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Titanium dioxide Is one of the most intensively studied p A | p A |
transition metal oxides because of its excellent properties oc oc oc

for numerous applications, in particular in dye sensitized
solar cells (DSSCs) as the anode. Charge transfer tmg” . ~ . ot
dynamics at the organic dye/TiO, Interface largely Schematic of dye sensitized VoON TN iy "B
determine the devi rformance. In thi rk Solar Cells(D35Cs) NS TeTeR Tmen . T Tee e
etermine the device performance. IS work, HOMO1 —e—e— —e—e—) —e—e > o oo
synchrotron based PES, NEXAFS and core-hole clock i ‘\ “ \ |
- . Vv

spectroscopy (RPES) were used to Investigate the
molecular orientation, electronic structures and charge
transfer dynamics at the PTCDA/T10,(110) interface.
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m Schematic diagram of the core-hole clock spectroscopy. (A) Core level excitation

(NEXAFS); (B) Participator decay (Resonant PES; constant binding energy); (C) Spectator

The experiments were carried out at the soft X-ray beam line (SINS) of SSLS. The decay (Resonant Auger; constant kinetic energy); (D) Interfaical charge transfer (CT); (E)
available photon energy range is from 50 eV to 1200 eV. The base pressure is better than Auger emission.

1 X 10-1° mbar. Nominal energy resolution (E/AE) is better than 1000 with flux of 101 Charge transfer (D) Is competing with the de-excitation of excited state via RPES(B) or
photon/s. resonant Auger(C). The timescale of individual decay process determines which one will

dominate. Using core hole lifetime of C/N 1s (~6fs) as a reference, the electron transfer

The endstation of the SINS beamline consists of three UHV timescales (zz;) could be calculated by the following equation:

chambers: an XMCD chamber, an analyzing chamber

equipped with a Scienta R4000 analyzer, and a preparation mono / mono
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1. Molecular orientation 2. Electronic structure 3. Charge transfer dynamics
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Left: Angular dependent C K-edge The secondary electron cut-off (a), valence band (b) and
NEXAFS  spectra of PTCDA the close-up of the valence band features near the Fermi
submonolayer (0.5ML), monolayer and energy (c) of PTCDA on TiO,(110) with increasing
multilayers (28ML) on TiO,(110). The thicknesses (hv=60eV, normal emission).
Inset shows the measurement geometry.
Right: Schematic diagram of the [, A O & A e
molecular orientations at different S SR * ' Binding Energy (€V) * Binding Encrey (eV)
coverages. :JL submonolayer multilayer

: W 2 : RPES spectra of PTCDA molecules on TiO,(110) surface with incident

e N : P 2
g-trr]gnglr;t ﬁgﬁlr‘] dFe)(-JIrCt[c)) A ﬂr:; olc?rcitge(sl fg; v photon energy ranging from 280 eV to 290 eV across the C K-edge.
surface through the chemical reg ction - _ess pronounced resonant structures are observe for the submonolayer
between the perylene core of molecules A " binding Ercray @) coverage except for _Weak resonant structures Iocgted at 4.3eV, 6._1e_\/
and the substrate O atoms. The slightly Q ®) and 8.0eV (dashed lines). It suggests that Fhe excited glectrons W!th!n
fited orientation of PTCbA olecules £aop e CyPeak . PTCDA molef:ules are transferred to the TiO, condu_cthn band within
S T T et L SR an ultrafast timescale shorter than the core-hole lifetime (~6fs). In
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: . ) : . contrast, for multilayer PTCDA, several resonant features are clearly
Interfacial chemical reaction, which

becomes less significant as coverage O 1s_(a), C 1s(b) an_d Ti 2p,,(C) core level spectra as a resolved, iIndicating the excited electrons remain localized in the
_ function of PTCDA thickness. molecular layers.
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