LiNH₂/LiAlH₄ system for hydrogen storage

•Large amount of hydrogen desorbed from LiNH₂-LiAlH₄ mixture

 $\text{LiAlH}_4 + \text{LiNH}_2 \rightarrow [\text{Li}_2\text{AlNH}] + 5/2\text{H}_2$ 8.2wt% 9.5wt% $LiAlH_4 + 2LiNH_2 \rightarrow Li_3AlN_2 + 4H_2$

hydrogen upon heating

Li₃AlN₂ O LiNH₂

Hydrog

+ AIN

Fully hyd

Hydrogenation at 200°C

80

nation at 280%

🗆 LiH

60

2 theta

Z.T. Xiong, G.T. Wu, J.J. Hu and P. Chen, J. Power Sources 2006, 159, 167 Z.T. Xiong, G.T. Wu, J.J. Hu and P. Chen, Adv. Funct. Mater. submitted

•<u>Reversible hydrogen storage over Li₃AlN₂</u>

Volumetric measurements on hydrogen absorption/desorption over Li₃AlN₂

 $Li_3AIN_2 + 2H_2 \leftrightarrow LiNH_2 + 2LiH + AIN$ $Li_3N + 2H_2 \leftrightarrow LiNH_2 + 2LiH$

X ray diffraction patterns of hydrogenated Li₃AlN₂ $\Delta H = -50.1 \text{ kJ/mol-H}_2$ $\Delta H = -80.5 \text{ kJ/mol-H}_2$

20

40

114→112 Li-AlN Al with new chemi 200°C Fully 140 120 100 80 Chemical Shift (ppm)

²⁷Al NMR spectra of hydrogenated Li₃AlN₂

Considerable thermodynamic improvement of the Li-N-H system was achieved with the presence of AlN

Mg(NH₂)₂/LiAlH₄ system for hydrogen storage

 $Mg(NH_2)_2 + LiAlH_4 \rightarrow 1/3Li_3AlN_2 + 1/3Mg_3N_2 + 2/3AlN + 4H_2$

8.4wt%