Tuning the electron injection barrier between Co and C₆₀ using an Alq₃ buffer layer

Yu-Zhan Wang¹, Dong-chen Qi¹, Shi Chen¹, Hong-Ying Mao², Andrew T. S. Wee¹ and Gao-Xing Yu^{1,3}

¹Department of Physics, National University of Singapore, Singapore ²IDepartment of Chemistry, National University of Singapore, Singapore ³Shanghai Institute of Applied Physics, Chinese Academy of Sciences, P.O. Box 800-204, Shanghai 201800, People's Republic of China

Introduction:

- Since the first reported organic spintronic device based on carbon nanotubes in 1999,¹ devices fabricated from a variety of organic materials have been extensively investigated.^{2,3} The application of π -conjugated organic semiconductors into spin valves has aroused much interest because they possess several advantages: being inexpensive, processability at lower temperatures with less toxic waste, chemical tuning of electronic functionality and easy thin film fabrication. Most importantly, due to their extremely weak spin-orbit interaction and hyperfine interaction, exceptionally long spin diffusion lengths can be expected.^{2,3}
- \succ C₆₀ is a promising n-type organic semiconductors, with ionization potential of ~6.3 eV and band gap of ~2.3 eV. Furthermore, room temperature C₆₀-based organic spinronic devices has been successfully demonstrated.⁴
- Interface is critical as it determines the injection efficiency of spin-polarized currents. Therefore it is of great significance to figure out way s to decrease the carrier injection efficiency at the interface between ferromagnetic electrodes and organic transporting layer. Herein we successfully reduce the electron injection barrier between Co and C_{60} using an Alq₃ buffer layer.

Methodology

Thin film growth:

Co: MBE

Organic semiconductors: Home-made double-head K-cell

Interface property characterization: XPS and UPS

All the experiments are carried out at SINS beam line in SSLS

Results and Discussion

UPS study of Alq₃/Co interface

Fig.2 The evolution of (a) secondary electron cutoff and (b) valence band spectra as a function of Alg₃ thickness on Co substrate. All the spectra are taken with a photon energy of 60 eV. A -5 bias is applied to the sample during the measurements of secondary electron cutoff and a offset of -0.6 eV have been made to each spectrum in (a).

3.25 <u>nm</u> 2.0 <u>nm</u> 0.76 nm 3.6 eV 0.28 nm 3 4 5 6 7 4 8 0 Kinetic Energy (eV) Bnding Energy (eV)

• From Fig. 2 it can be seen a large interface dipole is formed between Alq₃ overlayer and Co substrate, which is contributed by two aspects: The Pauli repulsion at the interface (about several tenths of eV) and the intrinsic interface dipoles of Alq₃ molecules (about 1.0 eV). This is the reason why we choose Alq3 to decorate the surface of Co substrate in the pursuit of decreasing the electron injection barrier between Co and the subsequent deposited organic semiconductors

□ XPS study of Alq₃/Co interface

cutoff and (b) valence band spectra as a function of C₆₀ thickness on Co substrate.

Fig.6 The evolution of (a) secondary electron cutoff and (b) valence band spectra as a function of C_{60} thickness on 4.5 nm Alq₃/Co substrate

Fig.7 The evolution of (a) secondary electron cutoff and (b) valence band spectra as a function of C₆₀ thickness on monolatyer Alg3/Co substrate.

SSLS

• In Fig. 5, the hole injection barrier Δ_h (the distance from HOMO onset to FL) is 1.7 eV for C60 grown on bare Co. Note that the energy gap of C60 is 2.3 eV, therefore the interfacial electron injection barrier Δ_{e} (the distance from LUMO onset to FL) is about 0.6 eV.

• In Fig. 6 and 7, after the insertion of Alq3 buffer layer sandwiched between Co and C60, Δ_{h} enlarges to 2.0 eV, thus Δ_{e} is reduced to about 0.3 eV. Moreover, it is found that the tuning effect of Δ_e is not dependent on the thickness of mediated Alq3 film.

\Box The energy level alignment diagrams of C₆₀/Co, C₆₀/multilayer- Alq_3/Co and $C_{60}/monolayer-Alq_3/Co$ structures

Fig.8 The energy level alignment diagrams for Co on (a) bare Co film, (b) multilayer Alg₂/Co substrate and (c) monolayer multilayer Alq₃/Co substrate.

Fig.3 The evolution of (a) C 1s and (b) O 1s as a function of Alg₃ thickness on Co film. The C 1s and O 1s spectra were taken at photon energies of 350 eV and 650 eV, respectively.

Fig.4 A fit to core level of C 1s (a), (c) and O 1s (b), (d) at normal thickness of 2.0 nm and 4.5 nm Alq₃, respectively, for Alq₃ growth on Co thin film. Solid lines through the experimental data points demonstrate the results of least-squares fitting.

- Interfacial chemical reactions occur between Alq3 molecules and Co atoms: breaking of the C-X (X: Nitrogen or Oxygen) bonds and formation of Co-O bonds.^{4,5}
- The electronic gap states may produced in the interfacial chemical reaction between Alq3 and Co, which could facilitate the injection of electron at the interface.
- As shown in the illustrations, the insertion of an Alq₃ buffer layer between C_{60} and Co reduces the electron injection barrier from 0.6 eV to 0.3 eV. However, increasing the thickness of Alq₃ cannot bring down Δ_e further. It seems that the Fermi level after the growth of C₆₀ is pinned at 0.3 eV below the fullerene LUMO

Conclusions

The insertion of Alq₃ buffer layer between C₆₀ and Co can effectively reduce the interfacial electron injection barrier by almost half, from 0.6 eV to 0.3 eV

The tuning effect of Δ_{ρ} is independent on the thickness of Alq3 buffer layer, which means the monolayer Alq₃ film could tune Δ_{ρ} as effectively as that of multilayer film.

Reference:

- 1. K. Tsukagoshi, et. al, *Nature* **401**, 572 (1999)...
- 2. V. Dediu, et. al, Solid State Commun. 122, 181 (2002).
- 3. Z. H. Xiong, et. al, Nature 427, 821 (2004).
- 4. T. W. Pi, et. al, *Physical Review B* **71**, 205310 (2005)...
- 5. T. W. Pi, at. al, J. Appl. Phys. 101, 043704-7 (2007).