# Effects of Ball-milling Conditions on Dehydrogenation of Mg(NH<sub>2</sub>)<sub>2</sub>-MgH<sub>2</sub>

HU Jianjiang, XIONG Zhitao, WU Guotao, CHEN Ping Department of Physics, National University of Singapore, Singapore 117542 MURATA Kenji, SAKATA Ko The Institute of Applied Energy, Tokyo, Japan

### Introduction

By using the affinitive combination of proton cation  $H^{\delta_+}$  in amide and  $H^{\delta_-}$  in hydride, successful amide-hydride systems have been developed. Ball-milling is a widespread method in preparing alloys and solid phase mixtures and conducting solid state reactions. In the present work, we prepared the Mg(NH<sub>2</sub>)<sub>2</sub>-MgH<sub>2</sub> mixtures at 1:1 molar ratio using a planetary ball-mill. The effects of milling time on properties of the resulted samples were investigated.

#### Results





FTIR spectra of samples with different ball mill time: increase in imide with decrease in amide



XRD patterns show effects of ball milling on structure: progressive increase at 41 and 61 of imide-structure



Different Temperature-Programmed-Desorption behaviors with different ball milling time



FTIR spectra show formation of Imide-structure for 72hr ball milled sample



XRD patterns of 11hr milled sample: from imide-structure to  $Mg_3N_2$  with rising temperature



Decrease in NH<sub>3</sub> release in low temperature range with increased ball milling time



FTIR spectra show formation of imide-structure for 11hr ball milled sample





Summary

The ball-milling of  $Mg(NH_2)_2$ -MgH<sub>2</sub> mixture substantially changed the thermal decomposition behaviors of the individual components. The H<sub>2</sub> release from the amide-hydride reaction could be promoted by thorough ball-milling. The as-prepared samples released H<sub>2</sub> beginning at temperatures as low as 65° C till 310° C with a total amount of 4.8 wt% of H<sub>2</sub> from the investigated system. The hydrogen release process is proposed as follows:

$$Mg(NH_2)_2 + MgH_2 = 2MgNH + 2H_2$$

H content = 
$$4.88$$
wt

#### References

- [1] P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin, K. L. Tan, Nature, 420 (2002) 302-304.
- [2] Z. T. Xiong, G. T. Wu, J. J. Hu, P. Chen, Adv. Mat., 16 (2004) 1522-1525.
- [3] W. F. Luo, J. Alloy. Compd., 381 (2004) 284-287
- [4] J. J. HU, Z. T. XIÓNG, G. T. WU, P. CHEN, K. MURATA, K. SAKATA, accepted by J. Power Sources, 2005

## Acknowledgement

The authors thank the financial supports from Agency for Science, Technology and Research (A\*STAR, Singapore) and the New Energy and Industrial Technology Development Organization (NEDO, Japan), respectively.

%