replacing all other spins by the average m:

eff 1 2 1 2 1 2 constH J Jm Jm h h            .  The partition function (drop the 

constant term) is 

 

1 2

1 2

[2( ) ] [ 2( ) ]

,

[2( ) ] [ 2( ) ]

1 2 1

,

2

2

1 1

sinh[2 ( )]

cosh[2 ( )]

eff

eff

H Jm h J Jm h J J

H Jm h J Jm h J

J

Z e e e e

m e e e
Z Z

mJ h

mJ h e

   

 

  

 



  





      

     



   

    




 



  

 

b) Yes, there is a phase transition at nonzero Tc.  Because if β=1/(kBT) is large (low 

temperature T), the equation becomes approximately the same as the standard one 

discussed in class.  One can draw two curves of the right and left side to see if there is 

an intersection point for m or not. 

 

 

 

- The end -  
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PC5202 Advanced Statistical Mechanics, Midterm Test, 6 March 2010 

 

(closed book, 90 min) 

 

 

1. Consider two bodies initially isolated and in respective equilibrium at temperatures T1 and 

T2 (with T1  T2).  A thermal contact allows the exchange of energy through a diathermal 

wall.  Using Callen’s postulates about the entropy, show that heat flows from hot body to 

cold body. 

 

 

 

2. Consider a general Hamiltonian 

2

2

j

j j

p
H V

m
  with  s-degrees of freedom.  Show that in 

the canonical ensemble, equipartition theorem is valid for a classical system, i.e., <(1/2) mj 

vj
2> =1/2 kB T.  v is j-th component of the velocity. 

 

 

 

3.  Consider a particle in a one-dimensional box confined in an infinite potential well, V(x) = 

0 if  0 < x < L, and V(x) = + otherwise, such that the quantum-mechanical wavefunction 

is give by   = A sin(n  x/L), 0 < x < L, n = 1, 2, 3, .. 

a. give the eigenenergy of the particle of mass m. 

b. Consider a collection of boson particles in such a potential well.  Calculate the 

grand partition function of the system (expressed as a sum over n). 

c. Derive a system of equations which give the force of the particle acting on the wall 

as function of temperature and fixed total particle number N. 

 

 

 

4. The Helmhotz free energy of the van der Waals theory for fluid is 
2 3

ln( ) ln( / ) const
2

B B

N
F a Nk T V bN Nk T T c

V
       .   
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The constants a, b, c, const are independent of both volume V and temperature T. Calculate 

the heat capacity at constant pressure, Cp.  Give the asymptotic value near critical point at 

a fixed pressure Pc.  
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PC5202 Advanced Statistical Mechanics 

Midterm Test,  Saturday, 7 March 2009 

 

 

1. Answer briefly with one sentence or one formula 

a. Give one definition of the (electro-) chemical potential μ. 

b. Give the Gibbs-Duhem relation (without derivation). 

c. Which one is NOT correct: the ensemble average at time t for a (implicitly) time-

dependent quantity A can be calculated from (i) ( , ) ( )d A t    ,  (ii)  

( , ) ( , )d A t t   ,  (iii) ( ) ( , )d A t   . 

d. What is Boltzmann’s principle? 

e. Give the equation for the ergodic hypothesis. 

f. Consider the microcanonical distribution in the limit when the shell thickness Δ 

goes to 0.  What is the probability of finding the system in a small area of dσ on 

the energy hypersurface (of 2N−1 dimensions)? 

g. What is the heat capacity of a heat bath? 

h. Give the formula for the thermal wavelength. 

 

a. 
, ,S V T V

U F G

N N N


    
     

    
  b. SdT−Vdp + Ndμ = 0  c.  (ii) is not correct  d. S = kB ln Ω  

e. time average equals ensemble average, 
0

1
( ') ' ( ) ( )

t

A A t dt A d
t

        f. the probability 

in an area of dσ is proportional to dσ/|H|  g. The heat capacity of a heat-bath is infinite, 

h. 
2 B

h

mk T



 . 
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2. (a) Derive the equation  
2

2 2

1S

U CT


 


, where S is entropy, T is temperature, and C is 

heat capacity; the number of particle N and volume V are fixed. 

 

(b) The figure shown below for entropy versus internal energy U  is not correct, where at 

point C and E we have 
2

2
0

S

U





,  

2

2
0

S

U





 between C and E, and at point B and F, the 

slopes are equal.  (i) Modify the curve (in the spirit similar to Maxwell’s construction) so 

that the figure becomes physical acceptable.  (ii) What happens when system move from 

point A to point G? 

                   

 

a. Since / 1/S U T   , take one more derivative with respect to U and use the definition for 

heat capacity, C = dU/dT, we obtain the result.  b. (i) connect with a straight line from B 

to F. See Callen, page 205.  (ii) There is a (first-order) phase transition from B to F. (draw 

a curve U vs T will show clearly).  On the straight line BF, there is a two-phase coexistence, 

A to B, or F to G is a single phase.  
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3. Consider N independent, distinguishable one-dimensional harmonic oscillators with the 

classical Hamiltonian  
2

2

1

1

2 2

N
i

i

i

p
H k x

m

 
  

 
 , where m is the mass and k is the spring 

constant.  Note that the volume of a unit hypersphere of n dimensions is  
/ 2

( / 2)!

n

n


.      

 

a. Compute the entropy in microcanonical ensemble in the thermodynamic limit. 

b. Is the result above the same as that calculated in canonical ensemble (answer yes 

or no, no actual calculation is required)? 

 

S = kB ln , where 

2 2 2
1 2 2

1 2 1 2

/ 2

1 2 2

2

1

1

2 1

!

N

N NN

H U

N

NN

y y y U

N

dp dp dp dx dx dx
h

m
dy dy dy

h k

U m

h k N





  

 

 
  

 

 
  
 



  

 we have used transformations, 1 1 2 2, , , ,N Np my p my p my   and  

1 1 2 2 2

1 1 1
, , ,N N N Nx y x y x y

k k k
    .  Using the Sterling formula, ln N! = N ln N – N, 

taking the large limit, we obtain ln , /(2 ),B

Ue k
S Nk h

N m
 



 
   

 
.  

b. yes. (the result was derived in class). 

 

 

-- The End -- 
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PC5202 midterm test, 8 March 2008 

(25 marks for each question) 

 

 

1. Answer briefly: 

(a) What is the precise definition of Kelvin scale for temperature? 

(b) Consequence of the Euler equation for internal energy U (derivation not 

needed); 

(c) Explain the meaning of equation of motion, ( , )A A H , in classical and 

quantum terms; 

(d) What is ergodic hypothesis? 

(e) What is a Maxwell construction. 

 

2. (a) Fixing the number of particles N and volume V as constants, show that 
2

2 2

1S

U CT


 


, 

where T is temperature and C is heat capacity.  

(b) For a thermodynamic system with the fundamental relation shown schematically in the 

figure, draw a figure of internal energy U on the vertical axis and temperature T on the 

horizontal axis.   In the figure below, the energy U and entropy S start from 0 and the 

entropy increases with an infinite slope and smoothly goes to the point (U1,S1), it is then 

connected by a straight line segment to the point  (U2,S2), followed by another smooth 

curve with decreasing slope.  

(c ) What is the significance of Tc , U1 and U2? what is the heat capacity at Tc? 

(d)  What is the heat Q absorbed by the system if the temperature is increased from slightly 

below Tc to slightly above Tc? 
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U

Slope=1/Tc

S

U2U1

S2

S1

0

 

 

3. The vibration of certain type of molecules is described by a Hamiltonian of coupled 

harmonic oscillators: 

   2 2 2 21 1

2 2
x yH p p x y xy     , 

Compute (a) the canonical partition function Z, (b) the Helmholtz free energy F.   The 

following Gaussian integral may be helpful: 

2

2 2
x

e dx 






 . 

 

 

4. Consider a system of N monomers in one dimension.  The monomers are strongly attractive, 

and when they meet and become nearest neighbor, an energy of (ε) is gained.  Neglecting 

kinetic energy, the N monomers form a polymer chain with energy  (N1)ε.   We also 

assume that each monomer has a chemical potential μ, and the polymer chain stays only in 

its ground state.  The monomers are not conserved and are supplied from the gas phase.  (a) 

Compute the grand partition function  of the system, (b) give the grand potential , (c) 

compute the average number of monomers of a chain <N>. 

 

--- the End  ---  
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PC5202 Advanced Statistical Mechanics 

Midterm test (close book), 3 March 2007 

 

1. (a) In Callen’s Postulate I of thermodynamics, an equilibrium state for a simple 

homogeneous and anisotropic system is uniquely determined by three macroscopic 

parameters.  Name the three parameters. 

(b) State the Postulate II. 

(c) A set of four properties (monotonicity, extensivity, concavity, and third law of 

thermodynamics) exists for entropy which can be written as mathematical expressions or 

conditions.  Give these four equations. 

   

 

 

 

 

 

2. The entropy S of a hypothetical system as a function of internal energy U has the 

following form: 

1

1 2

2

,

,

,

a UN U U

S bU c U U U

a UN dU U U

 


   

  

 

where N is the number of particles; a, a’, b, c, and d are some positive constants.   It turns 

out that these constants can not be chosen arbitrarily but is uniquely determined by a’, U1 

and U2.   

(a) Draw a qualitatively correct plot of S as a function of U. 

(b) Compute temperature T as a function of U.  Draw a qualitatively correct plot of U as a 

function of temperature T.  

(c) Write down a set of four equations determining the parameters a, b, c, and d.  

Solution is not required. 

(d) The straight line segment in S vs.U  represents a first-order phase transition.  

Determine the latent heat of the phase transition.   

(e) The straight line segment also represents a coexistence of two phases.  Explain briefly 

why?  
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3. Consider a one-dimensional classical harmonic oscillator with the Hamiltonian 
2

2 21

2 2

p
H m q

m
  . 

(a) Compute the partition function Z of canonical ensemble, the Helmholtz free 

energy F, the entropy S, and the internal energy U as functions of temperature T.  

(b) Compute in micro-canonical ensemble the number of microstates using two 

different definitions for the number of microstates and entropy: 

( ) , ln ( )

( ) , ln ( )

B

H U

B

U H U

U dpdq S k U

U dpdq S k U



  

   

   




 

Again give results for F, S, and U.  

(c) Explain why the two definitions give different results?  

(d) Apparently, the ensemble equivalence is violated here.  Are you able to resolve 

the contradictions in (a) and (b) where the different ensembles and different 

definitions of entropy give different results [Hint: consider a set of N independent 

oscillators]. 

 

 

 

 

 

 

4. (a) State the three conditions that a liquid phase and its gaseous phase can be in 

coexistence.    

(b) Using the maximum entropy principle, derive the conditions stated in (a) for 

equilibrium between the two phases. 

(c)  Using one of the conditions stated in (a), give a brief derivation (justification) of the 

Maxwell construction of the isotherms of the van der Waals equation (i.e., cut the P-V 

curve in such a way so that the areas above and below a line are equal).   

 

 


