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PC5203 Advanced Solid State Physics 

Weeks 10-13, due Thursday 18 Nov 2021 

 

[main concepts to cover: Boltzmann equation, Berry curvature, superconductivity.] 

 

1. Consider the electron-electron Coulomb interaction of the form 𝐻𝐻′ = 1
2

 ∑ 𝑐𝑐𝑗𝑗
†𝑐𝑐𝑙𝑙

†
𝑗𝑗𝑗𝑗 𝑣𝑣𝑗𝑗𝑗𝑗𝑐𝑐𝑙𝑙𝑐𝑐𝑗𝑗 

on a simple cubic lattice of lattice constant 𝑎𝑎, so that the site 𝑗𝑗 or 𝑙𝑙 is defined on lattice 
sites on a system of 𝑁𝑁 = 𝐿𝐿3 sites.  The noninteracting part takes the standard form of 
𝑐𝑐+𝐻𝐻𝐻𝐻 = ∑ 𝜖𝜖𝐤𝐤𝑐̃𝑐𝐤𝐤+𝑐̃𝑐𝐤𝐤𝐤𝐤  with a single band.  (a) Transform the Coulomb interaction into 𝐤𝐤 
space, by 𝑐𝑐𝑗𝑗 = 1

√𝑁𝑁
∑ 𝑐̃𝑐𝐤𝐤𝑒𝑒𝑖𝑖𝐤𝐤⋅𝑹𝑹𝑗𝑗𝐤𝐤 , assuming 𝑣𝑣 is translationally invariant, i.e., 𝑣𝑣𝑗𝑗𝑗𝑗 = 𝑣𝑣(𝑹𝑹𝑗𝑗 −

𝑹𝑹𝑙𝑙), determine the interaction 𝐻𝐻′ in 𝐤𝐤 space.   Here 𝑹𝑹𝑗𝑗 is the real space lattice vector for 
the site 𝑗𝑗 and 𝐤𝐤  varies over the first Brillouin zone of the simple cubic lattice.  (b)  Using 
𝐻𝐻′ as the small perturbation in the Fermi golden rule, determine the form of the 

collision rate �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
colli

 for the Boltzmann equation under Coulomb scattering potential.  

[Hint: this is formally very similar to the original Boltzmann equation for classical 
particles, except that we have to take the Pauli exclusion principle into account for the 
fermionic electrons].  (c) Show that the collision rate is zero when the distribution 𝑓𝑓 is 
given by the equilibrium Fermi distribution 𝑓𝑓0 = 1/(𝑒𝑒𝛽𝛽(𝜖𝜖𝐤𝐤−𝜇𝜇) + 1).  
 
 

2. Consider the phonon Hall model Hamiltonian given as 𝐻𝐻 = 1
2

(𝑝𝑝 − 𝐴𝐴𝐴𝐴)2 + 1
2
𝑢𝑢𝑇𝑇𝐾𝐾𝐾𝐾, 

where 𝑢𝑢 is a column vector of displacements relative to the equilibrium positions, 𝑝𝑝 is 
the conjugate momentum, 𝐾𝐾 is a symmetric force constant matrix, and 𝐴𝐴 is an 
antisymmetric matrix. T stands for matrix transpose. 𝑝𝑝2 means 𝑝𝑝𝑇𝑇𝑝𝑝 for brevity.  

a. Derive the classical Hamilton equations of motion from the Hamiltonian given. 
b. Assuming periodicity of a two-dimensional crystal lattice, we can rewrite the 

vector 𝑢𝑢 as 𝑢𝑢𝒍𝒍,𝑗𝑗, where 𝒍𝒍 = (𝑙𝑙1, 𝑙𝑙2)  is pair of integers such that real space lattice 
vector is given as R𝒍𝒍 = 𝑙𝑙1𝒂𝒂1 + 𝑙𝑙2𝒂𝒂2.   The unit cell is described by the two 𝒂𝒂 
vectors.   The index 𝑗𝑗 specifies the degrees of freedom in a unit cell, e.g., for 
graphene, 𝑗𝑗 = 1 to 6 as there are two atoms per unit cell, and each atom can 
move in x, y, z directions.   Because of lattice periodicity, both the matrix 𝐴𝐴 and 
𝐾𝐾 is a function of the difference in 𝒍𝒍.  Derive the equation of motion in 𝐪𝐪 space, 
that is, the Fourier transform in index 𝒍𝒍, with the usual convention.  Give the 
relation of the Dynamic matrix 𝐷𝐷 to the real space force constant matrix 𝐾𝐾, and 
also define the q space 𝐴𝐴 in terms of the real space one.  
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c. Assuming all the atoms move in one single frequency 𝜔𝜔 in the normal mode, 
derive the eigenvalue problem 𝐻𝐻effΨ = 𝜔𝜔Ψ (that is, give the expression for the 
effective Hamiltonian 𝐻𝐻eff.  Here Ψ is a column vector consisting of position 𝑢𝑢 
and velocity 𝑣𝑣 in q space).   

d. From the definition of Berry connection 𝑑𝑑𝑑𝑑 = −Im Ψ�  𝑑𝑑Ψ, derive the Berry 
curvature formula (for each fixed 𝐪𝐪)  

Ω𝑛𝑛 = −Im �
Ψ�𝑛𝑛 ∂𝑥𝑥𝐻𝐻effΨ𝑚𝑚 Ψ�𝑚𝑚𝜕𝜕𝑦𝑦𝐻𝐻effΨn

(𝜔𝜔𝑛𝑛 − ω𝑚𝑚)𝟐𝟐
𝑚𝑚≠𝑛𝑛

− (𝑥𝑥 ↔ 𝑦𝑦). 

Here we sum over 𝑚𝑚 excluding the case of 𝑚𝑚 = 𝑛𝑛, for a fixed 𝑛𝑛.   And  Ψ� =

Ψ† �𝐷𝐷 0
0 𝐼𝐼�, 𝐷𝐷 = 𝐷𝐷(𝐪𝐪) is the usual dynamic matrix, and 𝐼𝐼 is the identity matrix 

(all in space of site index 𝑗𝑗).  We assume the modes are normalized according to 
 Ψ�  Ψ = 1.  The index 𝑚𝑚 or 𝑛𝑛 labelled the eigenmodes, the partial derivative is 
with respect to 𝑞𝑞𝑥𝑥 for 𝜕𝜕𝑥𝑥 and similar for y component.   The second subtraction 
term is obtained by swapping x with y.   

[Read Sun Kangtai’s PhD. Thesis] 

 

 

3. The energy of the electrons and magnetic field in a conventional superconductor is 𝐹𝐹 =
∫ 1
2
𝑚𝑚𝐯𝐯2𝑛𝑛 𝑑𝑑3𝐫𝐫 + ∫ 1

2𝜇𝜇0
𝐁𝐁2𝑑𝑑3𝐫𝐫 + const.    

a. By minimizing the energy 𝐹𝐹, together with the definition of current, 𝐣𝐣 = (−𝑒𝑒)𝑛𝑛𝐯𝐯, 
and Ampere’s law, ∇ × 𝐁𝐁 = 𝜇𝜇0𝐣𝐣, derive the London equation 

𝐣𝐣 = −
𝑛𝑛𝑒𝑒2

𝑚𝑚
𝐀𝐀 . 

Here the vector potential 𝐀𝐀 is transverse, i.e., ∇ ⋅ 𝐀𝐀 = 0.  𝐁𝐁 = ∇ × 𝐀𝐀.  We treat 
the electron density 𝑛𝑛 as a constant. 

b. Why the London equation (in another form) implies the Meissner effect, that is, 
the magnetic induction 𝐁𝐁 is zero inside a superconductor body? 

[Read P.-G. de Gennes book on superconductivity] 

 
 

4. The (spinless, one-dimensional) BCS ground state is postulated to be  

|BCS⟩ = ��𝑢𝑢𝑝𝑝 + 𝑣𝑣𝑝𝑝𝑐𝑐𝑝𝑝
†𝑐𝑐−𝑝𝑝

† �
𝑝𝑝>0

|0⟩, 

here |0⟩ is the electron vacuum state, 𝑢𝑢𝑝𝑝 and 𝑣𝑣𝑝𝑝 are complex numbers.    This wave 
function represents zero, one, or any number of Cooper pairs with opposite momenta.  
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a. Determine the condition needed on the coefficient 𝑢𝑢 and 𝑣𝑣 if ⟨BCS|BCS⟩ = 1, 
that is, the many-particle state is normalized to one. 

b. Compute the expectation value of BCS Hamiltonian in the ground state, 𝐸𝐸𝑔𝑔 =
⟨BCS│𝐻𝐻�BCS│BCS⟩, here 

𝐻𝐻�BCS = �(𝜖𝜖𝑝𝑝 − 𝜇𝜇)
𝑝𝑝

𝑐𝑐𝑝𝑝
†𝑐𝑐𝑝𝑝 + � 𝑉𝑉𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝

†𝑐𝑐−𝑝𝑝
† 𝑐𝑐−𝑞𝑞𝑐𝑐𝑞𝑞

𝑝𝑝,𝑞𝑞>0

 

(This is actually a K-miltonian, 𝐾𝐾� = 𝐻𝐻� − 𝜇𝜇𝑁𝑁�, because we subtracted a chemical 
potential term).  We assume the interaction matrix 𝑉𝑉 is symmetric with respect 
to the index 𝑝𝑝 and 𝑞𝑞. 

c. By minimizing the ground state energy, 𝐸𝐸𝑔𝑔 in part b, derive the solution of 𝑢𝑢 and 

𝑣𝑣 to be, for each wavevector 𝑝𝑝,  𝑢𝑢2 = 1
2

(1 + 𝜉𝜉
𝐸𝐸

),  𝑣𝑣2 = 1
2

(1 − 𝜉𝜉
𝐸𝐸

), 𝜉𝜉 = 𝜖𝜖 − 𝜇𝜇, and 

the quasi-particle energy 𝐸𝐸 = �𝜉𝜉2 + Δ2, and Δ𝑝𝑝 = −∑ 𝑉𝑉𝑝𝑝𝑝𝑝𝑢𝑢𝑞𝑞𝑣𝑣𝑞𝑞 𝑞𝑞>0 .   This is the 
gap equation in BCS theory.  

[Hint. Read Feynman’s book on statistical mechanics] 

              


